Java深度历险(二)——Java类的加载、链接和初始化
在上一篇文章中介绍了Java字节代码的操纵,其中提到了利用Java类加载器来加载修改过后的字节代码并在JVM上执行。本文接着上一篇的话题,讨论Java类的加载、链接和初始化。Java字节代码的表现形式是字节数组(byte[]),而Java类在JVM中的表现形式是java.lang.Class类的对象。一个Java类从字节代码到能够在JVM中被使用,需要经过加载、链接和初始化这三个步骤。这三个步骤中,对开发人员直接可见的是Java类的加载,通过使用Java类加载器(class loader)可以在运行时刻动态的加载一个Java类;而链接和初始化则是在使用Java类之前会发生的动作。本文会详细介绍Java类的加载、链接和初始化的过程。
Java类的加载
Java类的加载是由类加载器来完成的。一般来说,类加载器分成两类:启动类加载器(bootstrap)和用户自定义的类加载器(user-defined)。两者的区别在于启动类加载器是由JVM的原生代码实现的,而用户自定义的类加载器都继承自Java中的java.lang.ClassLoader类。在用户自定义类加载器的部分,一般JVM都会提供一些基本实现。应用程序的开发人员也可以根据需要编写自己的类加载器。JVM中最常使用的是系统类加载器(system),它用来启动Java应用程序的加载。通过java.lang.ClassLoader的getSystemClassLoader()方法可以获取到该类加载器对象。
类加载器需要完成的最终功能是定义一个Java类,即把Java字节代码转换成JVM中的java.lang.Class类的对象。但是类加载的过程并不是这么简单。Java类加载器有两个比较重要的特征:层次组织结构和代理模式。层次组织结构指的是每个类加载器都有一个父类加载器,通过getParent()方法可以获取到。类加载器通过这种父亲-后代的方式组织在一起,形成树状层次结构。代理模式则指的是一个类加载器既可以自己完成Java类的定义工作,也可以代理给其它的类加载器来完成。由于代理模式的存在,启动一个类的加载过程的类加载器和最终定义这个类的类加载器可能并不是一个。前者称为初始类加载器,而后者称为定义类加载器。两者的关联在于:一个Java类的定义类加载器是该类所导入的其它Java类的初始类加载器。比如类A通过import导入了类 B,那么由类A的定义类加载器负责启动类B的加载过程。
一般的类加载器在尝试自己去加载某个Java类之前,会首先代理给其父类加载器。当父类加载器找不到的时候,才会尝试自己加载。这个逻辑是封装在java.lang.ClassLoader类的loadClass()方法中的。一般来说,父类优先的策略就足够好了。在某些情况下,可能需要采取相反的策略,即先尝试自己加载,找不到的时候再代理给父类加载器。这种做法在Java的Web容器中比较常见,也是Servlet规范推荐的做法。比如,Apache Tomcat为每个Web应用都提供一个独立的类加载器,使用的就是自己优先加载的策略。IBM WebSphere Application Server则允许Web应用选择类加载器使用的策略。
类加载器的一个重要用途是在JVM中为相同名称的Java类创建隔离空间。在JVM中,判断两个类是否相同,不仅是根据该类的二进制名称,还需要根据两个类的定义类加载器。只有两者完全一样,才认为两个类的是相同的。因此,即便是同样的Java字节代码,被两个不同的类加载器定义之后,所得到的Java类也是不同的。如果试图在两个类的对象之间进行赋值操作,会抛出java.lang.ClassCastException。这个特性为同样名称的Java类在JVM中共存创造了条件。在实际的应用中,可能会要求同一名称的Java类的不同版本在JVM中可以同时存在。通过类加载器就可以满足这种需求。这种技术在OSGi中得到了广泛的应用。
Java类的链接
Java类的链接指的是将Java类的二进制代码合并到JVM的运行状态之中的过程。在链接之前,这个类必须被成功加载。类的链接包括验证、准备和解析等几个步骤。验证是用来确保Java类的二进制表示在结构上是完全正确的。如果验证过程出现错误的话,会抛出java.lang.VerifyError错误。准备过程则是创建Java类中的静态域,并将这些域的值设为默认值。准备过程并不会执行代码。在一个Java类中会包含对其它类或接口的形式引用,包括它的父类、所实现的接口、方法的形式参数和返回值的Java类等。解析的过程就是确保这些被引用的类能被正确的找到。解析的过程可能会导致其它的Java类被加载。
不同的JVM实现可能选择不同的解析策略。一种做法是在链接的时候,就递归的把所有依赖的形式引用都进行解析。而另外的做法则可能是只在一个形式引用真正需要的时候才进行解析。也就是说如果一个Java类只是被引用了,但是并没有被真正用到,那么这个类有可能就不会被解析。考虑下面的代码:
public class LinkTest {
public static void main(String[] args) {
ToBeLinked toBeLinked = null;
System.out.println("Test link.");
}
}
