- 浏览: 2062605 次
- 性别:
- 来自: 北京
-
文章分类
- 全部博客 (795)
- java (263)
- 聚类搜索引擎 (9)
- 经验之谈 (67)
- DSP (3)
- C++ (140)
- Linux (37)
- SNMP (6)
- Python (6)
- 数据库 (61)
- 网络 (20)
- 算法 (15)
- 设计模式 (4)
- 笔试题 (38)
- 散文 (35)
- 数据结构 (9)
- 银行知识 (0)
- 榜样 (9)
- Lucene (15)
- Heritrix (6)
- MetaSeeker (0)
- netbeans (12)
- php (3)
- 英语 (8)
- DB2 (0)
- java基础 (5)
- mongodb & hadoop (4)
- Javascript (7)
- Spring (4)
- ibatis & myibatis (1)
- velocity (1)
- 微服务 (0)
- paddle (1)
- 第三方 (0)
- 知识沉淀 (1)
- 建模 (0)
最新评论
-
0372:
标示对java很陌生!
中文乱码解决的4种方式 -
梦留心痕:
Java中\是转意字符, 可是你的这句话我没看懂,只要把得到的 ...
java中如何忽略字符串中的转义字符--转载 -
yanjianpengit:
[b][/b]
java为什么非静态内部类里面不能有静态成员 -
springdata-jpa:
可以参考最新的文档:如何在eclipse jee中检出项目并转 ...
eclipse 如何把java项目转成web项目 -
qq1130127172:
,非常好。
(转)SpringMVC 基于注解的Controller @RequestMapping @RequestParam..
pagerank
PageRank(网页级别),取自Google的创始人LarryPage。它是Google排名运算法则(排名公式)的一部分,是Google用于用来标识网页的等级/重要性的一种方法,是Google用来衡量一个网站的好坏的唯一标准。在揉合了诸如Title标识和Keywords标识等所有其它因素之后,Google通过PageRank来调整结果,使那些更具“等级/重要性”的网页在搜索结果中另网站排名获得提升,从而提高搜索结果的相关性和质量。
级别从1到10级,10级为满分。PR值越高说明该网页越受欢迎(越重要)。例如:一个PR值为1的网站表明这个网站不太具有流行度,而PR值为7到10则表明这个网站非常受欢迎(或者说极其重要)。一般PR值达到4,就算是一个不错的网站了。Google把自己的网站的PR值定到10,这说明Google这个网站是非常受欢迎的,也可以说这个网站非常重要。
PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。
Google的PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票,被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。
Google有一套自动化方法来计算这些投票。Google的PageRank分值从0到10;PageRank为10表示最佳,但非常少见,类似里氏震级(Richter scale),PageRank级别也不是线性的,而是按照一种指数刻度。这是一种奇特的数学术语,意思是PageRank4不是比PageRank3好一级——而可能会好6到7倍。因此,一个PageRank5的网页和PageRank8的网页之间的差距会比你可能认为的要大的多。
PageRank较高的页面的排名往往要比PageRank较低的页面高,而这导致了人们对链接的着魔。在整个SEO社区,人们忙于争夺、交换甚至销售链接,它是过去几年来人们关注的焦点,以至于Google修改了他的系统,并开始放弃某些类型的链接。比如,被人们广泛接受的一条规定,来自缺乏内容的“link farm”(链接工厂)网站的链接将不会提供页面的PageRank,从PageRank较高的页面得到链接但是内容不相关(比如说某个流行的漫画书网站链接到一个叉车规范页面),也不会提供页面的PageRank。Google选择降低了PageRank对更新频率,以便不鼓励人们不断的对其进行监测。
Google PageRank一般一年更新四次,所以刚上线的新网站不可能获得PR值。你的网站很可能在相当长的时间里面看不到PR值的变化,特别是一些新的网站。PR值暂时没有,这不是什么不好的事情,耐心等待就好了。
为您的网站获取外部链接是一件好事,但是无视其他SEO领域的工作而进行急迫的链接建设就是浪费时间,要时刻保持一个整体思路并记住以下几点:
·Google的排名算法并不是完全基于外部链接的
·高PageRank并不能保证Google高排名
·PageRank值更新的比较慢,今天看到的PageRank值可能是三个月前的值
因此我们不鼓励刻意的去追求PageRank,因为决定排名的因素可以有上百种。尽管如此,PageRank还是一个用来了解Google对您的网站页面如何评价的相当好的指示,建议网站设计者要充分认识PageRank在Google判断网站质量中的重要作用,从设计前的考虑到后期网站更新都要给予PageRank足够的分析,很好的利用。我们要将PageRank看作是一种业余爱好而不是一种信仰。
---------------------------------------------------------------------------------------------------------------------
通过对由超过 50,000 万个变量和 20 亿个词汇组成的方程进行计算,PageRank 能够对网页的重要性做出客观的评价。PageRank 并不计算直接链接的数量,而是将从网页 A 指向网页 B 的链接解释为由网页 A 对网页 B 所投的一票。这样,PageRank 会根据网页 B 所收到的投票数量来评估该页的重要性。
此外,PageRank 还会评估每个投票网页的重要性,因为某些网页的投票被认为具有较高的价值,这样,它所链接的网页就能获得较高的价值。重要网页获得的 PageRank(网页排名)较高,从而显示在搜索结果的顶部。Google 技术使用网上反馈的综合信息来确定某个网页的重要性。搜索结果没有人工干预或操纵,这也是为什么 Google 会成为一个广受用户信赖、不受付费排名影响且公正客观的信息来源。
---------------
其实简单说就是民主表决。打个比方,假如我们要找李开复博士,有一百个人举手说自己是李开复。那么谁是真的呢?也许有好几个真的,但即使如此谁又是大家真正想找的呢?:-) 如果大家都说在 Google 公司的那个是真的,那么他就是真的。
在互联网上,如果一个网页被很多其它网页所链接,说明它受到普遍的承认和信赖,那么它的排名就高。这就是 Page Rank 的核心思想。 当然 Google 的 Page Rank 算法实际上要复杂得多。比如说,对来自不同网页的链接对待不同,本身网页排名高的链接更可靠,于是给这些链接予较大的权重。Page Rank 考虑了这个因素,可是现在问题又来了,计算搜索结果的网页排名过程中需要用到网页本身的排名,这不成了先有鸡还是先有蛋的问题了吗?
