- 浏览: 935437 次
- 性别:
- 来自: 北京
-
文章分类
- 全部博客 (445)
- 备忘 (0)
- java基础 (28)
- jsp (15)
- css (4)
- javascript (30)
- struts (7)
- servlet (2)
- struts2 (7)
- jdbc (16)
- hibernate (22)
- ibatis (0)
- jpa (1)
- spring (17)
- spring定时任务 (8)
- 整合开发 (12)
- JavaArticle (0)
- php (6)
- velocity (2)
- mysql (19)
- sqlserver (52)
- oracle (23)
- lucene (49)
- ajax (13)
- dwr (5)
- JFreeChart (1)
- service (14)
- tools (18)
- c#基础 (20)
- 程序安全 (0)
- 学习网站 (1)
- 社会需求 (2)
- flash (1)
- 流媒体 (1)
- java_code (1)
- htmlparser (1)
- 速动画教程 (5)
- 设计模式 (1)
- xml操作 (2)
- uml操作 (4)
- 测试 (1)
- linux (8)
- 版本控制 (4)
- 服务器 (12)
- 安全 (6)
- 美工 (2)
最新评论
-
Zhang_amao:
我想问一下, 你用的lucene版本和highligher的版 ...
使用Lucene的Highlighter实现文件摘要的自动提取 -
wangmengfanwangzhi:
博主,你的QQ是什么啊?有关于lucene的问题想要请教啊~~ ...
Lucene下载及测试 -
cutesunshineriver:
讲得很好,理解起来很顺,对个人学习的帮助性很大,谢谢博主。
velocity入门一 -
libin2722:
我这里有一个任务调度,在晚上3点时候会自动将数据库中某表的数据 ...
Lucene-2.2.0 源代码阅读学习(16) -
greatwqs:
java -cp $JVM_ARGS $classpath ...
java的cp命令
关于Lucene得分的计算。
在IndexSearcher类中有一个管理Lucene得分情况的方法,如下所示:
public Explanation explain(Weight weight, int doc) throws IOException {
return weight.explain(reader, doc);
}
返回的这个Explanation的实例解释了Lucene中Document的得分情况。我们可以测试一下,直观地感觉一下到底这个Explanation的实例都记录了一个Document的哪些信息。
写一个测试类,如下所示:
package org.shirdrn.lucene.learn;
import java.io.IOException;
import java.util.Date;
import net.teamhot.lucene.ThesaurusAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.index.CorruptIndexException;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.index.Term;
import org.apache.lucene.index.TermDocs;
import org.apache.lucene.search.Explanation;
import org.apache.lucene.search.Hits;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.TermQuery;
import org.apache.lucene.store.LockObtainFailedException;
public class AboutLuceneScore {
private String path = "E:\\Lucene\\index";
public void createIndex(){
IndexWriter writer;
try {
writer = new IndexWriter(path,new ThesaurusAnalyzer(),true);
Field fieldA = new Field("contents","一人",Field.Store.YES,Field.Index.TOKENIZED);
Document docA = new Document();
docA.add(fieldA);
Field fieldB = new Field("contents","一人 之交 一人之交",Field.Store.YES,Field.Index.TOKENIZED);
Document docB = new Document();
docB.add(fieldB);
Field fieldC = new Field("contents","一人 之下 一人之下",Field.Store.YES,Field.Index.TOKENIZED);
Document docC = new Document();
docC.add(fieldC);
Field fieldD = new Field("contents","一人 做事 一人当 一人做事一人当",Field.Store.YES,Field.Index.TOKENIZED);
Document docD = new Document();
docD.add(fieldD);
Field fieldE = new Field("contents","一人 做事 一人當 一人做事一人當",Field.Store.YES,Field.Index.TOKENIZED);
Document docE = new Document();
docE.add(fieldE);
writer.addDocument(docA);
writer.addDocument(docB);
writer.addDocument(docC);
writer.addDocument(docD);
writer.addDocument(docE);
writer.close();
} catch (CorruptIndexException e) {
e.printStackTrace();
} catch (LockObtainFailedException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
}
public static void main(String[] args) {
AboutLuceneScore aus = new AboutLuceneScore();
aus.createIndex(); // 建立索引
try {
String keyword = "一人";
Term term = new Term("contents",keyword);
Query query = new TermQuery(term);
