`

转帖线程

    博客分类:
  • java
阅读更多

首先来看一下,任务的定义:

 所谓的任务,就是抽象,离散的工作单位。你可以简单理解为代码级别的 (Runnable接口)

 大多数并发应用程序都是围绕着任务进行管理的.

 我们来看一小段代码:

  1. package com.ivan.concurrent.charpter6;   
  2.   
  3. import java.net.ServerSocket;   
  4. import java.net.Socket;   
  5.   
  6. /**  
  7.  * 顺序化的Web Server.  
  8.  * @author root  
  9.  * OS:Ubuntu 9.04  
  10.  * Date:2010-6-19  
  11.  */  
  12. public class SingleThreadWebServer {   
  13.     public static void main(String[] args) throws Exception {   
  14.         ServerSocket server=new ServerSocket(8080);   
  15.         while(true){   
  16.             Socket socket=server.accept();   
  17.             handleRequest(socket);   
  18.         }   
  19.     }   
  20.   
  21.     private static void handleRequest(Socket socket) {   
  22.         /**  
  23.          * 做相关的处理……, 比如请求运算与I/O  
  24.          *   这将会导致出现阻塞,  会延迟当前请求的处理,  
  25.          *   而且会产生非常严重的后果,比如: 假死。  
  26.          *    那样会极度考验用户的耐心,知道他忍无可忍的关闭浏览器。  
  27.          *   同时,单线程在等待IO操作时,CPU处于闲置状态,这样也降低了资源的利用率   
  28.          *     
  29.          *  这样的服务器,缺乏良好的吞吐量和快速的响应性。  
  30.          */  
  31.     }   
  32. }  
package com.ivan.concurrent.charpter6;

import java.net.ServerSocket;
import java.net.Socket;

/**
 * 顺序化的Web Server.
 * @author root
 * OS:Ubuntu 9.04
 * Date:2010-6-19
 */
public class SingleThreadWebServer {
	public static void main(String[] args) throws Exception {
		ServerSocket server=new ServerSocket(8080);
		while(true){
			Socket socket=server.accept();
			handleRequest(socket);
		}
	}

	private static void handleRequest(Socket socket) {
		/**
		 * 做相关的处理……, 比如请求运算与I/O
		 *   这将会导致出现阻塞,  会延迟当前请求的处理,
		 *   而且会产生非常严重的后果,比如: 假死。
		 *    那样会极度考验用户的耐心,知道他忍无可忍的关闭浏览器。
		 *   同时,单线程在等待IO操作时,CPU处于闲置状态,这样也降低了资源的利用率 
		 *   
		 *  这样的服务器,缺乏良好的吞吐量和快速的响应性。
		 */
	}
}

 




上面的代码是顺序地执行任务,主线程在不断接受连接与处理请求之间交替运行。
一个Web请求会做相关的处理……, 比如请求运算与I/O
 这将会导致出现阻塞,  会延迟当前请求的处理,
 而且会产生非常严重的后果,比如: 假死。
 那样会极度考验用户的耐心,知道他忍无可忍的关闭浏览器。
 同时,单线程在等待IO操作时,CPU处于闲置状态,这样也降低了资源的利用率
 这样的服务器,缺乏良好的吞吐量和快速的响应性。

所以,基于上面代码的基础上,我们需要给他作些小许的改进:

Java代码 复制代码 收藏代码
  1. package com.ivan.concurrent.charpter6;   
  2.   
  3. import java.net.ServerSocket;   
  4. import java.net.Socket;   
  5.   
  6. public class ThreadPerTaskWebServer {   
  7.     public static void main(String[] args) throws Exception {   
  8.         ServerSocket server=new ServerSocket(80);   
  9.         while(true){   
  10.             final Socket socket=server.accept();   
  11.             new Thread(new Runnable(){   
  12.                 public void run() {   
  13.                     handleRequest(socket);   
  14.                 }   
  15.             }).start();   
  16.         }   
  17.     }   
  18.   
  19.     protected static void handleRequest(Socket socket) {   
  20.         /**  
  21.          *相比较而言,这样的处理方式有良好的改进:  
  22.          * 1.执行人物的负载已经脱离主线程,让主循环能更加迅速的重新开始等待下一个连接。提高了响应性  
  23.          * 2.并发处理任务,多个请求可以同时得到处理,提高了吞吐性  
  24.          * 3.任务处理代码必须要是线程安全的。防止出现并发性数据共享问题。   
  25.          *   
  26.          * 这个程序可能在开发阶段运行良好,一旦部署,就可能出现致命的错误,  
  27.          * 我们接着来分析:  
  28.          */  
  29.     }   
  30. }  
package com.ivan.concurrent.charpter6;

