`
nlslzf
  • 浏览: 1056957 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

『转姚博文』提高hibernate性能 很经典

阅读更多
在一个拥有单独业务层的应用中,业务层必须在返回之前,为web层“准备”好其所需的数据集合。这就意味着 业务层应该载入所有表现层/web层所需的数据,并将这些已实例化完毕的数据返回。通常,应用程序应该 为web层所需的每个集合调用Hibernate.initialize()(这个调用必须发生咱session关闭之前); 或者使用带有FETCH从句,或FetchMode.JOIN的Hibernate查询, 事先取得所有的数据集合。如果你在应用中使用了Command模式,代替Session Facade , 那么这项任务将会变得简单的多。



你也可以通过merge()或lock()方法,在访问未实例化的集合(或代理)之前, 为先前载入的对象绑定一个新的Session。 显然,Hibernate将不会,也不应该自动完成这些任务,因为这将引入一个特殊的事务语义。




有时候,你并不需要完全实例化整个大的集合,仅需要了解它的部分信息(例如其大小)、或者集合的部分内容。

你可以使用集合过滤器得到其集合的大小,而不必实例化整个集合:

( (Integer) s.createFilter( collection, "select count(*)" ).list().get(0) ).intValue() 


这里的createFilter()方法也可以被用来有效的抓取集合的部分内容,而无需实例化整个集合:
s.createFilter( lazyCollection, "").setFirstResult(0).setMaxResults(10).list(); 



20.1.5. 使用批量抓取(Using batch fetching)



Hibernate可以充分有效的使用批量抓取,也就是说,如果仅一个访问代理(或集合),那么Hibernate将不载入其他未实例化的代理。 批量抓取是延迟查询抓取的优化方案,你可以在两种批量抓取方案之间进行选择:在类级别和集合级别。

类/实体级别的批量抓取很容易理解。假设你在运行时将需要面对下面的问题:你在一个Session中载入了25个 Cat实例,每个Cat实例都拥有一个引用成员owner, 其指向Person,而Person类是代理,同时lazy="true"。 如果你必须遍历整个cats集合,对每个元素调用getOwner()方法,Hibernate将会默认的执行25次SELECT查询, 得到其owner的代理对象。这时,你可以通过在映射文件的Person属性,显式声明batch-size,改变其行为:

<class name="Person" batch-size="10">...</class> 


随之,Hibernate将只需要执行三次查询,分别为10、10、 5。

你也可以在集合级别定义批量抓取。例如,如果每个Person都拥有一个延迟载入的Cats集合, 现在,Sesssion中载入了10个person对象,遍历person集合将会引起10次SELECT查询, 每次查询都会调用getCats()方法。如果你在Person的映射定义部分,允许对cats批量抓取, 那么,Hibernate将可以预先抓取整个集合。请看例子:

<class name="Person"> <set name="cats" batch-size="3"> ... </set></class> 


如果整个的batch-size是3(笔误?),那么Hibernate将会分四次执行SELECT查询, 按照3、3、3、1的大小分别载入数据。这里的每次载入的数据量还具体依赖于当前Session中未实例化集合的个数。

如果你的模型中有嵌套的树状结构,例如典型的帐单-原料结构(bill-of-materials pattern),集合的批量抓取是非常有用的。 (尽管在更多情况下对树进行读取时,嵌套集合(nested set)或原料路径(materialized path)(××) 是更好的解决方法。)



20.1.6. 使用子查询抓取(Using subselect fetching)



假若一个延迟集合或单值代理需要抓取,Hibernate会使用一个subselect重新运行原来的查询,一次性读入所有的实例。这和批量抓取的实现方法是一样的,不会有破碎的加载。



20.1.7. 使用延迟属性抓取(Using lazy property fetching)



Hibernate3对单独的属性支持延迟抓取,这项优化技术也被称为组抓取(fetch groups)。 请注意,该技术更多的属于市场特性。在实际应用中,优化行读取比优化列读取更重要。但是,仅载入类的部分属性在某些特定情况下会有用,例如在原有表中拥有几百列数据、数据模型无法改动的情况下。

可以在映射文件中对特定的属性设置lazy,定义该属性为延迟载入。

<class name="Document"> <id name="id"> <generator class="native"/> </id> <property name="name" not-null="true" length="50"/> <property name="summary" not-null="true" length="200" lazy="true"/> <property name="text" not-null="true" length="2000" lazy="true"/></class> 


属性的延迟载入要求在其代码构建时加入二进制指示指令(bytecode instrumentation),如果你的持久类代码中未含有这些指令, Hibernate将会忽略这些属性的延迟设置,仍然将其直接载入。

你可以在Ant的Task中,进行如下定义,对持久类代码加入“二进制指令。”

<target name="instrument" depends="compile"> <taskdef name="instrument" classname="org.hibernate.tool.instrument.InstrumentTask"> <classpath path="${jar.path}"/> <classpath path="${classes.dir}"/> <classpath refid="lib.class.path"/> </taskdef> <instrument verbose="true"> <fileset dir="${testclasses.dir}/org/hibernate/auction/model"> <include name="*.class"/> </fileset> </instrument></target> 