类 LinkTest引用了类ToBeLinked,但是并没有真正使用它,只是声明了一个变量,并没有创建该类的实例或是访问其中的静态域。在 Oracle的JDK 6中,如果把编译好的ToBeLinked的Java字节代码删除之后,再运行LinkTest,程序不会抛出错误。这是因为ToBeLinked类没有被真正用到,而Oracle的JDK 6所采用的链接策略使得ToBeLinked类不会被加载,因此也不会发现ToBeLinked的Java字节代码实际上是不存在的。如果把代码改成ToBeLinked toBeLinked = new ToBeLinked();之后,再按照相同的方法运行,就会抛出异常了。因为这个时候ToBeLinked这个类被真正使用到了,会需要加载这个类。
Java类的初始化
当一个Java类第一次被真正使用到的时候,JVM会进行该类的初始化操作。初始化过程的主要操作是执行静态代码块和初始化静态域。在一个类被初始化之前,它的直接父类也需要被初始化。但是,一个接口的初始化,不会引起其父接口的初始化。在初始化的时候,会按照源代码中从上到下的顺序依次执行静态代码块和初始化静态域。考虑下面的代码:
public class StaticTest {
public static int X = 10;
public static void main(String[] args) {
System.out.println(Y); //输出60
}
static {
X = 30;
}
public static int Y = X * 2;
}
在上面的代码中,在初始化的时候,静态域的初始化和静态代码块的执行会从上到下依次执行。因此变量X的值首先初始化成10,后来又被赋值成30;而变量Y的值则被初始化成60。
Java类和接口的初始化只有在特定的时机才会发生,这些时机包括:
通过Java反射API也可能造成类和接口的初始化。需要注意的是,当访问一个Java类或接口中的静态域的时候,只有真正声明这个域的类或接口才会被初始化。考虑下面的代码:
class B {
static int value = 100;
static {
System.out.println("Class B is initialized."); //输出
}
}
class A extends B {
static {
System.out.println("Class A is initialized."); //不会输出
}
}
public class InitTest {
public static void main(String[] args) {
System.out.println(A.value); //输出100
}
}
在上述代码中,类InitTest通过A.value引用了类B中声明的静态域value。由于value是在类B中声明的,只有类B会被初始化,而类A则不会被初始化。
创建自己的类加载器
在 Java应用开发过程中,可能会需要创建应用自己的类加载器。典型的场景包括实现特定的Java字节代码查找方式、对字节代码进行加密/解密以及实现同名 Java类的隔离等。创建自己的类加载器并不是一件复杂的事情,只需要继承自java.lang.ClassLoader类并覆写对应的方法即可。 java.lang.ClassLoader中提供的方法有不少,下面介绍几个创建类加载器时需要考虑的:
-
defineClass():这个方法用来完成从Java字节代码的字节数组到java.lang.Class的转换。这个方法是不能被覆写的,一般是用原生代码来实现的。
-
findLoadedClass():这个方法用来根据名称查找已经加载过的Java类。一个类加载器不会重复加载同一名称的类。
-
findClass():这个方法用来根据名称查找并加载Java类。
-
loadClass():这个方法用来根据名称加载Java类。
-
resolveClass():这个方法用来链接一个Java类。
这里比较 容易混淆的是findClass()方法和loadClass()方法的作用。前面提到过,在Java类的链接过程中,会需要对Java类进行解析,而解析可能会导致当前Java类所引用的其它Java类被加载。在这个时候,JVM就是通过调用当前类的定义类加载器的loadClass()方法来加载其它类的。findClass()方法则是应用创建的类加载器的扩展点。应用自己的类加载器应该覆写findClass()方法来添加自定义的类加载逻辑。 loadClass()方法的默认实现会负责调用findClass()方法。
前面提到,类加载器的代理模式默认使用的是父类优先的策略。这个策略的实现是封装在loadClass()方法中的。如果希望修改此策略,就需要覆写loadClass()方法。
下面的代码给出了自定义的类加载的常见实现模式:
public class MyClassLoader extends ClassLoader {
protected Class<?> findClass(String name) throws ClassNotFoundException {
byte[] b = null; //查找或生成Java类的字节代码
return defineClass(name, b, 0, b.length);
}
}
原文地址:http://www.infoq.com/cn/articles/cf-Java-class-loader
分享到:
相关推荐
在《Java深度历险》这本书的第二章中,作者深入探讨了类加载器在实现Java程序动态性中的核心作用。 #### 类加载器的动态性 Java语言天生具备动态性,这意味着开发者无需依赖底层操作系统的特定机制(如动态链接库...