IndexSearcher searcher = new IndexSearcher(aus.path);
Date startTime = new Date();
Hits hits = searcher.search(query);
TermDocs termDocs = searcher.getIndexReader().termDocs(term);
while(termDocs.next()){
System.out.print("搜索关键字<"+keyword+">在编号为 "+termDocs.doc());
System.out.println(" 的Document中出现过 "+termDocs.freq()+" 次");
}
System.out.println("********************************************************************");
for(int i=0;i<hits.length();i++){
System.out.println("Document的内部编号为 : "+hits.id(i));
System.out.println("Document内容为 : "+hits.doc(i));
System.out.println("Document得分为 : "+hits.score(i));
Explanation e = searcher.explain(query, hits.id(i));
System.out.println("Explanation为 : \n"+e);
System.out.println("Document对应的Explanation的一些参数值如下: ");
System.out.println("Explanation的getValue()为 : "+e.getValue());
System.out.println("Explanation的getDescription()为 : "+e.getDescription());
System.out.println("********************************************************************");
}
System.out.println("共检索出符合条件的Document "+hits.length()+" 个。");
Date finishTime = new Date();
long timeOfSearch = finishTime.getTime() - startTime.getTime();
System.out.println("本次搜索所用的时间为 "+timeOfSearch+" ms");
} catch (CorruptIndexException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
}
}
该测试类中实现了一个建立索引的方法createIndex()方法;然后通过检索一个关键字“一人”,获取到与它相关的Document的信息。
打印出结果的第一部分为:这个检索关键字“一人”在每个Document中出现的次数。
打印出结果的第二部分为:相关的Explanation及其得分情况的信息。
测试结果输出如下所示:
搜索关键字<一人>在编号为 0 的Document中出现过 1 次
搜索关键字<一人>在编号为 1 的Document中出现过 1 次
搜索关键字<一人>在编号为 2 的Document中出现过 1 次
搜索关键字<一人>在编号为 3 的Document中出现过 2 次
搜索关键字<一人>在编号为 4 的Document中出现过 2 次
********************************************************************
Document的内部编号为 : 0
Document内容为 : Document<stored/uncompressed,indexed,tokenized<contents:一人>>
Document得分为 : 0.81767845
Explanation为 :
0.81767845 = (MATCH) fieldWeight(contents:一人 in 0), product of:
1.0 = tf(termFreq(contents:一人)=1)
0.81767845 = idf(docFreq=5)
1.0 = fieldNorm(field=contents, doc=0)
Document对应的Explanation的一些参数值如下:
Explanation的getValue()为 : 0.81767845
Explanation的getDescription()为 : fieldWeight(contents:一人 in 0), product of:
********************************************************************
Document的内部编号为 : 3
Document内容为 : Document<stored/uncompressed,indexed,tokenized<contents:一人 做事 一人当 一人做事一人当>>
Document得分为 : 0.5059127
Explanation为 :
0.5059127 = (MATCH) fieldWeight(contents:一人 in 3), product of:
1.4142135 = tf(termFreq(contents:一人)=2)
0.81767845 = idf(docFreq=5)
0.4375 = fieldNorm(field=contents, doc=3)
Document对应的Explanation的一些参数值如下:
Explanation的getValue()为 : 0.5059127
Explanation的getDescription()为 : fieldWeight(contents:一人 in 3), product of:
********************************************************************
Document的内部编号为 : 4
Document内容为 : Document<stored/uncompressed,indexed,tokenized<contents:一人 做事 一人當 一人做事一人當>>
Document得分为 : 0.5059127
Explanation为 :
0.5059127 = (MATCH) fieldWeight(contents:一人 in 4), product of:
1.4142135 = tf(termFreq(contents:一人)=2)
0.81767845 = idf(docFreq=5)
0.4375 = fieldNorm(field=contents, doc=4)
Document对应的Explanation的一些参数值如下:
Explanation的getValue()为 : 0.5059127