import java.net.ServerSocket;
import java.net.Socket;

public class ThreadPerTaskWebServer {
	public static void main(String[] args) throws Exception {
		ServerSocket server=new ServerSocket(80);
		while(true){
			final Socket socket=server.accept();
			new Thread(new Runnable(){
				public void run() {
					handleRequest(socket);
				}
			}).start();
		}
	}

	protected static void handleRequest(Socket socket) {
		/**
		 *相比较而言,这样的处理方式有良好的改进:
		 * 1.执行人物的负载已经脱离主线程,让主循环能更加迅速的重新开始等待下一个连接。提高了响应性
		 * 2.并发处理任务,多个请求可以同时得到处理,提高了吞吐性
		 * 3.任务处理代码必须要是线程安全的。防止出现并发性数据共享问题。 
		 * 
		 * 这个程序可能在开发阶段运行良好,一旦部署,就可能出现致命的错误,
		 * 我们接着来分析:
		 */
	}
}

 


    相比较而言,这样的处理方式有良好的改进:
    1.执行人物的负载已经脱离主线程,让主循环能更加迅速的重新开始等待下一个连接。提高了响应性
     2.并发处理任务,多个请求可以同时得到处理,提高了吞吐性
     3.任务处理代码必须要是线程安全的。防止出现并发性数据共享问题。
    
 这个程序可能在开发阶段运行良好,一旦部署,就可能出现致命的错误,
 我们接着来分析:

 我们看到,上面的代码中,是为每个请求的到来,创建一个新的线程来处理, 那么这样就会有以下的问题出现:


无限创建线程的缺点:
1.线程生命周期的开销
1.1.线程的创建与关闭并非是免费的,实际的开销根据不同的OS有不同的处理.但是线程的创建的确需要时间,带来处理请求的延迟.一般的Web Server的请求是很频繁的,为每个请求创建一个线程,无非要耗费大量的资源.
2.资源消耗量
2.1. 活动的线程会消耗资源,尤其是内存.如果可运行的线程数多于可用的处理器数,线程将会空闲。大量的空闲线程占用更多的内存,给垃圾回收器带来压力,而且,线程在竞争CPU的同时,也会带来许多其他的性能开销。所以,建议在有足够多的线程让CPU忙碌时,不要再创建多余的线程.
3.应用的稳定性
3.1. 应该限制创建线程的数量,限制的数目根据不同的平台而定,同时也受到JVM的启动参数,Thread的构造函数中栈大小等因素的影响. 如果打破了这个限制,你很可能会得到一个OutOfMemoryError. 在一定范围内增加线程可以提高系统的吞吐量,但是一旦超过这个范围,再创建线程只会拖垮你的系统。甚至可能会导致应用程序的崩溃.
  
我们的解决办法:
    使用线程池,当然,你完全没有必要自己写一个线程池的实现(好吧,或许你跟我一样,也希望能从重复创造轮子中,找到自己想要了解的东西),你可以利用 Executor框架来帮你处理,java.util.concurrent提供了一个灵活的线程池实现。在新的java类库当中,任务执行的首要抽象不是Thread,而是Executor.
    Executor仅仅是一个简单的接口,但是它很强大,包括用于异步任务的执行,支持不同类型的任务执行策略,为任务提交和任务执行之间的解藕,提供了标准的方式等等, 我们后续再重点讨论。
    Executor基于 生产者-消费者模式。提交任务的是生产者,执行任务的是消费者。 也就是说, 采用Executor框架实现 生产者-消费者模式,十分简单。