Google 的两个创始人拉里·佩奇 (Larry Page )和谢尔盖·布林 (Sergey Brin) 把这个问题变成了一个二维矩阵相乘的问题,并且用迭代的方法解决了这个问题。他们先假定所有网页的排名是相同的,并且根据这个初始值,算出各个网页的第一次迭代排名,然后再根据第一次迭代排名算出第二次的排名。他们两人从理论上证明了不论初始值如何选取,这种算法都保证了网页排名的估计值能收敛到他们的真实值。值得一提的事,这种算法是完全没有任何人工干预的。
理论问题解决了,又遇到实际问题。因为互联网上网页的数量是巨大的,上面提到的二维矩阵从理论上讲有网页数目平方之多个元素。如果我们假定有十亿个网页,那么这个矩阵 就有一百亿亿个元素。这样大的矩阵相乘,计算量是非常大的。拉里和谢尔盖两人利用稀疏矩阵计算的技巧,大大的简化了计算量,并实现了这个网页排名算法。今天 Google 的工程师把这个算法移植到并行的计算机中,进一步缩短了计算时间,使网页更新的周期比以前短了许多。
我来 Google 后,拉里 (Larry) 在和我们几个新员工座谈时,讲起他当年和谢尔盖(Sergey) 是怎么想到网页排名算法的。他说:"当时我们觉得整个互联网就像一张大的图 (Graph),每个网站就像一个节点,而每个网页的链接就像一个弧。我想,互联网可以用一个图或者矩阵描述,我也许可以用这个发现做个博士论文。" 他和谢尔盖就这样发明了 Page Rank 的算法。
网页排名的高明之处在于它把整个互联网当作了一个整体对待。它无意识中符合了系统论的观点。相比之下,以前的信息检索大多把每一个网页当作独立的个体对待,很多人当初只注意了网页内容和查询语句的相关性,忽略了网页之间的关系。
今天,Google 搜索引擎比最初复杂、完善了许多。但是网页排名在 Google 所有算法中依然是至关重要的。在学术界, 这个算法被公认为是文献检索中最大的贡献之一,并且被很多大学引入了信息检索课程 (Information Retrieval) 的教程。
如何提高你网页的 PR 值?
什么是PR值呢? PR值全称为PageRank,PR是英文Pagerank 的缩写形式,Pagerank取自Google的创始人LarryPage,它是Google排名运算法则(排名公式)的一部分,Pagerank是Google对网页重要性的评估,是Google用来衡量一个网站的好坏的唯一标准。PageRank(网页级别)是Google用于评测一个网页“重要性”的一种方法。在揉合了诸如Title标识和Keywords标识等所有其它因素之后,Google通过PageRank来调整结果,使那些更具“重要性”的网页在搜索结果中另网站排名获得提升,从而提高搜索结果的相关性和质量。 PR值的级别从1到10级,10级为满分。PR值越高说明该网页越受欢迎。Google把自己的网站的PR值定到10,这说明Google这个网站是非常受欢迎的,也可以说这个网站非常重要。Google大受青睐的另一个原因就是它的网站索引速度。向Google提交你的网站直到为Google收录,一般只需两个星期。如果你的网站已经为Google收录,那么通常Google会每月一次遍历和更新(重新索引)你的网站信息。不过对于那些PR值(Pagerank)较高的网站,Google索引周期会相应的短一些。一个PR值为1的网站表明这个网站不太具有流行度,而PR值为7到10则表明这个网站非常受欢迎。PR值最高为10,一般PR值达到4,就算是一个不错的网站了。那么PR值都受那些因素影响呢?下面我们一起来看看。
第一:网站外部链接的数量和质量
在计算网站排名时,Pagerank会将网站的外部链接数考虑进去。并不能说一个网站的外部链接数越多其PR值就越高,如果这样的话,一个网站尽可能获得最多的外部链接就OK了,有这种想法是错误的。Google对一个网站上的外部链接数的重视程度并不意味着你因此可以不求策略地与任何网站建立连接。这是因为Google并不是简单地由计算网站的外部链接数来决定其等级。Google的Pagerank系统不单考虑一个网站的外部链接质量,也会考虑其数量。这个问题看来很有复杂。首先让我们来解释一下什么是阻尼因数(damping factor)。阻尼因素就是当你投票或链接到另外一个站点时所获得的实际PR分值。阻尼因数一般是0.85。当然比起你网站的实际PR值,它就显得微不足道了。
现在让我们来看看这个PR分值的计算公式:PR(A)=(1-d)+d(PR(t1)/C(t1)+...+PR(tn)/C(tn)) 公式解释:其中PR(A)表示的是从一个外部链接站点t1上,依据Pagerank?系统给你的网站所增加的PR分值;PR(t1)表示该外部链接网站本身的PR分值;C(t1)则表示该外部链接站点所拥有的外部链接数量。大家要谨记:一个网站的投票权值只有该网站PR分值的0.85,
那么,是不是说对一个网站而言,它所拥有的较高网站质量和较高PR分值的外部链接数量越多就越好呢?错,因为-Google的Pagerank系统不单考虑一个网站的外部链接质量,也会考虑其数量.比方说,对一个有一定PR值的网站X来说,如果你的网站Y是它的唯一一个外部链接,那么Google就相信网站X将你的网站Y视做它最好的一个外部链接,从而会给你的网站Y更多的分值。可是,如果网站X上已经有49个外部链接,那么Google就相信网站X只是将你的网站视做它第50个好的网站。因而你的外部链接站点上的外部链接数越多,你所能够得到的PR分值反而会越低,它们呈反比关系。
说它对是因为-一般情况下,一个PR分值大于等于6的外部链接站点,可显著提升你的PR分值。但如果这个外部链接站点已经有100个其它的外部链接时,那你能够得到的PR分值就几乎为零了。同样,如果一个外部链接站点的PR值仅为2,但你却是它的唯一一个外部链接,那么你所获得的PR值要远远大于那个PR值为6,外部链接数为100的网站。
而且这个0.85的权值平均分配给其链接的每个外部网站。
第二:Google在你的网站抓取的页面数
Google在你的网站抓取的页面数,数目越多,Pagerank值越高。但通常Google并不会主动抓取你的网站的所有页面,尤其是网址里带有“?”的动态链接,Google不主动,那就要我们主动了,最笨的办法是把网站所有的页面都提交给Google,但我想没有谁真会这么做,但页面不多的话可以试试。更好的办法是制作一个静态Html页面,通常被称作“网站地图”或“网站导航”,它里面包含你要添加的所有网址,然后把这个静态页面提交给Google。
第三:网站被世界三大知名网站 DMOZ,Yahoo和Looksmart 收录
众所周知,Google的Pagerank系统对那些门户网络目录如DMOZ,Yahoo和Looksmart尤为器重。特别是对DMOZ。一个网站上的DMOZ链接对Google的Pagerank?来说,就好像一块金子一样珍贵。如果你的网站为ODP收录,则可有效提升你的页面等级。向ODP提交你的站点并为它收录,其实并不是一件难事,只是要多花点时间而已。只要确保你的网站提供了良好的内容,然后在ODP合适的目录下点击"增加站点",按照提示一步步来就OK了。至少要保证你的索引页(INDEX PAGE)被收录进去。所以,如果你的网站内容涉及完全不同的几块内容,你可以把每个内容的网页分别向ODP提交-不过请记住"欲速则不达"。等到Google对其目录更新后,你就能看到你的PR值会有什么变化了。如果你的网站为Yahoo和Looksmart所收录,那么你的PR值会得到显著提升。如果你的网站是非商业性质的或几乎完全是非商业性质的内容,那么你可以通过zeall.com使你的网站为著名的网络目录Looksmart所收录。Looksmart也是从Zeal网络目录获得非商业搜索列表。
Google PR值的更新周期是多长时间?
一般情况下PR值更新的周期是2.5~3个月!