Explanation的getDescription()为 : fieldWeight(contents:一人 in 4), product of:
********************************************************************
Document的内部编号为 : 1
Document内容为 : Document<stored/uncompressed,indexed,tokenized<contents:一人 之交 一人之交>>
Document得分为 : 0.40883923
Explanation为 :
0.40883923 = (MATCH) fieldWeight(contents:一人 in 1), product of:
1.0 = tf(termFreq(contents:一人)=1)
0.81767845 = idf(docFreq=5)
0.5 = fieldNorm(field=contents, doc=1)
Document对应的Explanation的一些参数值如下:
Explanation的getValue()为 : 0.40883923
Explanation的getDescription()为 : fieldWeight(contents:一人 in 1), product of:
********************************************************************
Document的内部编号为 : 2
Document内容为 : Document<stored/uncompressed,indexed,tokenized<contents:一人 之下 一人之下>>
Document得分为 : 0.40883923
Explanation为 :
0.40883923 = (MATCH) fieldWeight(contents:一人 in 2), product of:
1.0 = tf(termFreq(contents:一人)=1)
0.81767845 = idf(docFreq=5)
0.5 = fieldNorm(field=contents, doc=2)
Document对应的Explanation的一些参数值如下:
Explanation的getValue()为 : 0.40883923
Explanation的getDescription()为 : fieldWeight(contents:一人 in 2), product of:
********************************************************************
共检索出符合条件的Document 5 个。
本次搜索所用的时间为 79 ms
先从测试的输出结果进行分析,可以获得到如下信息:
■ 测试类中hits.score(i)的值与Explanation的getValue()的值是一样的,即Lucene默认使用的得分;
■ 默认情况下,Lucene按照Document的得分进行排序检索结果;
■ 默认情况下,如果两个Document的得分相同,按照Document的内部编号进行排序,比如上面编号为(3和4)、(1和2)是两组得分相同的Document,结果排序时按照Document的编号进行了排序;
通过从IndexSearcher类中的explain方法:
public Explanation explain(Weight weight, int doc) throws IOException {
return weight.explain(reader, doc);
}
可以看出,实际上是调用了Weight接口类中的explain()方法,而Weight是与一个Query相关的,它记录了一次查询构造的Query的情况,从而保证一个Query实例可以重用。
具体地,可以在实现Weight接口的具体类TermWeight中追溯到explain()方法,而TermWeight类是一个内部类,定义在TermQuery类内部。TermWeight类的explain()方法如下所示:
public Explanation explain(IndexReader reader, int doc)
throws IOException {
ComplexExplanation result = new ComplexExplanation();
result.setDescription("weight("+getQuery()+" in "+doc+"), product of:");
Explanation idfExpl = new Explanation(idf, "idf(docFreq=" + reader.docFreq(term) + ")");
// explain query weight
Explanation queryExpl = new Explanation();
queryExpl.setDescription("queryWeight(" + getQuery() + "), product of:");
Explanation boostExpl = new Explanation(getBoost(), "boost");
if (getBoost() != 1.0f)
queryExpl.addDetail(boostExpl);
queryExpl.addDetail(idfExpl);
Explanation queryNormExpl = new Explanation(queryNorm,"queryNorm");
queryExpl.addDetail(queryNormExpl);
queryExpl.setValue(boostExpl.getValue() *idfExpl.getValue() *queryNormExpl.getValue());
result.addDetail(queryExpl);
// 说明Field的权重
String field = term.field();
ComplexExplanation fieldExpl = new ComplexExplanation();
fieldExpl.setDescription("fieldWeight("+term+" in "+doc+"), product of:");
Explanation tfExpl = scorer(reader).explain(doc);
fieldExpl.addDetail(tfExpl);
fieldExpl.addDetail(idfExpl);
Explanation fieldNormExpl = new Explanation();
byte[] fieldNorms = reader.norms(field);
float fieldNorm =
fieldNorms!=null ? Similarity.decodeNorm(fieldNorms[doc]) : 0.0f;
fieldNormExpl.setValue(fieldNorm);
fieldNormExpl.setDescription("fieldNorm(field="+field+", doc="+doc+")");