Java代码 复制代码 收藏代码
  1. package com.ivan.concurrent.charpter6;   
  2.   
  3. import java.net.ServerSocket;   
  4. import java.net.Socket;   
  5. import java.util.concurrent.Executor;   
  6. import java.util.concurrent.Executors;   
  7.   
  8. public class TaskExecutionWebServer{   
  9.     private static final int NTHREADS=100;   
  10.     //使用线程池来避免 为每个请求创建一个线程。   
  11.     private static final Executor threadPool=Executors.newFixedThreadPool(NTHREADS);   
  12.        
  13.     public static void main(String[] args) throws Exception {   
  14.         ServerSocket server=new ServerSocket(8011);   
  15.         while(true){   
  16.             final Socket socket=server.accept();   
  17.             threadPool.execute(new Runnable(){   
  18.                 public void run() {   
  19.                     handleRequest(socket);   
  20.                 }   
  21.             });   
  22.         }   
  23.     }   
  24.   
  25.     protected static void handleRequest(Socket socket) {   
  26.         /**  
  27.          *  
  28.          */  
  29.         System.out.println(Thread.currentThread().getId());   
  30.         try {   
  31.             Thread.sleep(5000);   
  32.         } catch (InterruptedException e) {   
  33.             e.printStackTrace();   
  34.         }   
  35.     }   
  36.        
  37.        
  38. }  
package com.ivan.concurrent.charpter6;

import java.net.ServerSocket;
import java.net.Socket;
import java.util.concurrent.Executor;
import java.util.concurrent.Executors;

public class TaskExecutionWebServer{
	private static final int NTHREADS=100;
	//使用线程池来避免 为每个请求创建一个线程。
	private static final Executor threadPool=Executors.newFixedThreadPool(NTHREADS);
	
	public static void main(String[] args) throws Exception {
		ServerSocket server=new ServerSocket(8011);
		while(true){
			final Socket socket=server.accept();
			threadPool.execute(new Runnable(){
				public void run() {
					handleRequest(socket);
				}
			});
		}
	}

	protected static void handleRequest(Socket socket) {
		/**
		 *
		 */
		System.out.println(Thread.currentThread().getId());
		try {
			Thread.sleep(5000);
		} catch (InterruptedException e) {
			e.printStackTrace();
		}
	}
	
	
}

 

线程池:
    线程池管理着一个工作者线程的同构池,线程池是与工作队列紧密绑定的。工作队列的作用就是持有所有等待执行的任务, 工作者队列只需要从工作队列中获取到下一个任务,执行,然后回来等待下一个线程。
    Java类库中提供了以下几种线程池:
1.newFixedThreadPool :创建定长的线程池,每当提交一个任务就创建一个线程,直到达到池的最大长度。
2.newCachedThreadPool:创建一个可缓存的线程池,如果当前线程池的长度超过了处理的需要,它可以灵活的收回空闲线程,当需求增加时,它可以灵活添加新的线程,而并不对池的长度做任何限制
3.newSingleThreadExecutor:创建单线程化的executor,它只创建唯一的工作者线程来执行任务,如果这个线程异常结束,会有另外一个线程来取代它.它会保证任务按照任务队列规定的顺序来执行。
4.NewScheduledThreadPool:创建一个定长的线程池,而且支持定时的,以及周期性的任务执行,类似Timer.

Executor的生命周期:
    它的创建已经说了,我们来看看它如何关闭, Executor 是为了执行任务而创建线程,而JVM通常会在所有非后台线程退出后才退出,如果它无法正确的关闭,则会影响到JVM的结束。
    这里需要提一下,在我们了解如何关闭Executor的一些疑惑,  由于Executor是异步执行任务,那么这些任务的状态不是立即可见的,换句话说,在任务时间里,这些执行的任务中,有的可能已经完成,有的还可能在运行,其他的还可能在队列里面等待。 为了解决这些问题, Java引入了另外一个接口,它扩展了Executor,并增加一些生命周期的管理方法: ExecutorService.