洛谷愚人节比赛.pdf
内容概要:本文档是北京迅为电子有限公司针对iTOP-3568开发板的Linux系统开发和应用开发手册,详细介绍了开发板在Linux系统下的配置与开发方法。手册涵盖Buildroot、Debian、Ubuntu等多个Linux发行版的系统开发笔记,涉及屏幕设置、待机和锁屏、显示颜色格式、分辨率和缩放、静态IP设置、Qt程序操作、开机自启、音频视频和摄像头开发、VNC和ToDesk远程控制软件安装等内容。同时,手册还提供了关于Buildroot编译常见问题的解决方案、U-Boot和内核开发细节,以及IO电源域的配置方法。手册不仅适用于初次接触嵌入式Linux系统的开发者,也适合有一定经验的研发人员深入学习。 适合人群:具备一定编程基础,尤其是对Linux系统和嵌入式开发有一定了解的研发人员,工作1-3年的工程师,以及希望深入了解嵌入式Linux系统开发的爱好者。 使用场景及目标:①帮助用户掌握iTOP-3568开发板在Linux系统下的基本配置与高级开发技巧;②指导用户解决Linux系统开发中遇到的常见问题;③为用户提供详细的编译和调试指南,确保开发板能
内容概要:本文探讨了基于MATLAB2020b平台,采用CNN-LSTM模型结合人工大猩猩部队(GTO)算法进行电力负荷预测的方法。首先介绍了CNN-LSTM模型的基本结构及其在处理多变量输入(如历史负荷和气象数据)方面的优势。随后详细解释了模型各层的功能,包括卷积层、池化层、LSTM层和全连接层的作用。接着讨论了超参数选择的重要性,并引入GTO算法来进行超参数优化,提高模型预测精度。文中展示了具体的MATLAB代码示例,涵盖了数据预处理、模型构建、训练配置等方面的内容。此外,还分享了一些实践经验,如卷积核配置、LSTM节点数设定等。 适合人群:从事电力系统数据分析的研究人员和技术人员,尤其是对深度学习应用于电力负荷预测感兴趣的读者。 使用场景及目标:适用于需要精确预测未来电力负荷的场合,旨在帮助电力公司更好地规划发电计划,优化资源配置,保障电网安全稳定运行。通过本篇文章的学习,读者可以掌握如何使用MATLAB实现CNN-LSTM模型,并学会运用GTO算法优化超参数,从而提升预测准确性。 其他说明:文章强调了数据质量和预处理步骤的重要性,指出高质量的输入数据能够显著改善预测效果。同时提醒读者注意模型训练过程中的一些常见陷阱,如避免过度拟合等问题。
内容概要:本文详细介绍了TIG(钨极惰性气体保护焊)二维电弧仿真的理论基础和程序实现。首先阐述了TIG电弧的本质及其在二维仿真中的数学描述,主要采用磁流体动力学(MHD)方程进行建模。接着展示了如何使用Python生成仿真所需的网格,并初始化温度场、速度场和电场强度等物理参数。随后,通过迭代求解MHD方程,逐步更新各物理量,最终得到电弧内部的温度、速度和电场分布情况。通过对仿真结果的分析,能够深入了解焊接过程中熔化和凝固的现象,从而优化焊接参数,提高焊接质量。 适合人群:从事焊接工程、材料科学及相关领域的研究人员和技术人员,尤其是对TIG焊接工艺感兴趣的学者。 使用场景及目标:适用于希望深入了解TIG焊接过程并希望通过仿真手段优化焊接参数的研究人员。目标是通过仿真更好地理解电弧行为,进而改善焊接质量和效率。 其他说明:文中还提到了一些实用技巧,如网格划分、边界条件设置、求解器选择等方面的注意事项,以及如何使用不同软件工具(如MATLAB、ParaView)进行数据可视化。此外,强调了多语言混合编程的优势,并提供了一些常见的调试和优化建议。
jenkins操作诶udrtyui897t86r5drctvghuiyft
帆软本地打印插件FinePrint 8.0版本,适用于FineReport8