还有一种可以优化的方法,它使用HQL或条件查询的投影(projection)特性,可以避免读取非必要的列, 这一点至少对只读事务是非常有用的。它无需在代码构建时“二进制指令”处理,因此是一个更加值得选择的解决方法。

有时你需要在HQL中通过抓取所有属性,强行抓取所有内容。



20.2. 二级缓存(The Second Level Cache)



Hibernate的Session在事务级别进行持久化数据的缓存操作。 当然,也有可能分别为每个类(或集合),配置集群、或JVM级别(SessionFactory级别)的缓存。 你甚至可以为之插入一个集群的缓存。注意,缓存永远不知道其他应用程序对持久化仓库(数据库)可能进行的修改 (即使可以将缓存数据设定为定期失效)。

默认情况下,Hibernate使用EHCache进行JVM级别的缓存(目前,Hibernate已经废弃了对JCS的支持,未来版本中将会去掉它)。 你可以通过设置hibernate.cache.provider_class属性,指定其他的缓存策略, 该缓存策略必须实现org.hibernate.cache.CacheProvider接口。


表 20.1.  缓存策略提供商(Cache Providers) Cache Provider class Type Cluster Safe Query Cache Supported
Hashtable (not intended for production use) org.hibernate.cache.HashtableCacheProvider memory   yes 
EHCache org.hibernate.cache.EhCacheProvider memory, disk   yes 
OSCache org.hibernate.cache.OSCacheProvider memory, disk   yes 
SwarmCache org.hibernate.cache.SwarmCacheProvider clustered (ip multicast) yes (clustered invalidation)   
JBoss TreeCache org.hibernate.cache.TreeCacheProvider clustered (ip multicast), transactional yes (replication) yes (clock sync req.) 





20.2.1. 缓存映射(Cache mappings)



类或者集合映射的“<cache>元素”可以有下列形式:

<cache usage="transactional|read-write|nonstrict-read-write|read-only" (1)/>

(1) 

usage说明了缓存的策略: transactional、 read-write、 nonstrict-read-write或 read-only。



另外(首选?), 你可以在hibernate.cfg.xml中指定<class-cache>和 <collection-cache> 元素。

这里的usage 属性指明了缓存并发策略(cache concurrency strategy)。



20.2.2. 策略:只读缓存(Strategy: read only)



如果你的应用程序只需读取一个持久化类的实例,而无需对其修改, 那么就可以对其进行只读 缓存。这是最简单,也是实用性最好的方法。甚至在集群中,它也能完美地运作。

<class name="eg.Immutable" mutable="false"> <cache usage="read-only"/> ....</class>



20.2.3.  策略:读/写缓存(Strategy: read/write)



如果应用程序需要更新数据,那么使用读/写缓存 比较合适。 如果应用程序要求“序列化事务”的隔离级别(serializable transaction isolation level),那么就决不能使用这种缓存策略。 如果在JTA环境中使用缓存,你必须指定hibernate.transaction.manager_lookup_class属性的值, 通过它,Hibernate才能知道该应用程序中JTA的TransactionManager的具体策略。 在其它环境中,你必须保证在Session.close()、或Session.disconnect()调用前, 整个事务已经结束。 如果你想在集群环境中使用此策略,你必须保证底层的缓存实现支持锁定(locking)。Hibernate内置的缓存策略并不支持锁定功能。

<class name="eg.Cat" .... > <cache usage="read-write"/> .... <set name="kittens" ... > <cache usage="read-write"/> .... </set></class>



20.2.4.  策略:非严格读/写缓存(Strategy: nonstrict read/write)



如果应用程序只偶尔需要更新数据(也就是说,两个事务同时更新同一记录的情况很不常见),也不需要十分严格的事务隔离, 那么比较适合使用非严格读/写缓存策略。如果在JTA环境中使用该策略, 你必须为其指定hibernate.transaction.manager_lookup_class属性的值, 在其它环境中,你必须保证在Session.close()、或Session.disconnect()调用前, 整个事务已经结束。



20.2.5.  策略:事务缓存(transactional)



Hibernate的事务缓存策略提供了全事务的缓存支持, 例如对JBoss TreeCache的支持。这样的缓存只能用于JTA环境中,你必须指定 为其hibernate.transaction.manager_lookup_class属性。

没有一种缓存提供商能够支持上列的所有缓存并发策略。下表中列出了各种提供器、及其各自适用的并发策略。


表 20.2.  各种缓存提供商对缓存并发策略的支持情况(Cache Concurrency Strategy Support) Cache read-only nonstrict-read-write read-write transactional
Hashtable (not intended for production use) yes yes yes  
EHCache yes yes yes  
OSCache yes yes yes  
SwarmCache yes yes    
JBoss TreeCache yes     yes




20.3.  管理缓存(Managing the caches)



无论何时,当你给save()、update()或 saveOrUpdate()方法传递一个对象时,或使用load()、 get()、list()、iterate() 或scroll()方法获得一个对象时, 该对象都将被加入到Session的内部缓存中。

当随后flush()方法被调用时,对象的状态会和数据库取得同步。 如果你不希望此同步操作发生,或者你正处理大量对象、需要对有效管理内存时,你可以调用evict() 方法,从一级缓存中去掉这些对象及其集合。