ExecutorService表示生命周期有三种状态:  运行,关闭,终止。
    关闭和终止? 怎么看上去是一个意思, 这里我们先搁置着,留着后续来讨论。
    
ExecutorService最初创建后的初始状态就是运行状态;
    shutdown与shutdownNow方法,都是ExecutorService的关闭方法,区别在于:
    shutdown:
        会启动一个平稳的关闭过程, 停止接受新任务,同时等待已经提交的任务完成(包括尚未开始执行的任务)
    shutdownNow:
        会启动一个强制关闭的过程:尝试取消所有运行中的任务和排在队列中尚未开始的任务。

    一旦所有任务全完成后,ExecutorService会转到终止状态, awaitTermination可以用来等待ExecutorService到达终止状态,也可以轮询isTerminated判断ExecutorService是否已经终止。

Java代码 复制代码 收藏代码
  1. package com.ivan.concurrent.charpter6;   
  2.   
  3. import java.io.IOException;   
  4. import java.net.ServerSocket;   
  5. import java.net.Socket;   
  6. import java.util.concurrent.ExecutorService;   
  7. import java.util.concurrent.Executors;   
  8. import java.util.concurrent.RejectedExecutionException;   
  9.   
  10. /**  
  11.  * 线程池的生命周期是如何管理的?  
  12.  * @author root  
  13.  * OS:Ubuntu 9.04  
  14.  * Date:2010-6-19  
  15.  */  
  16. public class LifeCycleWebServer {   
  17.     private static final int NTHREADS=100;   
  18.     private static final ExecutorService exec=Executors.newFixedThreadPool(NTHREADS);   
  19.        
  20.     public void start() throws IOException{   
  21.         ServerSocket server=new ServerSocket(8011);   
  22.         while(exec.isShutdown()){   
  23.             try {   
  24.                 final Socket socket=server.accept();   
  25.                 exec.execute(new Runnable(){   
  26.                     public void run() {   
  27.                         handleRequest(socket);   
  28.                     }   
  29.                 });   
  30.             } catch (RejectedExecutionException e) {   
  31.                 if(!exec.isShutdown()){   
  32.                     //log.error(...)   
  33.                 }   
  34.             }   
  35.         }   
  36.     }   
  37.        
  38.        
  39.     protected void handleRequest(Socket socket) {   
  40.         Request req=readRequest(socket);   
  41.         if(isShutDown(req)){   
  42.             stop();   
  43.         }else{   
  44.             dispatchRequest(req);   
  45.         }   
  46.     }   
  47.   
  48.     public void stop(){   
  49.         exec.shutdown();   
  50.     }   
  51.        
  52.        
  53.     //~ Mock Object And Function..   
  54.     private static class Request{   
  55.            
  56.     }   
  57.        
  58.     private Request readRequest(Socket socket) {   
  59.         // TODO Auto-generated method stub   
  60.         return null;   
  61.     }   
  62.   
  63.   
  64.     private boolean isShutDown(Request req) {   
  65.         // TODO Auto-generated method stub   
  66.         return false;   
  67.     }   
  68.   
  69.   
  70.     private void dispatchRequest(Request req) {   
  71.         // TODO Auto-generated method stub   
  72.            
  73.     }   
  74.        
  75. }  
package com.ivan.concurrent.charpter6;

import java.io.IOException;
import java.net.ServerSocket;
import java.net.Socket;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.RejectedExecutionException;

/**
 * 线程池的生命周期是如何管理的?
 * @author root
 * OS:Ubuntu 9.04
 * Date:2010-6-19
 */
public class LifeCycleWebServer {
	private static final int NTHREADS=100;
	private static final ExecutorService exec=Executors.newFixedThreadPool(NTHREADS);
	
	public void start() throws IOException{
		ServerSocket server=new ServerSocket(8011);
		while(exec.isShutdown()){
			try {
				final Socket socket=server.accept();
				exec.execute(new Runnable(){
					public void run() {
						handleRequest(socket);
					}
				});
			} catch (RejectedExecutionException e) {
				if(!exec.isShutdown()){
					//log.error(...)
				}
			}
		}
	}
	
	
	protected void handleRequest(Socket socket) {
		Request req=readRequest(socket);
		if(isShutDown(req)){
			stop();
		}else{
			dispatchRequest(req);
		}
	}

	public void stop(){
		exec.shutdown();
	}
	
	
	//~ Mock Object And Function..
	private static class Request{
		
	}
	
	private Request readRequest(Socket socket) {
		// TODO Auto-generated method stub
		return null;
	}


	private boolean isShutDown(Request req) {
		// TODO Auto-generated method stub
		return false;
	}


	private void dispatchRequest(Request req) {
		// TODO Auto-generated method stub
		
	}
	
}

 


OK,了解了线程池的使用,这里有必要介绍介绍执行策略,

执行策略:
    简单来说,就是任务执行的”What,When,Where,How”,包括:
1.任务在什么线程中执行(what)
2.任务以什么顺序执行(fifo,lifo,优先级)?
3.可以有多少个任务并发执行?(how many)
4.可以有多少个任务进入等待执行队列
5.系统过载时,需要放弃一个任务,该挑选哪一个? 如何通知应用程序知道?