PageRank相关算法总结:
1.PageRank
基本思想:如果网页T存在一个指向网页A的连接,则表明T的所有者认为A比较重要,从而把T的一部分重要性得分赋予A。这个重要性得分值为:PR(T)/C(T)
其中PR(T)为T的PageRank值,C(T)为T的出链数,则A的PageRank值为一系列类似于T的页面重要性得分值的累加。
优点:是一个与查询无关的静态算法,所有网页的PageRank值通过离线计算获得;有效减少在线查询时的计算量,极大降低了查询响应时间。
不足:人们的查询具有主题特征,PageRank忽略了主题相关性,导致结果的相关性和主题性降低;另外,PageRank有很严重的对新网页的歧视。
2.Topic-Sensitive PageRank(主题敏感的PageRank)
基本思想:针对PageRank对主题的忽略而提出。核心思想:通过离线计算出一个PageRank向量集合,该集合中的每一个向量与某一主题相关,即计算某个页面关于不同主题的得分。主要分为两个阶段:主题相关的PageRank向量集合的计算和在线查询时主题的确定。
优点:根据用户的查询请求和相关上下文判断用户查询相关的主题(用户的兴趣)返回查询结果准确性高。
不足:没有利用主题的相关性来提高链接得分的准确性。
3.Hilltop
基本思想:与PageRank的不同之处:仅考虑专家页面的链接。主要包括两个步骤:专家页面搜索和目标页面排序。
优点:相关性强,结果准确。
不足:专家页面的搜索和确定对算法起关键作用,专家页面的质量决定了算法的准确性,而专家页面的质量和公平性难以保证;忽略了大量非专家页面的影响,不能反应整个Internet的民意;当没有足够的专家页面存在时,返回空,所以Hilltop适合对于查询排序进行求精。
那么影响google PageRank的因素有哪些呢?
1 与pr高的网站做链接:
2 内容质量高的网站链接
3加入搜索引擎分类目录
4 加入免费开源目录
5 你的链接出现在流量大、知名度高、频繁更新的重要网站上
6google对DPF格式的文件比较看重。
7安装Google工具条
8域名和tilte标题出现关键词与meta标签等
9反向连接数量和反向连接的等级
10Google抓取您网站的页面数量
11导出链接数量
PageRank科学排名遏止关键字垃圾
目前,五花八门的网站为争夺网上排名采用恶意点击和输入关键字垃圾的手段来吸引网民的眼球,无论对于互联网企业还是互联网用户,这都不是一个好现象。
为了解决这样的问题,Google 创始人之一拉里.佩奇(Larry Page)发明了一种算法PageRank,是由搜索引擎根据网页之间相互的超链接进行计算的网页排名。它经常和搜索引擎优化有关。PageRank 系统目前被Google 用来体现网页的相关性和重要性,以便科学排名,遏止关键字垃圾。
PageRank这个概念引自一篇学术论文的被媒体转载的频度,一般被转载的次数越多,这篇论文的权威性就越高,价值也就越高。PageRank是1998年在斯坦福大学问世的,2001
年9 月被授予美国专利。如今它在 Google 所有算法中依然是至关重要的。在学术界, 这个算法被公认为是文献检索中最大的贡献之一,并且被很多大学引入了信息检索课程(Information Retrieval) 的教程。
PageRank 通过对由超过 5 亿个变量和 20 亿个词汇组成的方程进行计算,能科学公正地标识网页的等级或重要性。PR级别为1到10,PR值越高说明该网页越重要。例如:一个PR 值为1 的网站表明这个网站不太具有流行度,而PR 值为7到10则表明这个网站极其重要。PageRank级别不是一般的算术级数,而是按照一种几何级数来划分的。PageRank3 不是比PageRank2 好一级,而可能会好到数倍。
PageRank根据网站的外部链接和内部链接的数量和质量来衡量网站的价值。PageRank的概念是,每个到页面的链接都是对该页面的一次投票,被链接得越多,就意味着被其他网站投票越多。Google 有一套自动化方法来计算这些投票,但Google 的排名算法不完全基于外部链接。PageRank 对来自不同网页的链接会区别对待,来自网页本身排名高的链接更受青睐,给这些链接有较大的权重。
同时,Google 不只是看一个网站的投票数量,或者这个网站的外部链接数量。它会对那些投票的网站进行分析。如果这些网站的PR 值比较高,则其投票的网站可从中受益。因此,Google 的技术专家提醒人们,在建设网站的外部链接时,应尽可能瞄准那些PR 值高且外部链接数又少的网站。这样的外部链接站点越多,你的PR 值就会越高,从而使得你的Google 排名得到显著提升。
PageRank的另一作用是对关键字垃圾起到巨大的遏制作用。眼下,一些垃圾网站为了提高点击率,用一些与站点内容无关的关键字垃圾壮声威,比如用明星的名字、用公共突
发事件称谓等。这些网页的目的或是为了骗取广告点击,或是为了传播病毒。还有一些无赖式的博客评论也从中搅局,在网上招摇过市,骗取网民的注意力,这也被网络技术人员
视为垃圾。
PageRank目前使用一种基于信任和名誉的算法帮助遏止关键字垃圾,它忽视这些关键字垃圾的存在,以网页相互链接评级别论高低。Google 排名之所以大受追捧,是由于它并非
只使用关键字或代理搜索技术, 而是将自身建立在高级的网页级别技术基础之上。 别的搜索引擎提供给搜索者的是多种渠道值为 8 的网站信息得来的一个粗略的搜索结果,而Google 提供给它的搜索者的则是它自己产生的高度精确的搜索结果。这就是为什么网站管理员会千方百计去提高自己网站在Google 的排名了。
PageRank一般一年更新四次,所以刚上线的新网站不可能获得PR 值。不过PR 值暂时没有,并不是什么不好的事情,耐心等待就能得到Google 的青睐
PageRank(网页级别),取自Google的创始人LarryPage。它是Google排名运算法则(排名公式)的一部分,是Google用于用来标识网页的等级/重要性的一种方法,是Google用来衡量一个网站的好坏的唯一标准。在揉合了诸如Title标识和Keywords标识等所有其它因素之后,Google通过PageRank来调整结果,使那些更具“等级/重要性”的网页在搜索结果中另网站排名获得提升,从而提高搜索结果的相关性和质量。
级别从1到10级,10级为满分。PR值越高说明该网页越受欢迎(越重要)。例如:一个PR值为1的网站表明这个网站不太具有流行度,而PR值为7到10则表明这个网站非常受欢迎(或者说极其重要)。一般PR值达到4,就算是一个不错的网站了。Google把自己的网站的PR值定到10,这说明Google这个网站是非常受欢迎的,也可以说这个网站非常重要。
PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。
Google的PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票,被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。
Google有一套自动化方法来计算这些投票。Google的PageRank分值从0到10;PageRank为10表示最佳,但非常少见,类似里氏震级(Richter scale),PageRank级别也不是线性的,而是按照一种指数刻度。这是一种奇特的数学术语,意思是PageRank4不是比PageRank3好一级——而可能会好6到7倍。因此,一个PageRank5的网页和PageRank8的网页之间的差距会比你可能认为的要大的多。
PageRank较高的页面的排名往往要比PageRank较低的页面高,而这导致了人们对链接的着魔。在整个SEO社区,人们忙于争夺、交换甚至销售链接,它是过去几年来人们关注的焦点,以至于Google修改了他的系统,并开始放弃某些类型的链接。比如,被人们广泛接受的一条规定,来自缺乏内容的“link farm”(链接工厂)网站的链接将不会提供页面的PageRank,从PageRank较高的页面得到链接但是内容不相关(比如说某个流行的漫画书网站链接到一个叉车规范页面),也不会提供页面的PageRank。Google选择降低了PageRank对更新频率,以便不鼓励人们不断的对其进行监测。
Google PageRank一般一年更新四次,所以刚上线的新网站不可能获得PR值。你的网站很可能在相当长的时间里面看不到PR值的变化,特别是一些新的网站。PR值暂时没有,这不是什么不好的事情,耐心等待就好了。
为您的网站获取外部链接是一件好事,但是无视其他SEO领域的工作而进行急迫的链接建设就是浪费时间,要时刻保持一个整体思路并记住以下几点:
·Google的排名算法并不是完全基于外部链接的
·高PageRank并不能保证Google高排名
·PageRank值更新的比较慢,今天看到的PageRank值可能是三个月前的值
因此我们不鼓励刻意的去追求PageRank,因为决定排名的因素可以有上百种。尽管如此,PageRank还是一个用来了解Google对您的网站页面如何评价的相当好的指示,建议网站设计者要充分认识PageRank在Google判断网站质量中的重要作用,从设计前的考虑到后期网站更新都要给予PageRank足够的分析,很好的利用。我们要将PageRank看作是一种业余爱好而不是一种信仰。
---------------------------------------------------------------------------------------------------------------------
通过对由超过 50,000 万个变量和 20 亿个词汇组成的方程进行计算,PageRank 能够对网页的重要性做出客观的评价。PageRank 并不计算直接链接的数量,而是将从网页 A 指向网页 B 的链接解释为由网页 A 对网页 B 所投的一票。这样,PageRank 会根据网页 B 所收到的投票数量来评估该页的重要性。
此外,PageRank 还会评估每个投票网页的重要性,因为某些网页的投票被认为具有较高的价值,这样,它所链接的网页就能获得较高的价值。重要网页获得的 PageRank(网页排名)较高,从而显示在搜索结果的顶部。Google 技术使用网上反馈的综合信息来确定某个网页的重要性。搜索结果没有人工干预或操纵,这也是为什么 Google 会成为一个广受用户信赖、不受付费排名影响且公正客观的信息来源。
---------------
其实简单说就是民主表决。打个比方,假如我们要找李开复博士,有一百个人举手说自己是李开复。那么谁是真的呢?也许有好几个真的,但即使如此谁又是大家真正想找的呢?:-) 如果大家都说在 Google 公司的那个是真的,那么他就是真的。
在互联网上,如果一个网页被很多其它网页所链接,说明它受到普遍的承认和信赖,那么它的排名就高。这就是 Page Rank 的核心思想。 当然 Google 的 Page Rank 算法实际上要复杂得多。比如说,对来自不同网页的链接对待不同,本身网页排名高的链接更可靠,于是给这些链接予较大的权重。Page Rank 考虑了这个因素,可是现在问题又来了,计算搜索结果的网页排名过程中需要用到网页本身的排名,这不成了先有鸡还是先有蛋的问题了吗?
Google 的两个创始人拉里·佩奇 (Larry Page )和谢尔盖·布林 (Sergey Brin) 把这个问题变成了一个二维矩阵相乘的问题,并且用迭代的方法解决了这个问题。他们先假定所有网页的排名是相同的,并且根据这个初始值,算出各个网页的第一次迭代排名,然后再根据第一次迭代排名算出第二次的排名。他们两人从理论上证明了不论初始值如何选取,这种算法都保证了网页排名的估计值能收敛到他们的真实值。值得一提的事,这种算法是完全没有任何人工干预的。
理论问题解决了,又遇到实际问题。因为互联网上网页的数量是巨大的,上面提到的二维矩阵从理论上讲有网页数目平方之多个元素。如果我们假定有十亿个网页,那么这个矩阵 就有一百亿亿个元素。这样大的矩阵相乘,计算量是非常大的。拉里和谢尔盖两人利用稀疏矩阵计算的技巧,大大的简化了计算量,并实现了这个网页排名算法。今天 Google 的工程师把这个算法移植到并行的计算机中,进一步缩短了计算时间,使网页更新的周期比以前短了许多。
我来 Google 后,拉里 (Larry) 在和我们几个新员工座谈时,讲起他当年和谢尔盖(Sergey) 是怎么想到网页排名算法的。他说:"当时我们觉得整个互联网就像一张大的图 (Graph),每个网站就像一个节点,而每个网页的链接就像一个弧。我想,互联网可以用一个图或者矩阵描述,我也许可以用这个发现做个博士论文。" 他和谢尔盖就这样发明了 Page Rank 的算法。
网页排名的高明之处在于它把整个互联网当作了一个整体对待。它无意识中符合了系统论的观点。相比之下,以前的信息检索大多把每一个网页当作独立的个体对待,很多人当初只注意了网页内容和查询语句的相关性,忽略了网页之间的关系。
今天,Google 搜索引擎比最初复杂、完善了许多。但是网页排名在 Google 所有算法中依然是至关重要的。在学术界, 这个算法被公认为是文献检索中最大的贡献之一,并且被很多大学引入了信息检索课程 (Information Retrieval) 的教程。
如何提高你网页的 PR 值?