ScrollableResult cats = sess.createQuery("from Cat as cat").scroll(); //a huge result setwhile ( cats.next() ) { Cat cat = (Cat) cats.get(0); doSomethingWithACat(cat); sess.evict(cat);}

Session还提供了一个contains()方法,用来判断某个实例是否处于当前session的缓存中。

如若要把所有的对象从session缓存中彻底清除,则需要调用Session.clear()。

对于二级缓存来说,在SessionFactory中定义了许多方法, 清除缓存中实例、整个类、集合实例或者整个集合。

sessionFactory.evict(Cat.class, catId); //evict a particular CatsessionFactory.evict(Cat.class); //evict all CatssessionFactory.evictCollection("Cat.kittens", catId); //evict a particular collection of kittenssessionFactory.evictCollection("Cat.kittens"); //evict all kitten collections

CacheMode参数用于控制具体的Session如何与二级缓存进行交互。





CacheMode.NORMAL - 从二级缓存中读、写数据。



CacheMode.GET - 从二级缓存中读取数据,仅在数据更新时对二级缓存写数据。



CacheMode.PUT - 仅向二级缓存写数据,但不从二级缓存中读数据。



CacheMode.REFRESH - 仅向二级缓存写数据,但不从二级缓存中读数据。通过 hibernate.cache.use_minimal_puts的设置,强制二级缓存从数据库中读取数据,刷新缓存内容。



如若需要查看二级缓存或查询缓存区域的内容,你可以使用统计(Statistics) API。

Map cacheEntries = sessionFactory.getStatistics() .getSecondLevelCacheStatistics(regionName) .getEntries();

此时,你必须手工打开统计选项。可选的,你可以让Hibernate更人工可读的方式维护缓存内容。

hibernate.generate_statistics truehibernate.cache.use_structured_entries true



20.4. 查询缓存(The Query Cache)



查询的结果集也可以被缓存。只有当经常使用同样的参数进行查询时,这才会有些用处。 要使用查询缓存,首先你必须打开它:

hibernate.cache.use_query_cache true

该设置将会创建两个缓存区域 - 一个用于保存查询结果集(org.hibernate.cache.StandardQueryCache); 另一个则用于保存最近查询的一系列表的时间戳(org.hibernate.cache.UpdateTimestampsCache)。 请注意:在查询缓存中,它并不缓存结果集中所包含的实体的确切状态;它只缓存这些实体的标识符属性的值、以及各值类型的结果。 所以查询缓存通常会和二级缓存一起使用。

绝大多数的查询并不能从查询缓存中受益,所以Hibernate默认是不进行查询缓存的。如若需要进行缓存,请调用 Query.setCacheable(true)方法。这个调用会让查询在执行过程中时先从缓存中查找结果, 并将自己的结果集放到缓存中去。

如果你要对查询缓存的失效政策进行精确的控制,你必须调用Query.setCacheRegion()方法, 为每个查询指定其命名的缓存区域。

List blogs = sess.createQuery("from Blog blog where blog.blogger = :blogger") .setEntity("blogger", blogger) .setMaxResults(15) .setCacheable(true) .setCacheRegion("frontpages") .list();

如果查询需要强行刷新其查询缓存区域,那么你应该调用Query.setCacheMode(CacheMode.REFRESH)方法。 这对在其他进程中修改底层数据(例如,不通过Hibernate修改数据),或对那些需要选择性更新特定查询结果集的情况特别有用。 这是对SessionFactory.evictQueries()的更为有效的替代方案,同样可以清除查询缓存区域。



20.5.  理解集合性能(Understanding Collection performance)



前面我们已经对集合进行了足够的讨论。本段中,我们将着重讲述集合在运行时的事宜。



20.5.1.  分类(Taxonomy)



Hibernate定义了三种基本类型的集合:





值数据集合



一对多关联



多对多关联



这个分类是区分了不同的表和外键关系类型,但是它没有告诉我们关系模型的所有内容。 要完全理解他们的关系结构和性能特点,我们必须同时考虑“用于Hibernate更新或删除集合行数据的主键的结构”。 因此得到了如下的分类:





有序集合类



集合(sets)



包(bags)



所有的有序集合类(maps, lists, arrays)都拥有一个由<key>和 <index>组成的主键。 这种情况下集合类的更新是非常高效的——主键已经被有效的索引,因此当Hibernate试图更新或删除一行时,可以迅速找到该行数据。

集合(sets)的主键由<key>和其他元素字段构成。 对于有些元素类型来说,这很低效,特别是组合元素或者大文本、大二进制字段; 数据库可能无法有效的对复杂的主键进行索引。 另一方面,对于一对多、多对多关联,特别是合成的标识符来说,集合也可以达到同样的高效性能。( 附注:如果你希望SchemaExport为你的<set>创建主键, 你必须把所有的字段都声明为not-null="true"。)

<idbag>映射定义了代理键,因此它总是可以很高效的被更新。事实上, <idbag>拥有着最好的性能表现。

Bag是最差的。因为bag允许重复的元素值,也没有索引字段,因此不可能定义主键。 Hibernate无法判断出重复的行。当这种集合被更改时,Hibernate将会先完整地移除 (通过一个(in a single DELETE))整个集合,然后再重新创建整个集合。 因此Bag是非常低效的。