fieldExpl.addDetail(fieldNormExpl);
fieldExpl.setMatch(Boolean.valueOf(tfExpl.isMatch()));
fieldExpl.setValue(tfExpl.getValue() *idfExpl.getValue() *fieldNormExpl.getValue());
result.addDetail(fieldExpl);
result.setMatch(fieldExpl.getMatch());
// combine them
result.setValue(queryExpl.getValue() * fieldExpl.getValue());
if (queryExpl.getValue() == 1.0f)
return fieldExpl;
return result;
}
根据检索结果,以及上面的TermWeight类的explain()方法,可以看出输出的字符串部分正好一一对应,比如:idf(Inverse Document Frequency,即反转文档频率)、fieldNorm、fieldWeight。
检索结果的第一个Document的信息:
Document的内部编号为 : 0
Document内容为 : Document<stored/uncompressed,indexed,tokenized<contents:一人>>
Document得分为 : 0.81767845
Explanation为 :
0.81767845 = (MATCH) fieldWeight(contents:一人 in 0), product of:
1.0 = tf(termFreq(contents:一人)=1)
0.81767845 = idf(docFreq=5)
1.0 = fieldNorm(field=contents, doc=0)
Document对应的Explanation的一些参数值如下:
Explanation的getValue()为 : 0.81767845
Explanation的getDescription()为 : fieldWeight(contents:一人 in 0), product of:
tf的计算
上面的tf值Term Frequency,即词条频率,可以在org.apache.lucene.search.Similarity类中看到具体地说明。在Lucene中,并不是直接使用的词条的频率,而实际使用的词条频率的平方根,即:
tf(t in d) = |
frequency½ |
这是使用org.apache.lucene.search.Similarity类的子类DefaultSimilarity中的方法计算的,如下:
/** Implemented as <code>sqrt(freq)</code>. */
public float tf(float freq) {
return (float)Math.sqrt(freq);
}
即:某个Document的tf = 检索的词条在该Document中出现次数freq取平方根值
也就是freq的平方根。
例如,从我们的检索结果来看:
搜索关键字<一人>在编号为 0 的Document中出现过 1 次
搜索关键字<一人>在编号为 1 的Document中出现过 1 次
搜索关键字<一人>在编号为 2 的Document中出现过 1 次
搜索关键字<一人>在编号为 3 的Document中出现过 2 次
搜索关键字<一人>在编号为 4 的Document中出现过 2 次
各个Document的tf计算如下所示:
编号为0的Document的 tf 为: (float)Math.sqrt(1) = 1.0;
编号为1的Document的 tf 为: (float)Math.sqrt(1) = 1.0;
编号为2的Document的 tf 为: (float)Math.sqrt(1) = 1.0;
编号为3的Document的 tf 为: (float)Math.sqrt(2) = 1.4142135;
编号为4的Document的 tf 为: (float)Math.sqrt(2) = 1.4142135;
idf的计算
检索结果中,每个检索出来的Document的都对应一个idf,在DefaultSimilarity类中可以看到idf计算的实现方法,如下:
/** Implemented as <code>log(numDocs/(docFreq+1)) + 1</code>. */
public float idf(int docFreq, int numDocs) {
return (float)(Math.log(numDocs/(double)(docFreq+1)) + 1.0);
}
其中,docFreq是根据指定关键字进行检索,检索到的Document的数量,我们测试的docFreq=5;numDocs是指索引文件中总共的Document的数量,我们的测试比较特殊,将全部的Document都检索出来了,我们测试的numDocs=5。
各个Document的idf的计算如下所示:
编号为0的Document的 idf 为:(float)(Math.log(5/(double)(5+1)) + 1.0) = 0.81767845;
编号为1的Document的 idf 为:(float)(Math.log(5/(double)(5+1)) + 1.0) = 0.81767845;
编号为2的Document的 idf 为:(float)(Math.log(5/(double)(5+1)) + 1.0) = 0.81767845;
编号为3的Document的 idf 为:(float)(Math.log(5/(double)(5+1)) + 1.0) = 0.81767845;
编号为4的Document的 idf 为:(float)(Math.log(5/(double)(5+1)) + 1.0) = 0.81767845;
lengthNorm的计算
在DefaultSimilarity类中可以看到lengthNorm计算的实现方法,如下:
public float lengthNorm(String fieldName, int numTerms) {
return (float)(1.0 / Math.sqrt(numTerms));
}
各个Document的lengthNorm的计算如下所示:
编号为0的Document的 lengthNorm 为:(float)(1.0 / Math.sqrt(1)) = 1.0/1.0 = 1.0;
编号为1的Document的 lengthNorm 为:(float)(1.0 / Math.sqrt(1)) = 1.0/1.0 = 1.0;
编号为2的Document的 lengthNorm 为:(float)(1.0 / Math.sqrt(1)) = 1.0/1.0 = 1.0;
编号为3的Document的 lengthNorm 为:(float)(1.0 / Math.sqrt(2)) = 1.0/1.4142135 = 0.7071068;
编号为4的Document的 lengthNorm 为:(float)(1.0 / Math.sqrt(2)) = 1.0/1.4142135 = 0.7071068;
