`

转:深入浅出桌面虚拟化存储性能的评估

阅读更多
深入浅出桌面虚拟化存储性能的评估

到底该如何规划桌面虚拟化的存储性能?一帮兄弟由讨论变成了纷争。直到Citrix的大拿Davy Huang开声,讨论才戛然而止。这是我看过的桌面虚拟化IOPS评估中最有的深度的文章了。不敢私藏,拿出来与大家分享。

虚拟桌面系统很依赖存储基础架构来承载用户环境和操作系统的不同部分。如果没有合适的存储子系统的设计,用户的虚拟桌面会变得越来越慢,然后直到不可用,因为存储变为了最大的瓶颈。为了恰当的设计存储基础设施,我们需要能够计算期望的每秒Input/Output Operations ,也就是我们俗称的IOPS, 我个人认为计算IOPS 需要从以下几方面考虑:
(1)磁盘IOPS
磁盘是整个存储系统的最基本组成单元,它完成一个I/O请求所花费的时间是由寻道时间、旋转延迟和数据传输时间三部分构成:
寻道时间Tseek是指将读写磁头移动至正确的磁道上所需要的时间。寻道时间越短,I/O操作越快,目前磁盘的平均寻道时间一般在3-15ms。
旋转延迟Trotation是指盘片旋转将请求数据所在扇区移至读写磁头下方所需要的时间。旋转延迟取决于磁盘转速,通常使用磁盘旋转一周所需时间的1/2表示。比如,7200 rpm的磁盘平均旋转延迟大约为60*1000/7200/2 = 4.17ms,而转速为15000 rpm的磁盘其平均旋转延迟约为2ms。
数据传输时间Ttransfer是指完成传输所请求的数据所需要的时间,它取决于数据传输率,其值等于数据大小除以数据传输率。目前IDE/ATA能达到133MB/s,SATA II可达到300MB/s的接口数据传输率,数据传输时间通常远小于前两部分时间。因此,理论上可以计算出磁盘的最大IOPS,即IOPS = 1000 ms/ (Tseek + Troatation),忽略数据传输时间。假设磁盘平均物理寻道时间为3ms, 磁盘转速为7200,10K,15K rpm,则磁盘IOPS理论最大值分别为,
IOPS = 1000 / (3 + 60000/7200/2) = 140
IOPS = 1000 / (3 + 60000/10000/2) = 167
IOPS = 1000 / (3 + 60000/15000/2) = 200
需要注意的是,上述计算中磁盘平均寻道时间的取值对计算结果的有较大的影响;同时为了提升磁盘的IO速度,所有的磁盘都会带有缓存(Disk Buffer),这也是网上的资料有时候会看到磁盘的IOPS值大于上述理论计算值的原因.

(2)磁盘Raid IOPS
通常我们在使用存储的时候,都是把多个磁盘建成一个Raid,那么这个由多个磁盘构成的RAID的IOPS就跟我们采用的RAID LEVEL有很大关系:
读IOPS:
无论是那种RAID LEVEL,磁盘的读取性能都是所有磁盘之和,所以可以得出下面的读取IOPS:
read IOPS = disk_IOPS/(1-disk_ buffer_read_hit_ratio)*disk_num
但是不同RAID LEVEL,磁盘的写性能则会由于不同类型的数据冗余影响实际写的数量(这也称为写惩罚,penalty):
RAID 0: 无RAID 惩罚
RAID 1: penalty of 2
RAID 10: Penalty of 2
RAID 5: Penalty of 4 
RAID 6: Penalty of 6
RAID0 write IOPS =disk_IOPS/(1-disk_buffer_write_hit_ratio)*disk_num/ penalty
假设组成RAID的单个磁盘的随机读写的IOPS为140,读写缓存命中率都为10%,组成阵列的磁盘个数为4。
这样RAID的读IOPS:
read IOPS = disk_IOPS/(1-disk_buffer_read_hit_ratio)*disk_num =140/(1-10%)*4 = 622
写入IOPS
RAID0 write IOPS =disk_IOPS/(1- disk_buffer_write_hit_ratio)*disk_num/ Penalty =140/(1-10%)*4/1 = 622
RAID1 write IOPS =disk_IOPS/(1- disk_buffer_write_hit_ratio)*disk_num/ Penalty =140/(1-10%)*4/2 = 311
RAID5 write IOPS =disk_IOPS/(1- disk_buffer_write_hit_ratio)*disk_num/ Penalty =140/(1-10%)*4/4 = 155
RAID6 write IOPS =disk_IOPS/(1- disk_buffer_write_hit_ratio)*disk_num/ Penalty =140/(1-10%)*4/6 = 103
RAID总IOPS=写入IOPS+读IOPS