什么是PR值呢? PR值全称为PageRank,PR是英文Pagerank 的缩写形式,Pagerank取自Google的创始人LarryPage,它是Google排名运算法则(排名公式)的一部分,Pagerank是Google对网页重要性的评估,是Google用来衡量一个网站的好坏的唯一标准。PageRank(网页级别)是Google用于评测一个网页“重要性”的一种方法。在揉合了诸如Title标识和Keywords标识等所有其它因素之后,Google通过PageRank来调整结果,使那些更具“重要性”的网页在搜索结果中另网站排名获得提升,从而提高搜索结果的相关性和质量。 PR值的级别从1到10级,10级为满分。PR值越高说明该网页越受欢迎。Google把自己的网站的PR值定到10,这说明Google这个网站是非常受欢迎的,也可以说这个网站非常重要。Google大受青睐的另一个原因就是它的网站索引速度。向Google提交你的网站直到为Google收录,一般只需两个星期。如果你的网站已经为Google收录,那么通常Google会每月一次遍历和更新(重新索引)你的网站信息。不过对于那些PR值(Pagerank)较高的网站,Google索引周期会相应的短一些。一个PR值为1的网站表明这个网站不太具有流行度,而PR值为7到10则表明这个网站非常受欢迎。PR值最高为10,一般PR值达到4,就算是一个不错的网站了。那么PR值都受那些因素影响呢?下面我们一起来看看。
第一:网站外部链接的数量和质量
在计算网站排名时,Pagerank会将网站的外部链接数考虑进去。并不能说一个网站的外部链接数越多其PR值就越高,如果这样的话,一个网站尽可能获得最多的外部链接就OK了,有这种想法是错误的。Google对一个网站上的外部链接数的重视程度并不意味着你因此可以不求策略地与任何网站建立连接。这是因为Google并不是简单地由计算网站的外部链接数来决定其等级。Google的Pagerank系统不单考虑一个网站的外部链接质量,也会考虑其数量。这个问题看来很有复杂。首先让我们来解释一下什么是阻尼因数(damping factor)。阻尼因素就是当你投票或链接到另外一个站点时所获得的实际PR分值。阻尼因数一般是0.85。当然比起你网站的实际PR值,它就显得微不足道了。
现在让我们来看看这个PR分值的计算公式:PR(A)=(1-d)+d(PR(t1)/C(t1)+...+PR(tn)/C(tn)) 公式解释:其中PR(A)表示的是从一个外部链接站点t1上,依据Pagerank?系统给你的网站所增加的PR分值;PR(t1)表示该外部链接网站本身的PR分值;C(t1)则表示该外部链接站点所拥有的外部链接数量。大家要谨记:一个网站的投票权值只有该网站PR分值的0.85,
那么,是不是说对一个网站而言,它所拥有的较高网站质量和较高PR分值的外部链接数量越多就越好呢?错,因为-Google的Pagerank系统不单考虑一个网站的外部链接质量,也会考虑其数量.比方说,对一个有一定PR值的网站X来说,如果你的网站Y是它的唯一一个外部链接,那么Google就相信网站X将你的网站Y视做它最好的一个外部链接,从而会给你的网站Y更多的分值。可是,如果网站X上已经有49个外部链接,那么Google就相信网站X只是将你的网站视做它第50个好的网站。因而你的外部链接站点上的外部链接数越多,你所能够得到的PR分值反而会越低,它们呈反比关系。
说它对是因为-一般情况下,一个PR分值大于等于6的外部链接站点,可显著提升你的PR分值。但如果这个外部链接站点已经有100个其它的外部链接时,那你能够得到的PR分值就几乎为零了。同样,如果一个外部链接站点的PR值仅为2,但你却是它的唯一一个外部链接,那么你所获得的PR值要远远大于那个PR值为6,外部链接数为100的网站。
而且这个0.85的权值平均分配给其链接的每个外部网站。
第二:Google在你的网站抓取的页面数
Google在你的网站抓取的页面数,数目越多,Pagerank值越高。但通常Google并不会主动抓取你的网站的所有页面,尤其是网址里带有“?”的动态链接,Google不主动,那就要我们主动了,最笨的办法是把网站所有的页面都提交给Google,但我想没有谁真会这么做,但页面不多的话可以试试。更好的办法是制作一个静态Html页面,通常被称作“网站地图”或“网站导航”,它里面包含你要添加的所有网址,然后把这个静态页面提交给Google。
第三:网站被世界三大知名网站 DMOZ,Yahoo和Looksmart 收录
众所周知,Google的Pagerank系统对那些门户网络目录如DMOZ,Yahoo和Looksmart尤为器重。特别是对DMOZ。一个网站上的DMOZ链接对Google的Pagerank?来说,就好像一块金子一样珍贵。如果你的网站为ODP收录,则可有效提升你的页面等级。向ODP提交你的站点并为它收录,其实并不是一件难事,只是要多花点时间而已。只要确保你的网站提供了良好的内容,然后在ODP合适的目录下点击"增加站点",按照提示一步步来就OK了。至少要保证你的索引页(INDEX PAGE)被收录进去。所以,如果你的网站内容涉及完全不同的几块内容,你可以把每个内容的网页分别向ODP提交-不过请记住"欲速则不达"。等到Google对其目录更新后,你就能看到你的PR值会有什么变化了。如果你的网站为Yahoo和Looksmart所收录,那么你的PR值会得到显著提升。如果你的网站是非商业性质的或几乎完全是非商业性质的内容,那么你可以通过zeall.com使你的网站为著名的网络目录Looksmart所收录。Looksmart也是从Zeal网络目录获得非商业搜索列表。
Google PR值的更新周期是多长时间?
一般情况下PR值更新的周期是2.5~3个月!
PageRank相关算法总结:
1.PageRank
基本思想:如果网页T存在一个指向网页A的连接,则表明T的所有者认为A比较重要,从而把T的一部分重要性得分赋予A。这个重要性得分值为:PR(T)/C(T)
其中PR(T)为T的PageRank值,C(T)为T的出链数,则A的PageRank值为一系列类似于T的页面重要性得分值的累加。
优点:是一个与查询无关的静态算法,所有网页的PageRank值通过离线计算获得;有效减少在线查询时的计算量,极大降低了查询响应时间。
不足:人们的查询具有主题特征,PageRank忽略了主题相关性,导致结果的相关性和主题性降低;另外,PageRank有很严重的对新网页的歧视。
2.Topic-Sensitive PageRank(主题敏感的PageRank)
基本思想:针对PageRank对主题的忽略而提出。核心思想:通过离线计算出一个PageRank向量集合,该集合中的每一个向量与某一主题相关,即计算某个页面关于不同主题的得分。主要分为两个阶段:主题相关的PageRank向量集合的计算和在线查询时主题的确定。
优点:根据用户的查询请求和相关上下文判断用户查询相关的主题(用户的兴趣)返回查询结果准确性高。
不足:没有利用主题的相关性来提高链接得分的准确性。
3.Hilltop
基本思想:与PageRank的不同之处:仅考虑专家页面的链接。主要包括两个步骤:专家页面搜索和目标页面排序。
优点:相关性强,结果准确。
不足:专家页面的搜索和确定对算法起关键作用,专家页面的质量决定了算法的准确性,而专家页面的质量和公平性难以保证;忽略了大量非专家页面的影响,不能反应整个Internet的民意;当没有足够的专家页面存在时,返回空,所以Hilltop适合对于查询排序进行求精。
那么影响google PageRank的因素有哪些呢?
