`
pcajax
  • 浏览: 2184738 次
  • 性别: Icon_minigender_1
  • 来自: 上海
社区版块
存档分类
最新评论

初窥JQuery(一)-选择符 【转】

阅读更多
 JQuery强大的选择符可以让我们获得页面中任何元素进行操作,并且使用简单方便,可读性强。本章内容根据本人在开发中常用到的选择符作为例子来进行讲解,如有更多常用的简单的例子可回复提供,参与讨论,一起学习研究,首先我们从常用的CSS选择符开始。

      CSS选择符包括通配选择符、ID选择符、属性选择符、包含选择符、类选择符等,他们的基本格式为:

    通配选择符:$("#ID *")  表示该元素下的所有元素。

    ID选择符:$("#ID") 表示获得指定ID的元素。

    属性选择符:$("input[type=text]") 表示type属性为text的所有input元素。

    包含选择符:$("ul li a") 表示ul元素下所有的li元素里的所有a元素。

    类选择符:$(".Class") 表示所有引用Class样式的元素。

当然这些选择符是可以配合使用的比如说:$("#ID input[type=text]"),这种写法表示指定ID元素下的type属性为text的所有input元素。在JQuery中有些细微的改动都是非常有趣的,比如$("ul li").addClass("Class")和$("ul > li").addClass("Class"),他们显示出来的效果是不同的,第一种是将ul下的所有li元素添加样式,第二种是将ul下的第一个li元素添加样式,具体更多的使用方法可以自行测试。

  XPath选择符所涵盖的内容不多,他们的基本格式为:

    $("[@title]") 表示选择所有元素内 属性带有title的元素。

    $("[@title^=t]") 表示所有属性title值是以t为开头的元素。

    $("[@title$=t]") 表示所有属性title值是以t为结尾的元素。
      $("[@title$=t]") 表示所有属性title值是包含t的元素。

XPath选择符和CSS选择符一样,也可以配合使用,可以多个XPath选择符一起使用,也可以和CSS选择符一起使用,所以想要达到你想要的要求用JQuery方法是有很多种的。

  自定义选择符是选择以一个冒号(:)开头的一种选择符,说到自定义选择符,那就不说到我们经常用到:gt()、:eq()、:odd、:even,这些是我们最常用到的,比如:odd和:even这两个我们通常用他来做有条纹样式的表格,使用方法相当简单,如  $("#table tr:odd").addClass("odd")和$("#table tr:even").addClass("even")只要简单的使用两行代码就可以制作出我们想要的条纹样式。

  当然在实际开发中我们一般会使用选择符配合DOM遍历方法来进行操作,如:

     $("#table td:contains('Window窗口')").parent().find("td:gt(0)").addClass("highlight")

  这句代码表示取得'Window窗口'单元格,再取得他的父级元素,然后找到该元素中包含的所有编号大于0的单元格。当然有些方法是可以简化的,在这里我只是为了表示JQuery的连缀效果,这种格式也是不推荐的,我本人一般是这样书写的:

     $("#table td:contains('Window窗口')")
            .parent()    //获取父级
            .find("td")   //找到td元素
            .not(":contains('Window窗口')")   //不是window窗口的元素
            .addClass("highlight");  //添加样式

将他们分开,后面标明,以便于增强可读性。

下面我提供几个在实际开发最常用的代码(由于实在太晚,扛不住了!):

     $("input[type='text']").val(''); //清空所有文本框
            $("#text input:text").val('');//清空text元素下所有文本框

    //获取选中的所有CheckBox的值

     $("input:checkbox:checked").each(function() {
                alert($(this).val());
            });

     $("select option:selected").val()//获取选中的下拉框的值

     $("select option:selected").text()//获取选中的下拉框的文本

分享到:
评论

相关推荐

    初窥JQuery(一)jquery选择符 必备知识点

    JQuery选择符是JQuery库中最核心的部分之一,它允许开发者以简洁的语法选择页面中的DOM元素,进行各种操作,极大地方便了JavaScript的DOM操作。在本篇文章中,将会介绍一些JQuery选择符的基础知识点,以及一些实用的...