(3)磁盘阵列IOPS
现代的磁盘阵列为了进一步提升性能,在其控制器上一般都会再加上缓存(SDRAM),有的还有第二级的缓存(Flash Memory),这样一来整个阵列和其中某个RIAD的IOPS就变得难以计算。
很多厂商公布的那些非常高的IOPS数据实际上是将被测存储系统配置了尽量多的小容量、高转速磁盘且每个磁盘装载数据量不多、设置为RAID-10时测出的100%顺序读(Sequential Read)IOPS的最大值。而且很多厂商在公布上述100%顺序读(Sequential Read)IOPS时还隐去了“100%顺序读”字样,笼统地称为IOPS。但多数用户实际使用的环境既有顺序读写、也有随机读写操作;传输数据块尺寸大小都有;为了有效利用存储系统的存储容量,很多用户都采用RAID-5,而且尽量使用大容量磁盘来减少磁盘数量,以少占存储系统的宝贵槽位空间。因此厂商测试环境得到的100%顺序读(Sequential Read)IOPS指标完全不能代表该存储产品在用户实际应用环境下的性能。这就是厂商公布的IOPS很高,而产品在用户实际使用环境中性能却很差的原因。
既然很难计算,而厂商提供的数据也不能信任,那我们怎么办呢?幸运的是我们还有SPC和SPC-1 IOPS™可以信任和参考。SPC的全称是Storage Performance Council(即:存储性能理事会),它的成员由几乎全部的国外存储厂商和部分大学、研究机构组成,SPC是一个非赢利的组织,其使命是定义、标准化存储系统的基准测试,并提升存储系统基准测试的知名度、扩展其影响,使之成为计算机行业最具权威性的存储性能测试结果,使计算机用户可以不受现存混乱的各种存储性能测试结果的影响。目前SPC的SPC-1基准测试主要是针对随机I/O应用环境的,SPC-2基准测试主要是针对顺序I/O应用环境的。SPC-1基准测试很好地模拟了OLTP、数据库和e-mail等真实应用环境,使SPC-1基准测试结果具有很高权威性和可比性。查询各存储厂商的SPC-1基准测试报告,可访问http://www.storageperformance.org/results 。测试报告中列明了进行测试的存储系统配置。但是要注意的是,这些测试结果我们不应该直接使用,因为测试的配置和我们时间项目中的配置肯定不同。所以其最重要的意义在于它使我们知道这种磁盘阵列在某种配置下,阵列的实测IOPS跟我们通过上述第(1)(2)中介绍的方法计算出来的总IOPS理论值之间的比例,这个比例(我称为提升因子)代表了阵列中的缓存对IO起到的提升作用。换句话说,以后我们在对阵列中RAID的IOPS理论计算中可以乘上这个比例。有些厂商也直接告诉你这个因子,比如说NETAPP就宣称采用PAM缓存卡可降低75%的读IO,WAFL写优化可降低50%的写IO等等,这里的1/(1-75)%和1/(1-50%)就可以看作提升因子,只不过可信度有多少就不知道了。