关于fieldNorm
fieldNorm是在建立索引的时候写入的,而检索的时候需要从索引文件中读取,然后通过解码,得到fieldNorm的float型值,用于计算Document的得分。
在org.apache.lucene.search.TermQuery.TermWeight类中,explain方法通过打开的IndexReader流读取fieldNorm,写入索引文件的是byte[]类型,需要解码,如下所示:
byte[] fieldNorms = reader.norms(field);
float fieldNorm = fieldNorms!=null ? Similarity.decodeNorm(fieldNorms[doc]) : 0.0f;
调用Similarity类的decodeNorm方法,将byte[]类型值转化为float浮点值:
public static float decodeNorm(byte b) {
return NORM_TABLE[b & 0xFF]; // & 0xFF maps negative bytes to positive above 127
}
这样,一个浮点型的fieldNorm的值就被读取出来了,可以参加一些运算,最终实现Lucene的Document的得分的计算。
queryWeight的计算
queryWeight的计算可以在org.apache.lucene.search.TermQuery.TermWeight类中的sumOfSquaredWeights方法中看到计算的实现:
public float sumOfSquaredWeights() {
queryWeight = idf * getBoost(); // compute query weight
return queryWeight * queryWeight; // square it
}
其实默认情况下,queryWeight = idf,因为Lucune中默认的激励因子boost = 1.0。
各个Document的queryWeight的计算如下所示:
queryWeight = 0.81767845 * 0.81767845 = 0.6685980475944025;
queryNorm的计算
queryNorm的计算在DefaultSimilarity类中实现,如下所示:
/** Implemented as <code>1/sqrt(sumOfSquaredWeights)</code>. */
public float queryNorm(float sumOfSquaredWeights) {
return (float)(1.0 / Math.sqrt(sumOfSquaredWeights));
}
这里,sumOfSquaredWeights的计算是在org.apache.lucene.search.TermQuery.TermWeight类中的sumOfSquaredWeights方法实现:
public float sumOfSquaredWeights() {
queryWeight = idf * getBoost(); // compute query weight
return queryWeight * queryWeight; // square it
}
其实默认情况下,sumOfSquaredWeights = idf * idf,因为Lucune中默认的激励因子boost = 1.0。
上面测试例子中sumOfSquaredWeights的计算如下所示:
sumOfSquaredWeights = 0.81767845*0.81767845 = 0.6685980475944025;
然后,就可以计算queryNorm的值了,计算如下所示:
queryNorm = (float)(1.0 / Math.sqrt(0.6685980475944025) = 1.2229746301862302962735534977105;
value的计算
org.apache.lucene.search.TermQuery.TermWeight类类中还定义了一个value成员:
private float value;
关于value的计算,可以在它的子类org.apache.lucene.search.TermQuery.TermWeight类中看到计算的实现:
public void normalize(float queryNorm) {
this.queryNorm = queryNorm;
queryWeight *= queryNorm; // normalize query weight
value = queryWeight * idf; // idf for document
}
这里,使用normalize方法计算value的值,即:
value = queryNorm * queryWeight * idf;
上面测试例子中value的值计算如下:
value = 1.2229746301862302962735534977105 * 0.6685980475944025 * 0.81767845 = 0.66859804759440249999999999999973;
关于fieldWeight
从检索结果中,可以看到:
0.81767845 = (MATCH) fieldWeight(contents:一人 in 0), product of:
字符串"(MATCH) "的输在ComplexExplanation类中的getSummary方法中可以看到:
protected String getSummary() {
if (null == getMatch())
return super.getSummary();
return getValue() + " = "
+ (isMatch() ? "(MATCH) " : "(NON-MATCH) ")
+ getDescription();
}
这个fieldWeight的值其实和Document的得分是相等的,先看这个fieldWeight是如何计算出来的,在org.apache.lucene.search.TermQuery.TermWeight类中的explain方法中可以看到:
ComplexExplanation fieldExpl = new ComplexExplanation();
fieldExpl.setDescription("fieldWeight("+term+" in "+doc+
"), product of:");
Explanation tfExpl = scorer(reader).explain(doc);
fieldExpl.addDetail(tfExpl);
fieldExpl.addDetail(idfExpl);
Explanation fieldNormExpl = new Explanation();
byte[] fieldNorms = reader.norms(field);
float fieldNorm =
fieldNorms!=null ? Similarity.decodeNorm(fieldNorms[doc]) : 0.0f;