    TinyYolo2实时视频流物体检测ONNX模型

    TinyYolo2实时视频流物体检测ONNX模型 运行 ONNX 模型,并结合 OpenCV 进行图像处理。具体流程包括: 1. 加载并初始化 ONNX 模型。 2. 从摄像头捕获实时视频流。 3. 对每一帧图像进行模型推理,生成物体检测结果。 4. 在界面上绘制检测结果的边界框和标签。

    chromedriver-linux64-134.0.6998.23(Beta).zip

    chromedriver-linux64-134.0.6998.23(Beta).zip

    Web开发:ABP框架4-DDD四层架构的详解

    Web开发:ABP框架4-DDD四层架构的详解

    chromedriver-linux64-135.0.7029.0(Canary).zip

    chromedriver-linux64-135.0.7029.0(Canary).zip

    (参考项目)MATLAB人脸门禁系统.zip

    实现人脸识别的考勤门禁系统可以分为以下步骤: 1. 采集人脸图像数据集:首先需要采集员工的人脸图像数据集,包括正面、侧面等多个角度的图像。可以使用MATLAB中的图像采集工具或者第三方库进行采集。 2. 预处理人脸图像数据:对采集到的人脸图像数据进行预处理,包括人脸检测、人脸对齐、人脸裁剪等操作。MATLAB提供了相关的图像处理工具箱,可以用于实现这些处理步骤。 3. 特征提取与特征匹配:使用人脸识别算法提取人脸图像的特征,比如使用人脸识别中常用的特征提取算法如Eigenfaces、Fisherfaces或者基于深度学习的算法。然后将员工的人脸数据与数据库中的人脸数据进行匹配,判断是否为注册员工。 4. 考勤记录与门禁控制:如果人脸匹配成功,系统可以记录员工的考勤时间,并且控制门禁系统进行开启。MATLAB可以与外部设备进行通信,实现门禁控制以及考勤记录功能。

    rdtyfv、ijij

    yugy

    企业IT治理体系规划.pptx

    企业IT治理体系规划.pptx

    基于Nutz、SSH、SSM的新闻管理系统.zip(毕设&课设&实训&大作业&竞赛&项目)

    项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用

    基于多目标粒子群算法的冷热电联供综合能源系统优化调度与运行策略分析,基于多目标粒子群算法的冷热电联供综合能源系统优化调度与运行策略分析,MATLAB代码:基于多目标粒子群算法冷热电联供综合能源系统运行

    基于多目标粒子群算法的冷热电联供综合能源系统优化调度与运行策略分析,基于多目标粒子群算法的冷热电联供综合能源系统优化调度与运行策略分析,MATLAB代码:基于多目标粒子群算法冷热电联供综合能源系统运行优化 关键词:综合能源 冷热电三联供 粒子群算法 多目标优化 参考文档:《基于多目标算法的冷热电联供型综合能源系统运行优化》 仿真平台:MATLAB 平台采用粒子群实现求解 优势:代码注释详实,适合参考学习,非目前烂大街的版本,程序非常精品,请仔细辨识 主要内容:代码构建了含冷、热、电负荷的冷热电联供型综合能源系统优化调度模型,考虑了燃气轮机、电制冷机、锅炉以及风光机组等资源,并且考虑与上级电网的购电交易,综合考虑了用户购电购热冷量的成本、CCHP收益以及成本等各种因素,从而实现CCHP系统的经济运行,求解采用的是MOPSO算法(多目标粒子群算法),求解效果极佳,具体可以看图 ,核心关键词: 综合能源系统; 冷热电三联供; 粒子群算法; 多目标优化; MOPSO算法; 优化调度模型; 燃气轮机; 电制冷机; 锅炉; 风光机组; 上级电网购售电交易。,基于多目标粒子群算法的CCHP综合

    DSP28379D串口升级方案:单核双核升级与Boot优化,C#上位机开发串口通信方案,DSP28379D串口升级方案:单核双核升级与Boot优化,C#上位机开发实现串口通信,DSP28379D串口升

    DSP28379D串口升级方案:单核双核升级与Boot优化,C#上位机开发串口通信方案,DSP28379D串口升级方案:单核双核升级与Boot优化,C#上位机开发实现串口通信,DSP28379D串口升级方案 单核双核升级,boot升级,串口方案。 上位机用c#开发。 ,DSP28379D; 串口升级方案; 单核双核升级; boot升级; 上位机C#开发,DSP28379D串口双核升级方案:Boot串口升级技术使用C#上位机开发

    基于ASP.NET MVC+三层架构和EntityFramework的微博门户网站项目.zip(毕设&课设&实训&大作业&竞赛&项目)