请注意:对于一对多关联来说,“主键”很可能并不是数据库表的物理主键。 但就算在此情况下,上面的分类仍然是有用的。(它仍然反映了Hibernate在集合的各数据行中是如何进行“定位”的。)



20.5.2.  Lists, maps 和sets用于更新效率最高



根据我们上面的讨论,显然有序集合类型和大多数set都可以在增加、删除、修改元素中拥有最好的性能。

可论证的是对于多对多关联、值数据集合而言,有序集合类比集合(set)有一个好处。因为Set的内在结构, 如果“改变”了一个元素,Hibernate并不会更新(UPDATE)这一行。 对于Set来说,只有在插入(INSERT)和删除(DELETE) 操作时“改变”才有效。再次强调:这段讨论对“一对多关联”并不适用。

注意到数组无法延迟载入,我们可以得出结论,list, map和idbags是最高效的(非反向)集合类型,set则紧随其后。 在Hibernate中,set应该时最通用的集合类型,这时因为“set”的语义在关系模型中是最自然的。

但是,在设计良好的Hibernate领域模型中,我们通常可以看到更多的集合事实上是带有inverse="true" 的一对多的关联。对于这些关联,更新操作将会在多对一的这一端进行处理。因此对于此类情况,无需考虑其集合的更新性能。



20.5.3.  Bag和list是反向集合类中效率最高的



在把bag扔进水沟之前,你必须了解,在一种情况下,bag的性能(包括list)要比set高得多: 对于指明了inverse="true"的集合类(比如说,标准的双向的一对多关联), 我们可以在未初始化(fetch)包元素的情况下直接向bag或list添加新元素! 这是因为Collection.add())或者Collection.addAll() 方法 对bag或者List总是返回true(这点与与Set不同)。因此对于下面的相同代码来说,速度会快得多。

Parent p = (Parent) sess.load(Parent.class, id); Child c = new Child(); c.setParent(p); p.getChildren().add(c); //no need to fetch the collection! sess.flush();



20.5.4.  一次性删除(One shot delete)



偶尔的,逐个删除集合类中的元素是相当低效的。Hibernate并没那么笨, 如果你想要把整个集合都删除(比如说调用list.clear()),Hibernate只需要一个DELETE就搞定了。

假设我们在一个长度为20的集合类中新增加了一个元素,然后再删除两个。 Hibernate会安排一条INSERT语句和两条DELETE语句(除非集合类是一个bag)。 这当然是显而易见的。

但是,假设我们删除了18个数据,只剩下2个,然后新增3个。则有两种处理方式:





逐一的删除这18个数据,再新增三个;



删除整个集合类(只用一句DELETE语句),然后增加5个数据。



Hibernate还没那么聪明,知道第二种选择可能会比较快。 (也许让Hibernate不这么聪明也是好事,否则可能会引发意外的“数据库触发器”之类的问题。)

幸运的是,你可以强制使用第二种策略。你需要取消原来的整个集合类(解除其引用), 然后再返回一个新的实例化的集合类,只包含需要的元素。有些时候这是非常有用的。

显然,一次性删除并不适用于被映射为inverse="true"的集合。



20.6.  监测性能(Monitoring performance)



没有监测和性能参数而进行优化是毫无意义的。Hibernate为其内部操作提供了一系列的示意图,因此可以从 每个SessionFactory抓取其统计数据。



20.6.1.  监测SessionFactory



你可以有两种方式访问SessionFactory的数据记录,第一种就是自己直接调用 sessionFactory.getStatistics()方法读取、显示统计数据。

此外,如果你打开StatisticsService MBean选项,那么Hibernate则可以使用JMX技术 发布其数据记录。你可以让应用中所有的SessionFactory同时共享一个MBean,也可以每个 SessionFactory分配一个MBean。下面的代码即是其演示代码:

// MBean service registration for a specific SessionFactoryHashtable tb = new Hashtable();tb.put("type", "statistics");tb.put("sessionFactory", "myFinancialApp");ObjectName on = new ObjectName("hibernate", tb); // MBean object nameStatisticsService stats = new StatisticsService(); // MBean implementationstats.setSessionFactory(sessionFactory); // Bind the stats to a SessionFactoryserver.registerMBean(stats, on); // Register the Mbean on the server

// MBean service registration for all SessionFactory'sHashtable tb = new Hashtable();tb.put("type", "statistics");tb.put("sessionFactory", "all");ObjectName on = new ObjectName("hibernate", tb); // MBean object nameStatisticsService stats = new StatisticsService(); // MBean implementationserver.registerMBean(stats, on); // Register the MBean on the server

TODO:仍需要说明的是:在第一个例子中,我们直接得到和使用MBean;而在第二个例子中,在使用MBean之前 我们则需要给出SessionFactory的JNDI名,使用hibernateStatsBean.setSessionFactoryJNDIName("my/JNDI/Name") 得到SessionFactory,然后将MBean保存于其中。

你可以通过以下方法打开或关闭SessionFactory的监测功能:





在配置期间,将hibernate.generate_statistics设置为true或false;







在运行期间,则可以可以通过sf.getStatistics().setStatisticsEnabled(true) 或hibernateStatsBean.setStatisticsEnabled(true)



你也可以在程序中调用clear()方法重置统计数据,调用logSummary() 在日志中记录(info级别)其总结。



20.6.2.  数据记录(Metrics)