(4)桌面虚拟化场景下磁盘阵列IOPS的评估
在实际运行中每个桌面VM有不同的工作状态,一般而言每中工作状态对存储子系统都有不同的要求:
1.      工作:
•     轻量: 4-8 IOPS
•     普通: 8-15 IOPS
•     重量: 15-30 IOPS
2.      空闲: 4 IOPS
3.      登出: 12 IOPS
4.      Offline: 0 IOPS
那么在桌面虚拟化环境下,我们如何评估一个存储系统能否满足我们的使用要求呢?我认为可以从两个方面考虑:
1.      整个系统IOPS总需求与总供给:比如我们总共需要提供给研发用户5000台重量级VM,每台VM峰值IOPS需求是30,那么总需求就是150000;每个磁盘阵列提供的IOPS大约为SPC-1测试值×SPC-1测试配置的磁盘数量/实际项目中配置的磁盘数量,总IOPS供给=磁盘阵列提供的IOPS×磁盘阵列数量。这样我们就能计算出整个存储配置能否满足项目的需求。
2.      每个SR(一个LUN,一般对应存储 阵列上的由多个磁盘组成的一个RAID)的IOPS需求与供给:根据最佳实践,每个SR上放置25-30台重量级VM,按照25台计算,因此需求是25×30=750 IOPS;而对应的RAID的供给可以由(2)中的总IOPS×(3)的提升因子计算得到。这样我们就可以判断具体某一个SR的磁盘配置能否满足项目的需要。
分享到:
评论

相关推荐

    在VMWare中安装Redhat Linux虚拟机教程(傻瓜教程)

    它能使个人用台式电脑能运行虚拟机器,融合器,它是用户基于英特尔结构苹果机的桌面虚拟化产品,工作站的软件开发商和企业的资讯科技专才,能使虚拟分区的服务器,ESX服务器(一种能直接在硬件上运行的企业级的虚拟...

    OFDM、OOK、PPM、QAM 的误码率模拟【绘制不同调制方案的误码率曲线】附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    8c71b76fb2ec10cf50fc6b0308d3dcfc_9545878e2b97a84b2e089ece58da9e82.png

    8c71b76fb2ec10cf50fc6b0308d3dcfc_9545878e2b97a84b2e089ece58da9e82

    Android SO逆向-对象的拷贝构造函数.pdf

    Android逆向过程学习

    基于S7-200 PLC的糖果包装控制系统设计与实现

    内容概要:本文详细介绍了基于西门子S7-200 PLC的糖果包装控制系统的设计与实现。首先阐述了PLC在工业自动化领域的优势及其在糖果包装生产线中的重要性。接着深入探讨了系统的硬件连接方式,包括传感器、执行机构与PLC的具体接口配置。随后展示了关键的编程实现部分,如糖果计数、包装执行、送膜控制、称重判断以及热封温度控制等具体梯形图代码片段。此外,还分享了一些实用的经验技巧,如防止信号抖动、PID参数优化、故障诊断方法等。最后总结了该系统的优势,强调其对提高生产效率和产品质量的重要作用。 适合人群:从事工业自动化控制、PLC编程的技术人员,尤其是对小型PLC系统感兴趣的工程师。 使用场景及目标:适用于糖果制造企业,旨在提升包装生产线的自动化程度,确保高效稳定的生产过程,同时降低维护成本并提高产品一致性。 其他说明:文中不仅提供了详细的理论讲解和技术指导,还结合实际案例进行了经验分享,有助于读者更好地理解和掌握相关知识。

    PLC与WinCC实现三部十层电梯协同控制及优化技巧

    内容概要:本文详细介绍了参与西门子杯比赛中关于三部十层电梯系统的博图V15.1程序设计及其WinCC画面展示的内容。文中不仅展示了电梯系统的基本架构,如抢单逻辑、方向决策、状态机管理等核心算法(采用SCL语言编写),还分享了许多实际调试过程中遇到的问题及解决方案,例如未初始化变量导致的异常行为、状态机遗漏空闲状态、WinCC画面动态显示的挑战以及通信配置中的ASCII码解析错误等问题。此外,作者还特别提到一些创意性的设计,如电梯同时到达同一层时楼层显示器变为闪烁爱心的效果,以及节能模式下电梯自动停靠中间楼层的功能。 适合人群:对PLC编程、工业自动化控制、电梯调度算法感兴趣的工程技术人员,尤其是准备参加类似竞赛的学生和技术爱好者。 使用场景及目标:适用于希望深入了解PLC编程实践、掌握电梯群控系统的设计思路和技术要点的人士。通过学习本文可以更好地理解如何利用PLC进行复杂的机电一体化项目的开发,提高解决实际问题的能力。 其他说明:文章风格幽默诙谐,将严肃的技术话题融入轻松的生活化比喻之中,使得原本枯燥的专业知识变得生动有趣。同时,文中提供的经验教训对于从事相关领域的工作者来说非常宝贵,能够帮助他们少走弯路并激发更多创新思维。