1 与pr高的网站做链接:
2 内容质量高的网站链接
3加入搜索引擎分类目录
4 加入免费开源目录
5 你的链接出现在流量大、知名度高、频繁更新的重要网站上
6google对DPF格式的文件比较看重。
7安装Google工具条
8域名和tilte标题出现关键词与meta标签等
9反向连接数量和反向连接的等级
10Google抓取您网站的页面数量
11导出链接数量
PageRank科学排名遏止关键字垃圾
目前,五花八门的网站为争夺网上排名采用恶意点击和输入关键字垃圾的手段来吸引网民的眼球,无论对于互联网企业还是互联网用户,这都不是一个好现象。
为了解决这样的问题,Google 创始人之一拉里.佩奇(Larry Page)发明了一种算法PageRank,是由搜索引擎根据网页之间相互的超链接进行计算的网页排名。它经常和搜索引擎优化有关。PageRank 系统目前被Google 用来体现网页的相关性和重要性,以便科学排名,遏止关键字垃圾。
PageRank这个概念引自一篇学术论文的被媒体转载的频度,一般被转载的次数越多,这篇论文的权威性就越高,价值也就越高。PageRank是1998年在斯坦福大学问世的,2001
年9 月被授予美国专利。如今它在 Google 所有算法中依然是至关重要的。在学术界, 这个算法被公认为是文献检索中最大的贡献之一,并且被很多大学引入了信息检索课程(Information Retrieval) 的教程。
PageRank 通过对由超过 5 亿个变量和 20 亿个词汇组成的方程进行计算,能科学公正地标识网页的等级或重要性。PR级别为1到10,PR值越高说明该网页越重要。例如:一个PR 值为1 的网站表明这个网站不太具有流行度,而PR 值为7到10则表明这个网站极其重要。PageRank级别不是一般的算术级数,而是按照一种几何级数来划分的。PageRank3 不是比PageRank2 好一级,而可能会好到数倍。
PageRank根据网站的外部链接和内部链接的数量和质量来衡量网站的价值。PageRank的概念是,每个到页面的链接都是对该页面的一次投票,被链接得越多,就意味着被其他网站投票越多。Google 有一套自动化方法来计算这些投票,但Google 的排名算法不完全基于外部链接。PageRank 对来自不同网页的链接会区别对待,来自网页本身排名高的链接更受青睐,给这些链接有较大的权重。
同时,Google 不只是看一个网站的投票数量,或者这个网站的外部链接数量。它会对那些投票的网站进行分析。如果这些网站的PR 值比较高,则其投票的网站可从中受益。因此,Google 的技术专家提醒人们,在建设网站的外部链接时,应尽可能瞄准那些PR 值高且外部链接数又少的网站。这样的外部链接站点越多,你的PR 值就会越高,从而使得你的Google 排名得到显著提升。
PageRank的另一作用是对关键字垃圾起到巨大的遏制作用。眼下,一些垃圾网站为了提高点击率,用一些与站点内容无关的关键字垃圾壮声威,比如用明星的名字、用公共突
发事件称谓等。这些网页的目的或是为了骗取广告点击,或是为了传播病毒。还有一些无赖式的博客评论也从中搅局,在网上招摇过市,骗取网民的注意力,这也被网络技术人员
视为垃圾。
PageRank目前使用一种基于信任和名誉的算法帮助遏止关键字垃圾,它忽视这些关键字垃圾的存在,以网页相互链接评级别论高低。Google 排名之所以大受追捧,是由于它并非
只使用关键字或代理搜索技术, 而是将自身建立在高级的网页级别技术基础之上。 别的搜索引擎提供给搜索者的是多种渠道值为 8 的网站信息得来的一个粗略的搜索结果,而Google 提供给它的搜索者的则是它自己产生的高度精确的搜索结果。这就是为什么网站管理员会千方百计去提高自己网站在Google 的排名了。
PageRank一般一年更新四次,所以刚上线的新网站不可能获得PR 值。不过PR 值暂时没有,并不是什么不好的事情,耐心等待就能得到Google 的青睐
发表评论
-
调薪感悟
2018-04-29 06:54 0这次调薪我非常不满意,原因如下: 1.提升的 ... -
领导必备素质
2015-09-08 13:08 1525工作多年,接触过的领导不下十几位,发现他们身上都共有的特点 ... -
(转) 没用的抱怨
2014-06-13 17:38 01 、我没有口才——错 ... -
打工与创业的区别
2011-11-16 16:04 1760打工与创业有什么区别 ... -
公钥和私钥
2011-06-30 08:11 18631,公钥和私钥成对出现 ... -
说的对
2011-06-01 20:18 1105不要评价别人的容貌,因为他不靠你吃饭。不要评价别人的德行,因为 ... -
Outlook Express \Foxmail \Microsoft Office Outlook设置
2011-05-12 08:53 2092Outlook Express 设置 ... -
人生没有退路
2011-05-11 12:27 2098只有一条路可 ... -
护肤品
2011-03-15 12:46 1393买护肤品注意事项 默 ... -
中国人正在上的四大当,你上几个了?
2011-02-16 12:40 1795第一大当: ... -
如何在面试中发现优秀程序员
2011-02-12 13:30 1770我曾在一次面试中要求一个很有经验的嵌入式软件开发人 ... -
一个解除TCP连接的TIME_WAIT状态限制的方法
2011-01-25 16:11 6309近日无意间发现了一个小窍门:当TCP连接所对应s ... -
window.open()用法记录
2011-01-18 21:43 1373window.open()的所有参数列表-PHP教程,PHP应 ... -
PHP编辑器
2011-01-17 11:01 1603常用PHP编辑器下载 看你在用哪个 来源:站长下吧 时间:2 ... -
计算机十二种常用密码破解法
2010-11-10 11:46 1658在日常操作中,我们经 ... -
RS232中RTS和CTS的作用 转帖
2010-10-31 23:35 1931RS232中RTS和CTS的作用 ... -
中国各省名字由来
2010-10-29 12:34 1775山东:以在太行山之东 ... -
99%的人不了解的真实中国历史
2010-10-09 12:55 12631、秦始皇灭了六国,但并未统一中国,因为当时还有一个卫国。评价 ... -
比较老的脑筋急转弯
2010-10-09 12:25 15031、谁是万兽之王?答案:动物园园长2、什么样的人死后还会出现? ... -
30个搞笑的方法
2010-10-09 12:23 29331]一个朋友,让他先说3遍"老鼠",然后再 ...
相关推荐
Spring Cloud简介(摘自百度百科) Spring Cloud是一系列框架的有序集合。它利用Spring Boot的开发便利性巧妙地简化了分布式系统基础设施的开发,如服务发现注册、配置中心、消息总线、负载均衡、断路器、数据监控等...
1. **内容更新与质量**:石狮装修网站的内容更新频率较低,每天仅有22篇更新,且多为摘自其他网站,缺乏原创性。这导致搜索引擎收录量低,影响网站权重和排名。 2. **搜索引擎收录**:百度收录量仅为760,谷歌和...