Hibernate提供了一系列数据记录,其记录的内容包括从最基本的信息到与具体场景的特殊信息。所有的测量值都可以由 Statistics接口进行访问,主要分为三类:





使用Session的普通数据记录,例如打开的Session的个数、取得的JDBC的连接数等;



实体、集合、查询、缓存等内容的统一数据记录



和具体实体、集合、查询、缓存相关的详细数据记录



例如:你可以检查缓存的命中成功次数,缓存的命中失败次数,实体、集合和查询的使用概率,查询的平均时间等。请注意 Java中时间的近似精度是毫秒。Hibernate的数据精度和具体的JVM有关,在有些平台上其精度甚至只能精确到10秒。

你可以直接使用getter方法得到全局数据记录(例如,和具体的实体、集合、缓存区无关的数据),你也可以在具体查询中通过标记实体名、 或HQL、SQL语句得到某实体的数据记录。请参考Statistics、EntityStatistics、 CollectionStatistics、SecondLevelCacheStatistics、 和QueryStatistics的API文档以抓取更多信息。下面的代码则是个简单的例子:

Statistics stats = HibernateUtil.sessionFactory.getStatistics();double queryCacheHitCount = stats.getQueryCacheHitCount();double queryCacheMissCount = stats.getQueryCacheMissCount();double queryCacheHitRatio = queryCacheHitCount / (queryCacheHitCount + queryCacheMissCount);log.info("Query Hit ratio:" + queryCacheHitRatio);EntityStatistics entityStats = stats.getEntityStatistics( Cat.class.getName() );long changes = entityStats.getInsertCount() + entityStats.getUpdateCount() + entityStats.getDeleteCount();log.info(Cat.class.getName() + " changed " + changes + "times" );

如果你想得到所有实体、集合、查询和缓存区的数据,你可以通过以下方法获得实体、集合、查询和缓存区列表: getQueries()、getEntityNames()、 getCollectionRoleNames()和 getSecondLevelCacheRegionNames()。
分享到:
评论

相关推荐

    java文集

    映射标记 Java的“静态库链接” 姚博文 集成ACEGI 进行权限控制 SWT可交互式Browser控件 JDK配置(注意) RIA简介(第一部分) 在 Eclipse 中嵌入 NASA World Wind Java SDK, 用3DES加密解密 ...

    毕业设计选题 -未来生鲜运输车设计.pptx

    毕业设计选题 -未来生鲜运输车设计.pptx

    基于樽海鞘算法优化的极限学习机回归预测及其与BP、GRNN、ELM的性能对比研究

    内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。

    2025年中国生成式AI大会PPT(4-1)

    2025年中国生成式AI大会PPT(4-1)

    无刷直流电机双闭环调速系统的Simulink建模与参数优化

    内容概要:本文详细介绍了基于Simulink平台构建无刷直流电机(BLDC)双闭环调速系统的全过程。首先阐述了双闭环控制系统的基本架构,即外层速度环和内层电流环的工作原理及其相互关系。接着深入探讨了PWM生成模块的设计,特别是占空比计算方法的选择以及三角波频率的设定。文中还提供了详细的电机参数设置指导,如转动惯量、电感、电阻等,并强调了参数选择对系统性能的影响。此外,针对PI控制器的参数整定给出了具体的公式和经验值,同时分享了一些实用的调试技巧,如避免转速超调、处理启动抖动等问题的方法。最后,通过仿真实验展示了系统的稳定性和鲁棒性,验证了所提出方法的有效性。 适用人群:从事电机控制研究的技术人员、自动化工程领域的研究生及科研工作者。 使用场景及目标:适用于需要深入了解和掌握无刷直流电机双闭环调速系统设计与优化的人群。主要目标是帮助读者学会利用Simulink进行BLDC电机控制系统的建模、仿真和参数优化,从而提高系统的稳定性和响应速度。 其他说明:文章不仅提供了理论知识,还包括了许多实践经验和技术细节,有助于读者更好地理解和应用相关技术。

    西门子S7-1200 PLC与施耐德变频器Modbus通讯实现及调试技巧

    内容概要:本文详细介绍了西门子S7-1200 PLC与施耐德ATV310/312变频器通过Modbus RTU进行通讯的具体实现步骤和调试技巧。主要内容涵盖硬件接线、通讯参数配置、控制启停、设定频率、读取运行参数的方法以及常见的调试问题及其解决方案。文中提供了具体的代码示例,帮助读者理解和实施通讯程序。此外,还强调了注意事项,如地址偏移量、数据格式转换和超时匹配等。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些需要将西门子PLC与施耐德变频器进行集成的工作人员。 使用场景及目标:适用于需要通过Modbus RTU协议实现PLC与变频器通讯的工程项目。目标是确保通讯稳定可靠,掌握解决常见问题的方法,提高调试效率。 其他说明:文中提到的实际案例和调试经验有助于读者避免常见错误,快速定位并解决问题。建议读者在实践中结合提供的代码示例和调试工具进行操作。