fieldNormExpl.setValue(fieldNorm);
fieldNormExpl.setDescription("fieldNorm(field="+field+", doc="+doc+")");
fieldExpl.addDetail(fieldNormExpl);
fieldExpl.setMatch(Boolean.valueOf(tfExpl.isMatch()));
fieldExpl.setValue(tfExpl.getValue() *
idfExpl.getValue() *
fieldNormExpl.getValue());
result.addDetail(fieldExpl);
result.setMatch(fieldExpl.getMatch());
// combine them
result.setValue(queryExpl.getValue() * fieldExpl.getValue());
if (queryExpl.getValue() == 1.0f)
return fieldExpl;
上面,ComplexExplanation fieldExpl被设置了很多项内容,我们就从这里来获取fieldWeight的计算的实现。
关键是在下面进行了计算:
fieldExpl.setValue(tfExpl.getValue() *
idfExpl.getValue() *
fieldNormExpl.getValue());
使用计算式表示就是
fieldWeight = tf * idf * fieldNorm
fieldNorm的值因为是在建立索引的时候写入到索引文件中的,索引只需要从上面的测试结果中取来,进行如下关于Document的分数的计算的验证。
使用我们这个例子来计算检索出来的Docuyment的fieldWeight,需要用到前面计算出来的结果,如下所示:
编号为0的Document的 fieldWeight 为:1.0 * 0.81767845 * 1.0 = 0.81767845;
编号为1的Document的 fieldWeight 为:1.0 * 0.81767845 * 0.5 = 0.408839225;
编号为2的Document的 fieldWeight 为:1.0 * 0.81767845 * 0.5 = 0.408839225;
编号为3的Document的 fieldWeight 为:1.4142135 * 0.81767845 * 0.4375 = 0.5059127074089703125;
编号为4的Document的 fieldWeight 为:1.4142135 * 0.81767845 * 0.4375 = 0.5059127074089703125;
对比一下,其实检索结果中Document的得分就是这个fieldWeight的值,验证后,正好相符(注意:我这里没有进行舍入运算)。
总结说明
上面的计算得分是按照Lucene默认设置的情况下进行的,比如激励因子的默认值为1.0,它体现的是一个Document的重要性,即所谓的fieldWeight。
不仅可以通过为一个Document设置激励因子boost,而且可以通过为一个Document中的Field设置boost,因为一个Document的权重体现在它当中的Field上,即上面计算出来的fieldWeight与Document的得分是相等的。
提高一个Document的激励因子boost,可以使该Document被检索出来的默认排序靠前,即说明比较重要。也就是说,修改激励因子boost能够改变检索结果的排序。
发表评论
-
创建索引的时候出现的错误
2010-01-04 10:13 1726<OFMsg>251658517"1&q ... -
SQLServer2005获取大数据集时内存不足的解决办法
2009-02-12 10:59 2020今天在修改search的建立索引的程序的时候,发现了这个错误 ... -
使用Lucene的Highlighter实现文件摘要的自动提取
2009-02-06 16:52 6678使用Lucene自带的Highlighter就可以实现对原始文 ... -
Lucene倒排索引原理
2009-02-06 16:08 1166Lucene是一个高性能的java全文检索工具包,它使用的是倒 ... -
Lucene 2.2.0发布自带的HTMLParser的使用
2009-02-06 16:00 2568Lucene 2.2.0发行包中自带 ... -
Lucene关键字高亮显示
2009-02-06 15:53 2397在Lucene的org.apache.lucene.s ... -
Lucene-2.2.0 源代码阅读学习(42)
2009-02-06 15:46 1346关于Hits类。这个Hits类 ... -
Lucene-2.2.0 源代码阅读学习(41)
2009-02-06 15:40 1123当执行Hits htis = search(query);这一 ... -
Lucene-2.2.0 源代码阅读学习(40)
2009-02-06 15:34 1204关于Lucene检索结果的排序问题。 已经知道,Lucene的 ... -
Lucene-2.2.0 源代码阅读学习(38)
2009-02-06 15:13 1142关于QueryParser。 QueryParser是用来解析 ... -
Lucene-2.2.0 源代码阅读学习(37)
2009-02-06 15:06 1080关于MultiTermQuery查询。 这里研究继承自Mult ... -
Lucene-2.2.0 源代码阅读学习(36)
2009-02-06 15:05 1031关于MultiTermQuery查询。 这里研究FuzzyQu ... -
Lucene-2.2.0 源代码阅读学习(35)
2009-02-06 15:03 957于MultiPhraseQuery(多短语查询)。 Multi ... -
Lucene-2.2.0 源代码阅读学习(34)
2009-02-06 15:02 986关于PhraseQuery。 PhraseQuery查询是将多 ... -
Lucene-2.2.0 源代码阅读学习(33)
2009-02-06 15:01 1008关于范围查询RangeQuery。 ... -
Lucene-2.2.0 源代码阅读学习(32)
2009-02-06 15:00 900关于SpanQuery(跨度搜索),它是Query的子类,但是 ... -
Lucene-2.2.0 源代码阅读学习(31)
2009-02-06 14:58 962关于前缀查询PrefixQuery(前缀查询)。 准备工作就是 ... -
Lucene-2.2.0 源代码阅读学习(30)
2009-02-06 14:57 769关于Query的学习。 主要使用TermQuery和Boole ... -
Lucene-2.2.0 源代码阅读学习(29)
2009-02-06 14:54 1172关于IndexSearcher检索器。 ... -
Lucene-2.2.0 源代码阅读学习(28)
2009-02-06 14:48 1301关于检索的核心IndexSearcher类。 IndexSea ...