内容概要:报告由中国信息通信研究院发布,旨在评估制造业上市公司高质量发展,强调制造业高质量发展的重要性,并构建了涵盖创新力、竞争力、影响力、贡献力四大维度的评价体系。通过对3500余家制造业上市公司2022年年报数据的综合评估,评选出百强企业。研究显示,百强企业专注主业,半数以上成长为制造业单项冠军;民营企业在盈利效率、创新发展方面表现优异;东部地区引领发展,装备制造业领先,新能源产业呈现爆发性增长。百强企业在科技创新、质效提升、持续增长、稳定就业等方面发挥重要作用,但也存在品牌建设和创新水平差距、领军企业竞争力提升空间、高端领域龙头企业培育不足等问题。 适用人群:制造业企业管理者、政策制定者、投资者及相关研究人员。 使用场景及目标:①帮助企业管理者了解行业发展趋势,提升企业竞争力;②为政策制定者提供决策参考,推动制造业高质量发展;③为投资者提供投资参考,识别优质企业;④为研究人员提供详实数据,助力学术研究。 其他说明:报告建议从重突破促升级、重创新补短板、重质量树品牌三个方面进一步推进制造业企业高质量发展,以加快建设具有全球竞争力的一流企业。
内容概要:本文详细介绍了异步电机无感矢量控制仿真的关键技术与常见问题解决方案。首先讨论了坐标变换(Clarke和Park变换)的基础操作及其注意事项,强调了正确选择系数的重要性。接下来深入探讨了滑模观测器的设计与优化方法,包括使用查表法替代三角函数计算以提高效率,以及加入低通滤波器减少高频抖振。此外,文章还涉及了速度估算的方法,如频域法和改进型滑模观测器的应用,并提供了具体的Python和Matlab代码片段。最后,针对电流环控制提出了前馈补偿机制,确保在突加负载情况下仍能保持良好的电流跟踪效果。文中多次提到调参技巧,特别是对于PI参数的选择给出了实用建议。 适合人群:从事电机控制系统研究与开发的技术人员,尤其是对异步电机无感矢量控制感兴趣的工程师。 使用场景及目标:适用于希望深入了解并掌握异步电机无感矢量控制仿真技术的研究人员和技术开发者。主要目标是在没有编码器的情况下实现对电机转速和扭矩的精确控制,同时提供详细的代码实现指导和调试经验。 其他说明:文章不仅提供了理论知识,还包括大量实际操作中的经验和教训,帮助读者避免常见的陷阱,快速搭建起有效的仿真环境。
# 基于Arduino的火箭动力学参数监测项目 ## 项目简介 这是一个基于Arduino平台的火箭动力学参数监测项目,旨在通过Adafruit BMP280压力传感器和Adafruit LIS3DH加速度传感器收集火箭飞行过程中的环境数据和运动数据。项目结合了Adafruit的BMP280库和LIS3DH库,实现对传感器数据的读取、处理及初步分析。 ## 项目的主要特性和功能 1. 环境数据监测通过BMP280压力传感器,实时监测并记录火箭周围的气压、温度和海拔高度变化。 2. 运动数据监测借助LIS3DH加速度传感器,获取火箭在飞行过程中的加速度、速度及方向变化数据。 3. 数据处理与传输Arduino负责收集和初步处理这些数据,然后通过串行通信或其他方式将数据发送到地面站或飞行控制软件。 4. 安全与警报基于收集的数据,项目可设置警报阈值,当超过预设的安全限制时,触发警报或采取相应的安全措施。 ## 安装使用步骤
# 基于Arduino的EPSleepy智能家居控制系统 ## 一、项目简介 EPSleepy是一个基于Arduino的智能家居控制系统原型。该项目旨在通过Arduino控制ESP32 WiFi和蓝牙板,结合MP3模块、shiftregister和按钮等硬件,实现智能家居的自动化控制。 ## 二、项目的主要特性和功能 1. 自动化控制通过Arduino代码控制ESP32板,实现家居设备的自动化控制。 2. 多种硬件支持支持MP3模块、shiftregister和按钮等硬件,实现音频播放、灯光控制、SD驱动等功能。 3. 模块化设计代码采用模块化设计,方便测试每个部分的功能,方便维护和调试。 4. 图形化界面可通过按钮和LED等硬件进行图形化操作和控制。 ## 三、安装使用步骤 1. 下载并解压项目源码文件。 2. 打开Arduino IDE,导入项目代码。 3. 连接硬件,包括ESP32板、MP3模块、shiftregister和按钮等。
Delphi 12.3控件之PowerPDF for Delphi11 FullSource.zip
内容概要:本文深入探讨了中微CMS32M5533在800W角磨机方案中的应用,涵盖硬件设计和软件实现的关键技术。硬件方面,介绍了三相桥驱动电路、MOSFET选择、电流检测电阻、PCB布局等细节;软件方面,重点讲解了反电动势检测算法、ADC采样时机、PWM配置以及换相时机的动态补偿。此外,还提供了调试技巧和成本控制方法。 适合人群:从事电动工具开发的技术人员,尤其是对电机控制有一定经验的研发人员。 使用场景及目标:适用于希望深入了解电动工具控制系统的设计和优化,特别是希望通过反电动势检测减少霍尔传感器使用的开发者。目标是提高系统的可靠性和性能,同时降低成本。 其他说明:文中提供的代码片段和硬件设计细节有助于实际项目的开发和调试。建议读者结合提供的GitHub资源进行实践,并关注硬件选型和PCB布局的注意事项。
CEO的绿色经历是指该首席执行官(CEO)在其个人职业发展过程中,所积累的与环境保护、可持续发展、绿色经济等相关的教育背景、工作经验或社会活动经验。 涵盖了教育背景、工作经验、社会活动与个人价值观等多个方面。这些经历不仅塑造了CEO对环境保护和可持续发展的认知和态度,还可能影响他们在企业决策中优先考虑环保因素的程度,从而对企业的长期发展和环境保护产生重要影响。 根据现有研究(姜付秀和黄继承,2013;许年行和李哲,2016),从高管个人简历数据中查找CEO以前是否接受过“绿色”相关教育或从事过“绿色”相关工作,若企业CEO具有绿色经历,Green取值1,否则,取值0。 数据 Stkcd、年份、D0801c、Green、股票简称、行业名称、行业代码、制造业取两位代码,其他行业用大类、当年ST或PT为1,否则为0、样本区间内ST或PT为1,否则为0、金融业为1,否则为0、制造业为1,否则为0、沪深A股为1,否则为0、第一种重污染行业为1,否则为0、第二种重污染行业为1,否则为0、第三种重污染行业为1,否则为0、产权性质,国企为1,否则为0、所属省份代码、所属城市代码、所在省份、所在地级市
内容概要:本文详细介绍了利用COMSOL Multiphysics对18650电池组进行蛇形液冷系统仿真的全过程。首先探讨了快充场景下电池过热的风险及其对电动车安全性和寿命的影响。接着,通过集总电池模型简化电化学反应,重点分析了电池产热方程和温度对产热的影响。随后,深入讨论了蛇形流道几何参数优化,如流道宽度与压降之间的非线性关系,以及流固交界面处理方法。此外,还涉及了多物理场耦合求解技巧,包括流场与传热模块的设置,以及后处理阶段的数据提取和可视化。最终得出优化设计方案,显著降低了电池组的最高温度和温度不均性。 适合人群:从事电动汽车电池管理系统设计的研究人员和技术工程师,尤其是熟悉COMSOL仿真工具的专业人士。 使用场景及目标:适用于需要评估和优化电动汽车电池组热管理系统的场合,旨在提高电池组的安全性和使用寿命,同时减少能量损耗。 其他说明:文中提供了大量具体的代码片段和参数设置建议,有助于读者快速上手并应用于实际工程项目中。
内容概要:本文详细介绍了CCSDS LDPC译码器的设计与实现,主要采用了修正最小和译码算法。该算法通过对传统最小和算法的改进,引入缩放因子α,提高了译码性能。文中具体讨论了(8176,7154)和(1280,1024)两种码组的应用场景及其优劣,并展示了如何通过C语言和Vivado进行仿真和硬件实现。此外,文章还探讨了硬件实现中的关键技术,如定点化处理、校验矩阵的压缩存储、动态阈值机制以及硬件流水线设计等。 适合人群:从事通信系统开发的研究人员和技术人员,尤其是对LDPC编码和译码感兴趣的工程师。 使用场景及目标:①帮助研究人员理解和实现CCSDS LDPC译码器;②为实际工程项目提供高效的译码解决方案;③提高译码性能,减少误码率,提升通信系统的可靠性和效率。 其他说明:文章不仅提供了理论分析,还包括了大量的代码示例和实践经验分享,有助于读者全面掌握CCSDS LDPC译码器的设计与实现。
# 基于Arduino的超声波距离测量系统 ## 项目简介 本项目是一个基于Arduino平台的超声波距离测量系统。系统包含四个超声波传感器(SPS)模块,用于测量与前方不同方向物体的距离,并通过蜂鸣器(Buzz)模块根据距离范围给出不同的反应。 ## 项目的主要特性和功能 1. 超声波传感器(SPS)模块每个模块包括一个超声波传感器和一个蜂鸣器。传感器用于发送超声波并接收回波,通过计算超声波旅行时间来确定与物体的距离。 2. 蜂鸣器(Buzz)模块根据超声波传感器测量的距离,蜂鸣器会给出不同的反应,如延时发声。 3. 主控制器(Arduino)负责控制和管理所有传感器和蜂鸣器模块,通过串行通信接收和发送数据。 4. 任务管理通过主控制器(Arduino)的 loop() 函数持续执行传感器任务(Task),包括测距、数据处理和蜂鸣器反应。 ## 安装使用步骤 1. 硬件连接
主角跑步动作素材图包含6张图片
企业数字化转型是指企业或组织将传统业务转化为数字化业务,利用人工智能、大数据、云计算、区块链、5G等数字技术提升业务效率和质量的过程。 当无形资产明细项包含“软件”“网络”“客户端”“管理系统”“智能平台”等与数字化转型技术相关的关键词以及与此相关的专利时,将该明细项目界定为“数字化技术无形资产”,再对同一公司同年度多项数字化技术无形资产进行加总,计算其占本年度无形资产的比例,即为企业数字化转型程度的代理变量。 本数据包含:原始数据、参考文献、代码do文件、最终结果。 参考文献:张永珅,李小波,邢铭强-企业数字化转型与审计定价[J].审计研究,2021(03):62-71. 数据 证券代码、证券简称、统计截止日期、报表类型、无形资产净额、资产总计、年份、期末余额(元)、数字化转型。
该资源为h5py-3.1.0-cp36-cp36m-win_amd64.whl,欢迎下载使用哦!