    基于FPGA的Verilog实现IIC主从机驱动及其应用

    内容概要:本文详细介绍了如何使用Verilog在FPGA上实现IIC(Inter-Integrated Circuit)主从机驱动。主要内容包括从机和主机的设计,特别是状态机的实现、寄存器读取、时钟分频策略、SDA线的三态控制等关键技术。文中还提供了详细的代码片段,展示了从机地址匹配逻辑、主机时钟生成逻辑、顶层模块的连接方法以及仿真实验的具体步骤。此外,文章讨论了一些常见的调试问题,如总线竞争、时序不匹配等,并给出了相应的解决方案。 适合人群:具备一定FPGA开发基础的技术人员,尤其是对IIC协议感兴趣的嵌入式系统开发者。 使用场景及目标:适用于需要在FPGA平台上实现高效、可靠的IIC通信的应用场景。主要目标是帮助读者掌握IIC协议的工作原理,能够独立完成IIC主从机系统的开发和调试。 其他说明:文章不仅提供了理论讲解,还包括了大量的实战经验和代码实例,有助于读者更好地理解和应用所学知识。同时,文章还提供了一个思考题,引导读者进一步探索多主设备仲裁机制的设计思路。

    C#开发的拖拽式Halcon可视化抓边抓圆控件,提升机器视觉测量效率

    内容概要:本文介绍了一款基于C#开发的拖拽式Halcon可视化抓边、抓圆控件,旨在简化机器视觉项目中的测量任务。该控件通过拖拽操作即可快速生成测量区域,自动完成边缘坐标提取,并提供实时反馈。文中详细描述了控件的工作原理和技术细节,如坐标系转换、卡尺生成、边缘检测算法封装以及动态参数调试等功能。此外,还讨论了一些常见问题及其解决方案,如坐标系差异、内存管理等。 适合人群:从事机器视觉开发的技术人员,尤其是熟悉C#和Halcon的开发者。 使用场景及目标:适用于需要频繁进行边缘和圆形特征测量的工业自动化项目,能够显著提高测量效率并减少编码工作量。主要目标是将复杂的测量任务转化为简单的拖拽操作,使非专业人员也能轻松完成测量配置。 其他说明:该控件已开源发布在GitHub上,提供了完整的源代码和详细的使用指南。未来计划扩展更多高级功能,如自动路径规划和亚像素级齿轮齿距检测等。

    西门子200Smart与维纶触摸屏在疫苗车间控制系统的应用:配液、发酵、纯化及CIP清洗工艺详解

    内容概要:本文详细介绍了西门子200Smart PLC与维纶触摸屏在某疫苗车间控制系统的具体应用,涵盖配液、发酵、纯化及CIP清洗四个主要工艺环节。文中不仅展示了具体的编程代码和技术细节,还分享了许多实战经验和调试技巧。例如,在配液罐中,通过模拟量处理确保温度和液位的精确控制;发酵罐部分,着重讨论了PID参数整定和USS通讯控制变频器的方法;纯化过程中,强调了双PID串级控制的应用;CIP清洗环节,则涉及复杂的定时器逻辑和阀门联锁机制。此外,文章还提到了一些常见的陷阱及其解决方案,如通讯干扰、状态机切换等问题。 适合人群:具有一定PLC编程基础的技术人员,尤其是从事工业自动化领域的工程师。 使用场景及目标:适用于需要深入了解PLC与触摸屏集成控制系统的工程师,帮助他们在实际项目中更好地理解和应用相关技术和方法,提高系统的稳定性和可靠性。 其他说明:文章提供了大量实战经验和代码片段,有助于读者快速掌握关键技术点,并避免常见错误。同时,文中提到的一些优化措施和调试技巧对提升系统性能非常有帮助。

    计算机网络结课设计:通过思科Cisco进行中小型校园网搭建

    计算机网络课程的结课设计是使用思科模拟器搭建一个中小型校园网,当时花了几天时间查阅相关博客总算是做出来了,现在免费上传CSDN,希望小伙伴们能给博客一套三连支持

    芋道(yudao)开发技术文档

    《芋道开发指南文档-2023-10-27更新》是针对软件开发者和IT专业人士的一份详尽的资源集合,旨在提供最新的开发实践、范例代码和最佳策略。这份2023年10月27日更新的文档集,包含了丰富的模板和素材,帮助开发者在日常工作中提高效率,保证项目的顺利进行。 让我们深入探讨这份文档的可能内容。"芋道"可能是一个开源项目或一个专业的技术社区,其开发指南涵盖了多个方面,例如: 1. **编程语言指南**:可能包括Java、Python、JavaScript、C++等主流语言的编码规范、最佳实践以及常见问题的解决方案。 2. **框架与库的应用**:可能会讲解React、Vue、Angular等前端框架,以及Django、Spring Boot等后端框架的使用技巧和常见应用场景。 3. **数据库管理**:涵盖了SQL语言的基本操作,数据库设计原则,以及如何高效使用MySQL、PostgreSQL、MongoDB等数据库系统。 4. **版本控制**:详细介绍了Git的工作流程,分支管理策略,以及与其他开发工具(如Visual Studio Code、IntelliJ IDEA)的集成。 5. **持续集成与持续部署(CI/CD)**:包括Jenkins、Travis CI、GitHub Actions等工具的配置和使用,以实现自动化测试和部署。 6. **云服务与容器化**:可能涉及AWS、Azure、Google Cloud Platform等云计算平台的使用,以及Docker和Kubernetes的容器化部署实践。 7. **API设计与测试**:讲解RESTful API的设计原则,Swagger的使用,以及Postman等工具进行API测试的方法。 8. **安全性与隐私保护**:涵盖OAuth、JWT认证机制,HTTPS安全通信,以及防止SQL注入、