相关推荐
TinyYolo2实时视频流物体检测ONNX模型 运行 ONNX 模型,并结合 OpenCV 进行图像处理。具体流程包括: 1. 加载并初始化 ONNX 模型。 2. 从摄像头捕获实时视频流。 3. 对每一帧图像进行模型推理,生成物体检测结果。 4. 在界面上绘制检测结果的边界框和标签。
chromedriver-linux64-134.0.6998.23(Beta).zip
Web开发:ABP框架4-DDD四层架构的详解
chromedriver-linux64-135.0.7029.0(Canary).zip
实现人脸识别的考勤门禁系统可以分为以下步骤: 1. 采集人脸图像数据集:首先需要采集员工的人脸图像数据集,包括正面、侧面等多个角度的图像。可以使用MATLAB中的图像采集工具或者第三方库进行采集。 2. 预处理人脸图像数据:对采集到的人脸图像数据进行预处理,包括人脸检测、人脸对齐、人脸裁剪等操作。MATLAB提供了相关的图像处理工具箱,可以用于实现这些处理步骤。 3. 特征提取与特征匹配:使用人脸识别算法提取人脸图像的特征,比如使用人脸识别中常用的特征提取算法如Eigenfaces、Fisherfaces或者基于深度学习的算法。然后将员工的人脸数据与数据库中的人脸数据进行匹配,判断是否为注册员工。 4. 考勤记录与门禁控制:如果人脸匹配成功,系统可以记录员工的考勤时间,并且控制门禁系统进行开启。MATLAB可以与外部设备进行通信,实现门禁控制以及考勤记录功能。
yugy
企业IT治理体系规划.pptx
项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用
基于多目标粒子群算法的冷热电联供综合能源系统优化调度与运行策略分析,基于多目标粒子群算法的冷热电联供综合能源系统优化调度与运行策略分析,MATLAB代码:基于多目标粒子群算法冷热电联供综合能源系统运行优化 关键词:综合能源 冷热电三联供 粒子群算法 多目标优化 参考文档:《基于多目标算法的冷热电联供型综合能源系统运行优化》 仿真平台:MATLAB 平台采用粒子群实现求解 优势:代码注释详实,适合参考学习,非目前烂大街的版本,程序非常精品,请仔细辨识 主要内容:代码构建了含冷、热、电负荷的冷热电联供型综合能源系统优化调度模型,考虑了燃气轮机、电制冷机、锅炉以及风光机组等资源,并且考虑与上级电网的购电交易,综合考虑了用户购电购热冷量的成本、CCHP收益以及成本等各种因素,从而实现CCHP系统的经济运行,求解采用的是MOPSO算法(多目标粒子群算法),求解效果极佳,具体可以看图 ,核心关键词: 综合能源系统; 冷热电三联供; 粒子群算法; 多目标优化; MOPSO算法; 优化调度模型; 燃气轮机; 电制冷机; 锅炉; 风光机组; 上级电网购售电交易。,基于多目标粒子群算法的CCHP综合
DSP28379D串口升级方案:单核双核升级与Boot优化,C#上位机开发串口通信方案,DSP28379D串口升级方案:单核双核升级与Boot优化,C#上位机开发实现串口通信,DSP28379D串口升级方案 单核双核升级,boot升级,串口方案。 上位机用c#开发。 ,DSP28379D; 串口升级方案; 单核双核升级; boot升级; 上位机C#开发,DSP28379D串口双核升级方案:Boot串口升级技术使用C#上位机开发
项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用
基于PLC的双层自动门控制:光电传感触发,有序开关与延时功能实现,附程序、画面及参考文档。,基于PLC的双层自动门控制系统:精准控制,保障无尘环境;门间联动,智能安防新体验。,基于plc的双层自动门控制系统,全部采用博途仿真完成,提供程序,画面,参考文档,详情见图。 实现功能(详见上方演示视频): ① 某房间要求尽可能地保持无尘,在通道上设置了两道电动门,门1和门2,可通过光电传感器自动完成门的打开和关闭。 门1和门2 不能同时打开。 ② 第 1 道门(根据出入方向不同,可能是门 1 或门 2),是由在通道外的开门者通过按开门按钮打开的,而第 2 道门(根据出入方向不同,可能是门 1 或门 2 )则是在打开的第 1 道门关闭后自动地打开的(也可以由通道内的人按开门按钮来打开第2 道门)。 这两道门都是在门开后,经过 3s 的延时而自动关闭的。 ③ 在门关闭期间,如果对应的光电传感器的信号被遮断,则门立即自动打开。 如果在门外或者在门内的开门者按对应的开门按钮时,立即打开。 ④ 出于安全方面的考虑,如果在通道内的某个人经过光电传感器时,对应的门已经打开,则通道外的开门者可以不按开门按钮。