内容概要:本文介绍了一种基于QRBayes-LSTM的多/单变量时序预测方法,适用于不确定性强的场景如股票预测和电力负荷预测。该方法结合了分位数回归和贝叶斯优化,不仅能提供未来的趋势预测,还能给出预测值的置信区间。文中详细解释了数据准备、模型结构、损失函数设计、训练配置以及预测结果的可视化和评估指标。此外,还提供了变量重要性分析的方法,帮助理解哪些特征对预测结果的影响最大。 适合人群:从事数据分析、机器学习研究的专业人士,尤其是关注时序预测和不确定性量化的人群。 使用场景及目标:① 对于需要进行时序预测并希望获得置信区间的用户;② 关注模型性能评估和变量重要性的研究人员;③ 寻求提高预测精度和可靠性的从业者。 其他说明:本文提供的代码可以直接应用于Excel格式的数据,用户只需将数据导入即可运行。需要注意的是,为了获得最佳效果,应该确保数据格式正确并且符合特定的要求。
内容概要:本文详细介绍了ADAS(高级驾驶辅助系统)中四个主要功能模块的设计与实现,分别是自适应巡航控制系统(ACC)、前向碰撞预警系统(FCW)、自动紧急制动系统(AEB)和车道保持辅助系统(LKA)。文章不仅展示了各个系统的具体算法实现,如ACC中的PID控制、FCW中的TTC计算、AEB中的状态机设计和LKA中的PD控制器,还分享了许多实际开发中的经验和挑战,如参数调校、传感器融合、时间同步等问题。此外,文中还提到了一些有趣的细节,如在暴雨天气下LKA的表现优化,以及AEB系统在测试过程中遇到的各种corner case。 适合人群:汽车电子工程师、自动驾驶研究人员、嵌入式软件开发者。 使用场景及目标:帮助读者深入了解ADAS系统的工作原理和技术细节,掌握关键算法的实现方法,提高在实际项目中的开发和调试能力。 其他说明:文章通过生动的语言和具体的代码示例,使复杂的理论变得通俗易懂,有助于初学者快速入门并深入理解ADAS系统的开发流程。
内容概要:文章主要阐述了2023年中国高端制造业上市公司的发展概况,包括行业与区域两个维度的分布详情。从行业上看,高端制造业上市公司超过2400家,其中机械制造以628家的数量位居首位,电子(352家)和电力制造(336家)紧随其后,而像航空航天国防等也有一定的占比。从区域分布来看,广东、江苏、浙江三省处于领先地位,分别有410家、342家和199家,这表明东南沿海地区对于高端制造业的发展具有显著优势。数据来源于中国上市公司协会以及Wind。 适合人群:对中国经济结构、产业发展趋势感兴趣的读者,尤其是关注高端制造业发展的投资者、政策制定者及研究人员。 使用场景及目标:①帮助投资者了解中国高端制造业上市公司的行业布局,为投资决策提供参考依据;②为政策制定者提供数据支持,助力优化产业布局和发展规划;③供研究人员分析中国高端制造业的现状与未来发展趋势。 阅读建议:本文提供了丰富的数据和图表,读者应重点关注各行业的具体数据及其背后反映出的产业特点,同时结合区域分布情况,深入理解中国高端制造业的发展格局。
# 基于Python的机器学习算法实践 ## 项目简介 本项目旨在通过实践常用机器学习算法,提高数据挖掘和推荐系统的准确性,解决信息过载问题。应用场景包括电商、新闻、视频等网站,帮助用户更高效地获取所需信息。 ## 项目的主要特性和功能 数据挖掘实现多种数据挖掘算法,帮助用户从大量数据中提取有价值的信息。 机器学习算法包括常用的分类、回归、聚类等算法,提供详细的实现和示例程序。 推荐系统通过机器学习算法提高推荐系统的准确性,优化用户体验。 ## 安装使用步骤 1. 下载源码用户已下载本项目的源码文件。 2. 安装依赖 bash pip install r requirements.txt 3. 运行示例程序 bash python main.py 4. 自定义数据根据需要替换数据文件,重新运行程序以应用新的数据。
项目运行参考:https://blog.csdn.net/weixin_45393094/article/details/124645254 技术栈Springboot+Vue;此项目的参考文档 内容概要:本文档介绍了一款基于前后端分离架构的学生选课系统的设计与实现。系统采用Java语言作为后端开发语言,运用Spring Boot框架构建后端接口,前端使用Vue框架,设计模式上采用了MVVM模式,确保前后端分离。系统主要分为学生、教师和管理员三大功能模块,涵盖课程选择、成绩管理和信息发布等功能。需求分析部分详细描述了各模块的功能需求及性能需求,包括实用性、易用性和安全性。数据库设计部分详细说明了学生、教师、用户、课程和成绩等信息表的结构。系统实现章节则展示了各个模块的具体实现细节,包括登录验证、教师管理、学生管理、课程管理、公告设置及选课等功能的代码实现。 适合人群:计算机专业学生、有一定编程基础的研发人员或对前后端分离技术有兴趣的开发者。 使用场景及目标:①理解前后端分离架构在实际项目中的应用;②掌握Spring Boot与Vue框架结合开发的具体实现方法;③熟悉学生选课系统的核心功能,如选课、成绩管理、信息发布等;④学习如何设计和实现高效的数据库结构以支持系统功能。 阅读建议:本文档适合希望深入了解前后端分离架构及具体实现的读者。在阅读过程中,建议重点关注各模块的功能需求分析和技术实现细节,特别是代码示例部分,以加深对前后端分离架构的理解。同时,结合自身开发经验,思考如何优化现有系统功能,提高系统的稳定性和用户体验。