    慧荣量产工具合集.zip

    慧荣量产工具合集.zip

    永磁同步电机FOC控制与SVPWM算法仿真模型解析

    内容概要:本文详细介绍了永磁同步电机(PMSM)的FOC(磁场定向控制)和SVPWM(空间矢量脉宽调制)算法的仿真模型。首先解释了FOC的基本原理及其核心的坐标变换(Clark变换和Park变换),并给出了相应的Python代码实现。接下来探讨了SVPWM算法的工作机制,包括扇区判断和占空比计算的方法。此外,文章还讨论了电机的PI双闭环控制结构,即速度环和电流环的设计与实现。文中不仅提供了详细的理论背景,还分享了一些实用的编程技巧和注意事项,帮助读者更好地理解和应用这些算法。 适合人群:电气工程专业学生、从事电机控制系统开发的技术人员以及对永磁同步电机控制感兴趣的科研人员。 使用场景及目标:① 学习和掌握永磁同步电机的FOC控制和SVPWM算法的具体实现;② 提供丰富的代码示例和实践经验,便于快速搭建和调试仿真模型;③ 探讨不同参数设置对电机性能的影响,提高系统的稳定性和效率。 其他说明:文章强调了在实际应用中需要注意的一些细节问题,如坐标变换中的系数选择、SVPWM算法中的扇区判断优化以及PI控制器的参数调整等。同时,鼓励读者通过动手实验来加深对各个模块的理解。

    spring-ai-qianfan-1.0.0-M5.jar中文文档.zip

    # 压缩文件中包含: 中文文档 jar包下载地址 Maven依赖 Gradle依赖 源代码下载地址 # 本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件;

    Android安全之旅系列博客导读.pdf

    Android逆向过程学习

    【图像处理】基于双目视觉的物体体积测量算法研究附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    3dmax插件按面积分离.ms

    3dmax插件

    spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar中文文档.zip

    # 【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar中文文档.zip】 中包含: 中文文档:【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar中文文档.zip,java,spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar,org.springframework.ai,spring-ai-autoconfigure-vector-store-qdrant,1.0.0-M7,org.springframework.ai.vectorstore.qdr

    【ARIMA-WOA-LSTM】差分自回归移动平均方法-鲸鱼优化算法-LSTM预测研究附python代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    永磁同步电机控制系统中平方根容积卡尔曼滤波(SRCKF)的应用及优化

    内容概要:本文详细介绍了平方根容积卡尔曼滤波(SRCKF)在永磁同步电机(PMSM)控制系统中的应用及其相对于传统CKF的优势。文章首先指出传统CKF在处理协方差矩阵时存在的数值不稳定性和非正定问题,导致系统性能下降。接着,作者通过引入SRCKF,利用Cholesky分解和QR分解来确保协方差矩阵的正定性,从而提高状态估计的精度和稳定性。文中展示了具体的电机模型和状态方程,并提供了详细的代码实现,包括状态预测、容积点生成以及观测更新等关键步骤。此外,文章还分享了实际调试过程中遇到的问题及解决方案,如选择合适的矩阵分解库和处理电机参数敏感性。最终,通过实验数据对比,证明了SRCKF在突加负载情况下的优越表现。 适合人群:从事永磁同步电机控制研究的技术人员、研究生及以上学历的研究者。 使用场景及目标:适用于需要高精度状态估计的永磁同步电机控制系统的设计与优化,特别是在处理非线性问题和提高数值稳定性方面。 其他说明:文章引用了相关领域的权威文献,如Arasaratnam的TAC论文和Zhong的《PMSM无传感器控制综述》,并强调了实际工程实践中代码调试的重要性。