内容概要:本文详细介绍了基于TMS320F2812 DSP芯片的光伏并网逆变器设计方案,涵盖了主电路架构、控制算法、锁相环实现、环流抑制等多个关键技术点。首先,文中阐述了双级式结构的主电路设计,前级Boost升压将光伏板输出电压提升至约600V,后级采用三电平NPC拓扑的IGBT桥进行逆变。接着,深入探讨了核心控制算法,如电流PI调节器、锁相环(SOFGI)、环流抑制等,并提供了详细的MATLAB仿真模型和DSP代码实现。此外,还特别强调了PWM死区时间配置、ADC采样时序等问题的实际解决方案。最终,通过实验验证,该方案实现了THD小于3%,MPPT效率达98.7%,并有效降低了并联环流。 适合人群:从事光伏并网逆变器开发的电力电子工程师和技术研究人员。 使用场景及目标:适用于光伏并网逆变器的研发阶段,帮助工程师理解和实现高效稳定的逆变器控制系统,提高系统的性能指标,减少开发过程中常见的错误。 其他说明:文中提供的MATLAB仿真模型和DSP代码可以作为实际项目开发的重要参考资料,有助于缩短开发周期,提高成功率。
内容概要:本文详细介绍了如何结合鲸鱼优化算法(WOA)和深度极限学习机(DELM)构建回归预测模型。首先,文章解释了鲸鱼优化算法的基本原理,这是一种受座头鲸群体狩猎行为启发的元启发式优化算法。接着,阐述了深度极限学习机的工作机制,它结合了极限学习机的快速学习能力和深度学习的层次结构。随后,文章展示了如何使用时间窗法处理数据,并构建自动编码器和极限学习机的具体步骤。特别地,文中详细描述了如何利用鲸鱼优化算法优化自动编码器的输入权重与偏置,从而提高模型的预测性能。最后,给出了完整的代码实现,包括数据预处理、模型构建、优化和预测等环节。 适合人群:具备一定机器学习基础的研究人员和技术开发者,尤其是对时间序列预测感兴趣的从业者。 使用场景及目标:适用于需要高精度回归预测的任务,如金融数据分析、能源消耗预测等领域。主要目标是通过优化模型参数,提高预测的准确性。 其他说明:本文提供的代码示例详尽且易于修改,用户只需替换自己的数据路径即可复现实验结果。同时,文中还提供了调参的小技巧,有助于进一步提升模型表现。
内容概要:T/CIN 029—2024标准规定了非船载传导式充电机与电动船舶之间的数字通信协议,涵盖了一般要求、通信物理层、数据链路层、应用层、充电总体流程、报文分类、格式和内容等方面。该标准旨在确保电动船舶连接到直流电网时,充电机与电池管理系统(BMS)或船舶管理系统(SMS)之间的稳定通信。标准详细定义了各层的通信要求,如物理层的ISO 11898-1和SAE J1939-11规范,数据链路层的CAN扩展帧格式,以及应用层的参数组编号和传输协议。此外,还详细描述了充电的六个阶段(物理连接、低压辅助上电、充电握手、参数配置、充电和结束)的具体流程和涉及的报文格式,确保了充电过程的安全性和可靠性。 适用人群:从事电动船舶充电系统设计、开发、维护的技术人员及工程师;相关行业的研究人员;对电动船舶充电通信协议感兴趣的学者和专业人士。 使用场景及目标:① 为电动船舶充电系统的开发和优化提供技术依据;② 确保充电机与BMS/SMS之间的高效、可靠通信;③ 保障充电过程的安全性和稳定性,防止因通信故障导致的充电中断或事故。 其他说明:本标准由中国航海学会发布,适用于电动船舶连接到直流电网时的充电通信,为电动船舶行业的标准化发展提供了重要支持。标准中还包含了详细的故障诊断代码和报文格式,帮助技术人员快速定位和解决问题。
vue 基础语法使用心得
根据“意见”创新银发经济新模式.pptx
内容概要:本文详细介绍了用于机械故障诊断的盲反卷积方法及其周期估计技术。首先探讨了利用自相关函数和包络谐波乘积谱(EHPS)进行周期估计的方法,提供了具体的MATLAB代码实现。接着阐述了如何将这两种方法集成到盲反卷积框架(如MCKD和CYCBD)中,形成迭代优化的解决方案。文中通过多个实际案例展示了这些方法的有效性和优越性,尤其是在转速波动较大情况下,能够显著提高故障识别率并减少计算时间。 适合人群:从事机械设备状态监测与故障诊断的研究人员和技术人员,尤其是有一定MATLAB编程基础的工程师。 使用场景及目标:适用于各种旋转机械设备(如风力发电机、压缩机、齿轮箱等)的状态监测和故障诊断。主要目标是在缺乏精确转速信息的情况下,通过盲反卷积技术和周期估计方法,从复杂背景噪声中提取出有用的故障特征信号,从而实现高效精准的故障检测。 其他说明:文中不仅提供了详细的理论解释和技术实现步骤,还包括了许多实用的经验技巧,如参数选择、算法优化等方面的内容。此外,作者还强调了不同方法之间的互补性和组合使用的必要性,为读者提供了一个完整的解决方案视角。
腰髋疼痛医案解析与经典学习.pptx
该资源为scipy-0.12.0.tar.gz,欢迎下载使用哦!