    基于信息间隙决策的综合能源系统优化调度模型及其应用

    内容概要:本文介绍了一种先进的综合能源系统优化调度模型,该模型将风电、光伏、光热发电等新能源与燃气轮机、燃气锅炉等传统能源设备相结合,利用信息间隙决策(IGDT)处理不确定性。模型中引入了P2G(电转气)装置和碳捕集技术,实现了碳经济闭环。通过多能转换和储能系统的协同调度,提高了系统的灵活性和鲁棒性。文中详细介绍了模型的关键组件和技术实现,包括IGDT的鲁棒性参数设置、P2G与碳捕集的协同控制、储能系统的三维协同调度等。此外,模型展示了在极端天气和负荷波动下的优异表现,显著降低了碳排放成本并提高了能源利用效率。 适合人群:从事能源系统优化、电力调度、碳交易等相关领域的研究人员和工程师。 使用场景及目标:适用于需要处理多种能源形式和不确定性的综合能源系统调度场景。主要目标是提高系统的灵活性、鲁棒性和经济效益,减少碳排放。 其他说明:模型具有良好的扩展性,可以通过修改配置文件轻松集成新的能源设备。代码中包含了详细的注释和公式推导,便于理解和进一步改进。

    毕业设计的论文撰写、终期答辩相关的资源.m

    毕业设计的论文撰写、终期答辩相关的资源

    机器学习(预测模型):专注于 2024 年出现的漏洞(CVE)信息数据集

    该是一个在 Kaggle 上发布的数据集,专注于 2024 年出现的漏洞(CVE)信息。以下是关于该数据集的详细介绍:该数据集收集了 2024 年记录在案的各类漏洞信息,涵盖了漏洞的利用方式(Exploits)、通用漏洞评分系统(CVSS)评分以及受影响的操作系统(OS)。通过整合这些信息,研究人员和安全专家可以全面了解每个漏洞的潜在威胁、影响范围以及可能的攻击途径。数据主要来源于权威的漏洞信息平台,如美国国家漏洞数据库(NVD)等。这些数据经过整理和筛选后被纳入数据集,确保了信息的准确性和可靠性。数据集特点:全面性:涵盖了多种操作系统(如 Windows、Linux、Android 等)的漏洞信息,反映了不同平台的安全状况。实用性:CVSS 评分提供了漏洞严重程度的量化指标,帮助用户快速评估漏洞的优先级。同时,漏洞利用信息(Exploits)为安全研究人员提供了攻击者可能的攻击手段,有助于提前制定防御策略。时效性:专注于 2024 年的漏洞数据,反映了当前网络安全领域面临的新挑战和新趋势。该数据集可用于多种研究和实践场景: 安全研究:研究人员可以利用该数据集分析漏洞的分布规律、攻击趋势以及不同操作系统之间的安全差异,为网络安全防护提供理论支持。 机器学习与数据分析:数据集中的结构化信息适合用于机器学习模型的训练,例如预测漏洞的 CVSS 评分、识别潜在的高危漏洞等。 企业安全评估:企业安全团队可以参考该数据集中的漏洞信息,结合自身系统的实际情况,进行安全评估和漏洞修复计划的制定。

    建模大赛入门指南:从零基础到实战应用.pdf

    内容概要:本文档作为建模大赛的入门指南,详细介绍了建模大赛的概念、类型、竞赛流程、核心步骤与技巧,并提供实战案例解析。文档首先概述了建模大赛,指出其以数学、计算机技术为核心,主要分为数学建模、3D建模和AI大模型竞赛三类。接着深入解析了数学建模竞赛,涵盖组队策略(如三人分别负责建模、编程、论文写作)、时间安排(72小时内完成全流程)以及问题分析、模型建立、编程实现和论文撰写的要点。文中还提供了物流路径优化的实战案例,展示了如何将实际问题转化为图论问题并采用Dijkstra或蚁群算法求解。最后,文档推荐了不同类型建模的学习资源与工具,并给出了新手避坑建议,如避免过度复杂化模型、重视可视化呈现等。; 适合人群:对建模大赛感兴趣的初学者,特别是高校学生及希望参与数学建模竞赛的新手。; 使用场景及目标:①了解建模大赛的基本概念和分类;②掌握数学建模竞赛的具体流程与分工;③学习如何将实际问题转化为数学模型并求解;④获取实战经验和常见错误规避方法。; 其他说明:文档不仅提供了理论知识,还结合具体实例和代码片段帮助读者更好地理解和实践建模过程。建议新手从中小型赛事开始积累经验,逐步提升技能水平。

    protobuf-6.30.1-cp310-abi3-win32.whl

    该资源为protobuf-6.30.1-cp310-abi3-win32.whl,欢迎下载使用哦!