    tokenizers-0.31.1.jar中文文档.zip

    # 【tokenizers-***.jar***文档.zip】 中包含: ***文档:【tokenizers-***-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【tokenizers-***.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【tokenizers-***.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【tokenizers-***.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【tokenizers-***-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: tokenizers-***.jar***文档.zip,java,tokenizers-***.jar,ai.djl.huggingface,tokenizers,***,ai.djl.engine.rust,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,djl,huggingface,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【tokenizers-***.jar***文档.zip】,再解压其中的 【tokenizers-***-javadoc-API文档-中文(简体)版.zip】,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件; # Maven依赖: ``` <dependency> <groupId>ai.djl.huggingface</groupId> <artifactId>tokenizers</artifactId> <version>***</version> </dependency> ``` # Gradle依赖: ``` Gradle: implementation group: 'ai.djl.huggingface', name: 'tokenizers', version: '***' Gradle (Short): implementation 'ai.djl.huggingface:tokenizers:***' Gradle (Kotlin): implementation("ai.djl.huggingface:tokenizers:***") ``` # 含有的 Java package(包): ``` ai.djl.engine.rust ai.djl.engine.rust.zoo ai.djl.huggingface.tokenizers ai.djl.huggingface.tokenizers.jni ai.djl.huggingface.translator ai.djl.huggingface.zoo ``` # 含有的 Java class(类): ``` ai.djl.engine.rust.RsEngine ai.djl.engine.rust.RsEngineProvider ai.djl.engine.rust.RsModel ai.djl.engine.rust.RsNDArray ai.djl.engine.rust.RsNDArrayEx ai.djl.engine.rust.RsNDArrayIndexer ai.djl.engine.rust.RsNDManager ai.djl.engine.rust.RsSymbolBlock ai.djl.engine.rust.RustLibrary ai.djl.engine.rust.zoo.RsModelZoo ai.djl.engine.rust.zoo.RsZooProvider ai.djl.huggingface.tokenizers.Encoding ai.djl.huggingface.tokenizers.HuggingFaceTokenizer ai.djl.huggingface.tokenizers.HuggingFaceTokenizer.Builder ai.djl.hu

    3.png

    3

    pchook源码纯源码不是dll

    pchook源码纯源码不是dll

    spring-ai-azure-store-1.0.0-M7.jar中文-英文对照文档.zip

    # 【spring-ai-azure-store-1.0.0-M7.jar中文-英文对照文档.zip】 中包含: 中文-英文对照文档:【spring-ai-azure-store-1.0.0-M7-javadoc-API文档-中文(简体)-英语-对照版.zip】 jar包下载地址:【spring-ai-azure-store-1.0.0-M7.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【spring-ai-azure-store-1.0.0-M7.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【spring-ai-azure-store-1.0.0-M7.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【spring-ai-azure-store-1.0.0-M7-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: spring-ai-azure-store-1.0.0-M7.jar中文-英文对照文档.zip,java,spring-ai-azure-store-1.0.0-M7.jar,org.springframework.ai,spring-ai-azure-store,1.0.0-M7,org.springframework.ai.vectorstore.azure,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,springframework,spring,ai,azure,store,中文-英文对照API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【spring-ai-azure-store-1.0.0-M7.jar中文-英文对照文档.zip】,再解

    ### XD/XL系列可编程控制器用户手册硬件篇总结. **手册概述

    内容概要:本文档是关于信捷电气XD、XL系列可编程序控制器的用户手册(硬件篇)。手册详细介绍了该系列PLC的硬件特性,包括产品概述、本体规格参数、系统构成、电源及输入输出规格、运行调试与维护、软元件切换等内容。此外,还提供了丰富的附录信息,如特殊软元件地址及功能、指令一览表、PLC功能配置表和常见问题解答。手册强调了安全操作的重要性,列出了多个安全注意事项,确保用户在正确环境下安装和使用设备,避免潜在风险。 适合人群:具备一定电气知识的专业人士,尤其是从事自动化控制系统设计、安装、调试及维护的技术人员。 使用场景及目标:①帮助用户了解XD、XL系列PLC的硬件特性和规格参数;②指导用户正确安装、接线、调试和维护设备;③提供详细的故障排查指南和技术支持信息,确保设备稳定运行;④为用户提供编程和指令使用的参考资料。 其他说明:手册不仅涵盖了硬件方面的内容,还涉及到了一些基础的软件编程概念,但更深入的编程指导请参考相关软件篇手册。用户在使用过程中遇到问题可以通过提供的联系方式获得技术支持。手册中的内容会定期更新,以适应产品改进和技术发展的需求。

Global site tag (gtag.js) - Google Analytics