用Python开发的爬取二手车网站数据及其分析的程序,爬取的时候采用selenium驱动google浏览器进行数据的抓取,抓取的网页内容传入lxml模块的etree对象HTML方法通过xpath解析DOM树,不过二手车的关键数据比如二手车价格,汽车表显里程数字采用了字体文件加密。据的展示采用pyecharts,它是一个用于生成 Echarts 图表的类库。爬取的数据插入mysql数据库和分析数据读取mysql数据库表都是通过pymysql模块操作。
“Clerk Exam result”数据集是关于职员考试结果的集合,它为研究职员招聘与选拔提供了丰富的数据资源。该数据集可能包含了众多考生的基本信息,如姓名、性别、年龄、学历等,这些信息有助于分析不同背景考生的考试表现差异。考试成绩是数据集的核心部分,它可能涵盖了笔试、面试等多个环节的分数,通过这些分数可以直观地看出考生在专业知识、综合能力等方面的掌握程度。此外,数据集还可能标注了考生是否通过考试,这为研究考试的选拔标准和通过率提供了依据。 从数据的来源来看,它可能是由某个或多个组织在进行职员招聘考试后整理而成,具有一定的权威性和实用性。通过对该数据集的分析,可以发现考试过程中存在的问题,比如某些题目的难度是否过高或过低,以及不同地区、不同岗位的考试难度是否均衡等。同时,它也能为后续的招聘考试提供参考,帮助优化考试流程和内容,提高招聘的科学性和有效性。 然而,需要注意的是,此类数据集可能涉及考生的隐私信息,因此在使用时必须严格遵守相关法律法规,确保数据的安全和合法使用。同时,由于考试内容和标准可能会随着时间、地区和岗位的不同而有所变化,因此在分析数据时也需要考虑到这些因素,避免得出片面或不准确的结论。
内容概要:本文详细介绍了基于Matlab/Simulink平台的5MW海上永磁直驱风电系统及其1200V并网应用。文章首先阐述了系统的整体架构,包括机侧变流器的矢量控制和网侧变流器的直流电压外环+电网电压定向控制。特别强调了滑动平均滤波在功率分配中的应用,以及混合储能系统(超级电容和锂电池)的设计与优化。文中还讨论了关键参数的选择依据,如PI参数整定、PLL模块参数设置等,并展示了仿真过程中遇到的问题及解决方案。此外,文章分享了风速数据处理方法、故障穿越性能测试结果以及模型的实际应用情况。 适合人群:从事风电系统设计、控制工程、电力电子领域的研究人员和技术人员。 使用场景及目标:适用于希望深入了解海上风电系统控制策略的研究人员和技术人员,旨在提高对直驱永磁风电系统的理解和掌握,特别是在复杂工况下的稳定性和效率优化方面。 其他说明:文章提供了详细的代码片段和仿真结果,便于读者复现实验并进行进一步研究。同时,作者提到了一些实用的经验和技巧,有助于解决实际项目中可能遇到的技术难题。
使用 workerMan 搭建一个简单的聊天室 本项目,实现了聊天室的基础功能,目的就是演示 workerMan 的使用