    项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用

    基于PLC的双层自动门控制:光电传感触发,有序开关与延时功能实现,附程序、画面及参考文档 ,基于PLC的双层自动门控制系统:精准控制,保障无尘环境;门间联动,智能安防新体验 ,基于plc的双层自动门控

    基于PLC的双层自动门控制:光电传感触发,有序开关与延时功能实现,附程序、画面及参考文档。,基于PLC的双层自动门控制系统:精准控制,保障无尘环境;门间联动,智能安防新体验。,基于plc的双层自动门控制系统,全部采用博途仿真完成,提供程序,画面,参考文档,详情见图。 实现功能(详见上方演示视频): ① 某房间要求尽可能地保持无尘,在通道上设置了两道电动门,门1和门2,可通过光电传感器自动完成门的打开和关闭。 门1和门2 不能同时打开。 ② 第 1 道门(根据出入方向不同,可能是门 1 或门 2),是由在通道外的开门者通过按开门按钮打开的,而第 2 道门(根据出入方向不同,可能是门 1 或门 2 )则是在打开的第 1 道门关闭后自动地打开的(也可以由通道内的人按开门按钮来打开第2 道门)。 这两道门都是在门开后,经过 3s 的延时而自动关闭的。 ③ 在门关闭期间,如果对应的光电传感器的信号被遮断,则门立即自动打开。 如果在门外或者在门内的开门者按对应的开门按钮时,立即打开。 ④ 出于安全方面的考虑,如果在通道内的某个人经过光电传感器时,对应的门已经打开,则通道外的开门者可以不按开门按钮。

    黑马程序员Java品达通用权限项目,基于SpringCloud SpringBoot 的微服务框架的权限管理解决方案.zip

    项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用

    DeepSeek+DeepResearch-让科研像聊天一样简单

    DeepSeek+DeepResearch——让科研像聊天一样简单 (1)DeepSeek如何做数据分析? (2)DeepSeek如何分析文件内容? (3)DeepSeek如何进行数据挖掘? (4)DeepSeek如何进行科学研究? (5)DeepSeek如何写综述? (6)DeepSeek如何进行数据可视化? (7)DeepSeek如何写作润色? (8)DeepSeek如何中英文互译? (9)DeepSeek如何做降重? (10)DeepSeek论文参考文献指令 (11)DeepSeek基础知识。

    基于springboot+uniapp实现的蛋糕商城小程序.zip(毕设&课设&实训&大作业&竞赛&项目)

    项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用

    jdepend-demo-2.9.1-10.el7.x64-86.rpm.tar.gz

    1、文件内容:jdepend-demo-2.9.1-10.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/jdepend-demo-2.9.1-10.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊

    关爱儿童公益网站 web 项目.zip

    项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行;功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用

    MATLAB实现WOA-LSTM鲸鱼算法优化长短期记忆网络数据分类预测(含模型描述及示例代码)

    内容概要:本文档详细介绍了如何利用 MATLAB 实现鲸鱼优化算法 (WOA) 和长短期记忆网络 (LSTM) 相结合的技术——WOA-LSTM,在数据分类和预测领域的应用。文章首先概述了LSTM在网络训练中超参数依赖的问题以及WOA作为一种新颖的全局优化算法的优势。接着阐述了该项目的研究背景、目的及其重要意义,并深入讨论了项目面临的六大主要挑战,从模型优化到超参数空间管理。文档特别强调WOA-LSTM融合所带来的性能提升、降低计算复杂度的能力及其实现自动化的超参数优化流程。除此之外,文中展示了模型的应用广泛性,覆盖了从金融市场的股票预测到智能制造业的各种实际场景,并提供了具体的模型架构细节和代码实例,以帮助理解模型的工作原理和技术要点。 适合人群:具有一定编程技能的研究人员、工程师和科学家们,尤其是对深度学习技术和机器学习感兴趣的专业人士。 使用场景及目标:该文档的目标是向用户传授使用MATLAB实现WOA-LSTM进行复杂数据分类和预测的方法论,旨在指导读者理解和掌握如何利用WOA进行超参数寻优,从而改善LSTM网络性能。 其他说明:通过阅读这份文档,使用者不仅能够获得有关WOA-LSTM技术的具体实现方式的知识,而且还可以获取关于项目规划和实际部署过程中的宝贵经验。

    tomcat安装及配置教程.md

    tomcat安装及配置教程.md

Global site tag (gtag.js) - Google Analytics