项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用
DeepSeek+DeepResearch——让科研像聊天一样简单 (1)DeepSeek如何做数据分析? (2)DeepSeek如何分析文件内容? (3)DeepSeek如何进行数据挖掘? (4)DeepSeek如何进行科学研究? (5)DeepSeek如何写综述? (6)DeepSeek如何进行数据可视化? (7)DeepSeek如何写作润色? (8)DeepSeek如何中英文互译? (9)DeepSeek如何做降重? (10)DeepSeek论文参考文献指令 (11)DeepSeek基础知识。
项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用
1、文件内容:jdepend-demo-2.9.1-10.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/jdepend-demo-2.9.1-10.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊
项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行;功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用
内容概要:本文档详细介绍了如何利用 MATLAB 实现鲸鱼优化算法 (WOA) 和长短期记忆网络 (LSTM) 相结合的技术——WOA-LSTM,在数据分类和预测领域的应用。文章首先概述了LSTM在网络训练中超参数依赖的问题以及WOA作为一种新颖的全局优化算法的优势。接着阐述了该项目的研究背景、目的及其重要意义,并深入讨论了项目面临的六大主要挑战,从模型优化到超参数空间管理。文档特别强调WOA-LSTM融合所带来的性能提升、降低计算复杂度的能力及其实现自动化的超参数优化流程。除此之外,文中展示了模型的应用广泛性,覆盖了从金融市场的股票预测到智能制造业的各种实际场景,并提供了具体的模型架构细节和代码实例,以帮助理解模型的工作原理和技术要点。 适合人群:具有一定编程技能的研究人员、工程师和科学家们,尤其是对深度学习技术和机器学习感兴趣的专业人士。 使用场景及目标:该文档的目标是向用户传授使用MATLAB实现WOA-LSTM进行复杂数据分类和预测的方法论,旨在指导读者理解和掌握如何利用WOA进行超参数寻优,从而改善LSTM网络性能。 其他说明:通过阅读这份文档,使用者不仅能够获得有关WOA-LSTM技术的具体实现方式的知识,而且还可以获取关于项目规划和实际部署过程中的宝贵经验。
tomcat安装及配置教程.md
**MATLAB下微电网两阶段鲁棒优化经济调度策略:基于CCG算法与min-max-min结构求解**,MATLAB微电网两阶段鲁棒优化经济调度程序:构建min-max-min结构模型,实现恶劣场景下的低成本调度,灵活调整调度保守性,利用列约束生成算法求解,MATLAB代码:微电网两阶段鲁棒优化经济调度程序 关键词:微网优化调度 两阶段鲁棒 CCG算法 经济调度 参考文档:《微电网两阶段鲁棒优化经济调度方法》 仿真平台:MATLAB YALMIP+CPLEX 优势:代码注释详实,出图效果非常好(具体看图),非目前烂大街版本,请仔细辨识 主要内容:构建了微网两阶段鲁棒调度模型,建立了min-max-min 结构的两阶段鲁棒优化模型,可得到最恶劣场景下运行成本最低的调度方案。 模型中考虑了储能、需求侧负荷及可控分布式电源等的运行约束和协调控制,并引入了不确定性调节参数,可灵活调整调度方案的保守性。 基于列约束生成算法和强对偶理论,可将原问题分解为具有混合整数线性特征的主问题和子问题进行交替求解,从而得到原问题的最优解。 最终通过仿真分析验证了所建模型和求解算法的有效性,具体内容可自行查