    大数据环境构建:从虚拟机创建到Ambari集群部署的技术指南

    内容概要:本文档详细介绍了基于Linux系统的大数据环境搭建流程,涵盖从虚拟机创建到集群建立的全过程。首先,通过一系列步骤创建并配置虚拟机,包括设置IP地址、安装MySQL数据库等操作。接着,重点讲解了Ambari的安装与配置,涉及关闭防火墙、设置免密登录、安装时间同步服务(ntp)、HTTP服务以及配置YUM源等关键环节。最后,完成了Ambari数据库的创建、JDK的安装、Ambari server和agent的部署,并指导用户创建集群。整个过程中还提供了针对可能出现的问题及其解决方案,确保各组件顺利安装与配置。 适合人群:具有Linux基础操作技能的数据工程师或运维人员,尤其是那些需要构建和管理大数据平台的专业人士。 使用场景及目标:适用于希望快速搭建稳定可靠的大数据平台的企业或个人开发者。通过本指南可以掌握如何利用Ambari工具自动化部署Hadoop生态系统中的各个组件,从而提高工作效率,降低维护成本。 其他说明:文档中包含了大量具体的命令行指令和配置细节,建议读者按照顺序逐步操作,并注意记录下重要的参数值以便后续参考。此外,在遇到问题时可参照提供的解决方案进行排查,必要时查阅官方文档获取更多信息。

    MATLAB中基于LMS算法的一维时间序列信号降噪技术及其实现

    内容概要:本文详细介绍了如何在MATLAB R2018A中使用最小均方(LMS)自适应滤波算法对一维时间序列信号进行降噪处理,特别是针对心电图(ECG)信号的应用。首先,通过生成模拟的ECG信号并加入随机噪声,创建了一个带有噪声的时间序列。然后,实现了LMS算法的核心部分,包括滤波器阶数、步长参数的选择以及权重更新规则的设计。文中还提供了详细的代码示例,展示了如何构建和训练自适应滤波器,并通过图形化方式比较了原始信号、加噪信号与经过LMS处理后的降噪信号之间的差异。此外,作者分享了一些实用的经验和技术要点,如参数选择的影响、误差曲线的解读等。 适用人群:适用于具有一定MATLAB编程基础并对信号处理感兴趣的科研人员、工程师或学生。 使用场景及目标:本教程旨在帮助读者掌握LMS算法的基本原理及其在实际项目中的应用方法,特别是在生物医学工程、机械故障诊断等领域中处理含噪信号的任务。同时,也为进一步探索其他类型的自适应滤波技术和扩展到不同的信号处理任务奠定了基础。 其他说明:尽管LMS算法在处理平稳噪声方面表现出色,但在面对突发性的强干扰时仍存在一定局限性。因此,在某些特殊场合下,可能需要与其他滤波技术相结合以获得更好的效果。

    基于TMS320F2812的光伏并网逆变器设计与MATLAB仿真及DSP代码实现

    内容概要:本文详细介绍了基于TMS320F2812 DSP芯片的光伏并网逆变器设计方案,涵盖了主电路架构、控制算法、锁相环实现、环流抑制等多个关键技术点。首先,文中阐述了双级式结构的主电路设计,前级Boost升压将光伏板输出电压提升至约600V,后级采用三电平NPC拓扑的IGBT桥进行逆变。接着,深入探讨了核心控制算法,如电流PI调节器、锁相环(SOFGI)、环流抑制等,并提供了详细的MATLAB仿真模型和DSP代码实现。此外,还特别强调了PWM死区时间配置、ADC采样时序等问题的实际解决方案。最终,通过实验验证,该方案实现了THD小于3%,MPPT效率达98.7%,并有效降低了并联环流。 适合人群:从事光伏并网逆变器开发的电力电子工程师和技术研究人员。 使用场景及目标:适用于光伏并网逆变器的研发阶段,帮助工程师理解和实现高效稳定的逆变器控制系统,提高系统的性能指标,减少开发过程中常见的错误。 其他说明:文中提供的MATLAB仿真模型和DSP代码可以作为实际项目开发的重要参考资料,有助于缩短开发周期,提高成功率。

    三菱FX3U PLC在六轴自动包装机中的伺服控制与定位程序解析

    内容概要:本文详细解析了三菱FX3U PLC在六轴自动包装机中的应用,涵盖硬件配置、程序框架、伺服定位控制、手自动切换逻辑、功能块应用以及报警处理等方面。硬件方面,采用FX3U-48MT主模块自带三轴脉冲输出,配合三个FX3UG-1PG模块扩展定位功能,使用六个MR-JE-20A伺服驱动器和16点输入扩展模块进行传感器采集。程序框架主要由初始化、模式切换、六轴控制和异常处理组成。伺服定位使用DRVA指令实现双速定位模式,手自动切换逻辑通过功能块封装,确保模式切换顺畅。报警处理模块则利用矩阵扫描方式压缩报警信号,提高IO利用率。此外,程序还包括状态监控设计和原点回归等功能。 适合人群:具备一定PLC编程基础,从事自动化控制领域的工程师和技术人员。 使用场景及目标:适用于六轴自动包装机的设计与调试,帮助工程师理解和掌握三菱FX3U PLC在包装机械中的具体应用,提升系统的可靠性和效率。 其他说明:文中提供了详细的代码示例和注意事项,有助于新手避免常见错误并优化程序性能。

Global site tag (gtag.js) - Google Analytics