 


另外,java类库中还提供有一种特别的任务,----可携带结果的任务:
    Callable 和 Future
    Runnable 作为任务的基本表达形式只是个相当有限的抽象; 它的局限在于,不能返回一个值或者抛出受检查的异常。
    通常,很多任务都会引起严重的计算延迟,比如执行数据库查询,从网络下载资源,进行复杂的计算。对于这样的任务,Callable是更佳的抽象: 它在主进入点,等待返回值,并为可能抛出的异常预先作准备。
    Runnable与Callable描述的都是首相的计算型任务,这些任务通常都是有限的。,任务的所生命周期分为4个阶段: 创建、提交、开始和完成。
    Future描述了任务的生命周期,并提供了相关的方法来获取任务的结果、取消任务以及检验任务是否已经完成或者被取消。
    Future的get方法取决于任务的状态, 如果任务已经完成,get会立即返回或者抛出异常,如果任务没有完成,get会阻塞直到它的完成。
    
    创建Future的方法有很多, ExecutorService的submit会返回一个Future,你可以将一个Callable或者Runnable提交给executor,然后得到一个Future,用它来重新获得任务执行的结果,或者取消任务。
    你也可以显示的为给定的Callable和Runnable实例化一个FutureTask.

    
OK, 前面介绍了很多关于并发的理论知识,下面我们来看看,如果寻找可强化的并发性。

首先,我们从一个例子开始, 开始之前,简单介绍一下这个例子所要表达的事情:
    它的来源是浏览器程序中渲染页面的那部分功能, 首先获取HTML,并将它渲染到图像缓存里。为了简单起见,我们假设HTML只有文本标签。 OK, 开始吧。

    首先,如果按照一般的处理方式,我们会这样做:
1.遇到文本标签,将它渲染到图像缓存中
2.当遇到的是一个图片标签,我们通过网络获取它,再将它放到缓存里面。
    
    很明显,这是最简单的方式, 它很容易实现,但是,问题在于,你这样做,是在考验用户的耐心,结果就是他会对着屏幕丢一句 ****.然后毫不犹豫的关掉浏览器.

    另外一种方法:
     它先渲染文本,并为图像预留出占位符;在完成第一趟文本处理后,程序返回开始,并下载图像,将它们绘制到占位符上去。 但是这样的问题也很明显, 需要最少2次的文档处理, 其性能与效率稍有提升,但是还不足解决用户希望快速浏览页面的需求。

    为了使我们的渲染器具有更高的并发性,我们需要做的第一步就是, 将渲染过程分为两部分: 一个用来渲染文本,一个用来下载所有图像。(一个受限于CPU,另外一个受限于IO, 即使在单CPU系统上,效率的提升也很明显。)
    Callable与Future可以用来表达所有协同工作的任务之间的交互。我们来看代码:

Java代码 复制代码 收藏代码
  1. package com.ivan.concurrent.charpter6;   
  2.   
  3. import java.util.ArrayList;   
  4. import java.util.List;   
  5. import java.util.concurrent.Callable;   
  6. import java.util.concurrent.ExecutionException;   
  7. import java.util.concurrent.ExecutorService;   
  8. import java.util.concurrent.Executors;   
  9. import java.util.concurrent.Future;   
  10.   
  11. public class FutureRenderer {   
  12.     private static final int NTHREADS=100;   
  13.     private static final ExecutorService exec=Executors.newFixedThreadPool(NTHREADS);   
  14.        
  15.     void renderPage(CharSequence source){   
  16.         final List<ImageInfo> imageinfos=scanForImageInfo(source);   
  17.         Callable<List<ImageData>> task=   
  18.                 new Callable<List<ImageData>>(){   
  19.                     public List<ImageData> call() throws Exception {   
  20.                         List<ImageData> result=new ArrayList<ImageData>();   
  21.                         for(ImageInfo imageinfo:imageinfos){   
  22.                             result.add(imageinfo.downloadImage());   
  23.                         }   
  24.                         return result;   
  25.                     }   
  26.                
  27.         };   
  28.            
  29.            
  30.         Future<List<ImageData>> future=exec.submit(task);   
  31.         //保证渲染文本与下载图像数据并发执行。   
  32.         renderText(source);   
  33.         try {   
  34.             /**  
  35.              * 到达需要所有图像的时间点时,主任务会等待future.get调用的结果,  
  36.              *  幸运的话,我们请求的同时,下载已经完成,即使没有,下载也已经预先开始了。  
  37.              *    
  38.              *  这里还有一定的局限性, 用户可能不希望等待所有图片下载完成后才可以看见,  
  39.              *   他希望下载完成一张图片后,就可以立即看到。 …… 这里还待优化。  
  40.              */  
  41.             List<ImageData> imageData=future.get();   
  42.                
  43.             for(ImageData data:imageData){   
  44.                 reanderImage(data);   
  45.             }   
  46.         } catch (InterruptedException e) {   
  47.             Thread.currentThread().interrupt();   
  48.             future.cancel(true);//取消任务   
  49.         }catch(ExecutionException e){   
  50.             e.printStackTrace();   
  51.                
  52.         }   
  53.     }   
  54.   
  55.     private void renderText(CharSequence source) {   
  56.         // TODO Auto-generated method stub   
  57.            
  58.     }   
  59.   
  60.     private void reanderImage(ImageData data) {   
  61.         // TODO Auto-generated method stub   
  62.            
  63.     }   
  64.   
  65.     private List<ImageInfo> scanForImageInfo(CharSequence source) {   
  66.         // TODO Auto-generated method stub   
  67.         return null;   
  68.     }   
  69. }  
package com.ivan.concurrent.charpter6;

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

public class FutureRenderer {
	private static final int NTHREADS=100;
	private static final ExecutorService exec=Executors.newFixedThreadPool(NTHREADS);
	
	void renderPage(CharSequence source){
		final List<ImageInfo> imageinfos=scanForImageInfo(source);
		Callable<List<ImageData>> task=
				new Callable<List<ImageData>>(){
					public List<ImageData> call() throws Exception {
						List<ImageData> result=new ArrayList<ImageData>();
						for(ImageInfo imageinfo:imageinfos){
							result.add(imageinfo.downloadImage());
						}
						return result;
					}
			
		};
		
		
		Future<List<ImageData>> future=exec.submit(task);
		//保证渲染文本与下载图像数据并发执行。
		renderText(source);
		try {
			/**
			 * 到达需要所有图像的时间点时,主任务会等待future.get调用的结果,
			 *  幸运的话,我们请求的同时,下载已经完成,即使没有,下载也已经预先开始了。
			 *  
			 *  这里还有一定的局限性, 用户可能不希望等待所有图片下载完成后才可以看见,
			 *   他希望下载完成一张图片后,就可以立即看到。 …… 这里还待优化。
			 */
			List<ImageData> imageData=future.get();
			
			for(ImageData data:imageData){
				reanderImage(data);
			}
		} catch (InterruptedException e) {
			Thread.currentThread().interrupt();
			future.cancel(true);//取消任务
		}catch(ExecutionException e){
			e.printStackTrace();
			
		}
	}

	private void renderText(CharSequence source) {
		// TODO Auto-generated method stub
		
	}

	private void reanderImage(ImageData data) {
		// TODO Auto-generated method stub
		
	}

	private List<ImageInfo> scanForImageInfo(CharSequence source) {
		// TODO Auto-generated method stub
		return null;
	}
}

 



CompletionService: 当executorService遇到BlockingQueue
    CompletionService整合了Executor和BlockingQueue的功能,你可以将Callable任务提交给它去执行,然后使用类似于队列中的take和poll方法,在结果完成可用时,获得这个结果,像一个打包的Future.
  我们利用它来为我们的渲染器需要优化的地方做些处理,代码如下:

Java代码 复制代码 收藏代码
  1. package com.ivan.concurrent.charpter6;   
  2.   
  3. import java.util.List;   
  4. import java.util.concurrent.Callable;   
  5. import java.util.concurrent.CompletionService;   
  6. import java.util.concurrent.ExecutionException;   
  7. import java.util.concurrent.ExecutorCompletionService;   
  8. import java.util.concurrent.ExecutorService;   
  9. import java.util.concurrent.Executors;   
  10. import java.util.concurrent.Future;   
  11.   
  12. public class FutureRenderer2 {   
  13.     private static final int NTHREADS=100;   
  14.     private static final ExecutorService exec=Executors.newFixedThreadPool(NTHREADS);   
  15.        
  16.     void renderPage(CharSequence source){   
  17.         final List<ImageInfo> imageinfos=scanForImageInfo(source);   
  18.            
  19.         CompletionService<ImageData> completionService=new ExecutorCompletionService<ImageData>(exec);   
  20.            
  21.         for(final ImageInfo imageinfo:imageinfos){   
  22.             completionService.submit(new Callable<ImageData>(){   
  23.                 public ImageData call() throws Exception {   
  24.                     //提高性能点一: 将顺序的下载,变成并发的下载,缩短下载时间   
  25.                     return imageinfo.downloadImage();   
  26.                 }   
  27.             });   
  28.         }   
  29.         renderText(source);   
  30.         try {   
  31.             for(int i=0;i<imageinfos.size();i++){   
  32.                 Future<ImageData> f=completionService.take();   
  33.                 //提高性能点二: 下载完成一张图片后,立刻渲染到页面。   
  34.                 ImageData imagedata=f.get();   
  35.                 reanderImage(imagedata);   
  36.             }   
  37.         } catch (InterruptedException e) {   
  38.             Thread.currentThread().interrupt();   
  39.         }catch(ExecutionException e){   
  40.             e.printStackTrace();   
  41.                
  42.         }   
  43.     }   
  44.   
  45.     private void renderText(CharSequence source) {   
  46.         // TODO Auto-generated method stub   
  47.            
  48.     }   
  49.   
  50.     private void reanderImage(ImageData data) {   
  51.         // TODO Auto-generated method stub   
  52.            
  53.     }   
  54.   
  55.     private List<ImageInfo> scanForImageInfo(CharSequence source) {   
  56.         // TODO Auto-generated method stub   
  57.         return null;   
  58.     }   
  59. }  
分享到:
评论

相关推荐

    论坛转帖工具.rar

    标题中的“论坛转帖工具.rar”表明这是一个用于在论坛之间转移帖子的软件工具,通常用于帮助用户方便地将一个论坛的帖子内容复制到另一个论坛,可能是为了分享信息、讨论或保存重要的帖子。这类工具可能包括自动抓取...

    UBB论坛转帖圣手.exe

    UBB论坛转帖圣手.exeUBB论坛转帖圣手.exe

    贴吧转帖工具

    【贴吧转帖工具】是一种专为百度贴吧用户设计的便捷工具,主要用于提高用户在贴吧中的互动效率。通过这款工具,用户可以实现一键转帖和一键8经验签到的功能,极大地简化了传统操作流程,节省了用户的时间,提升了...

    编辑人员转帖去水印工具

    本篇文章将详细探讨“编辑人员转帖去水印工具”,并介绍如何使用名为Teorex Inpaint的1.0.0.2版本的软件来实现这一目标。 首先,我们要理解什么是水印。水印通常是指在图像或视频中添加的半透明标记,它可以是文字...

    discuz X2转帖工具、采集工具

    X2转帖工具、采集工具”是针对这个平台设计的辅助软件,主要用于帮助论坛管理员或用户批量发布帖子和采集内容,提高论坛内容更新的效率。 一、批量发帖功能 1. 自动化发布:此工具可以自动化地创建和发布帖子,...

    [转帖]世界编程大赛第一名写的程序

    标题和描述中的“世界编程大赛第一名写的程序”这一知识点,实际上指向了计算机科学与编程竞赛领域的一个重要概念:即在高水平的编程比赛中,优胜者所编写的代码往往蕴含着高级算法、数据结构以及编程技巧。...

    转帖工具ConvertX fordiscuz7.1/7.2 修改增强版.rar

    1.修改自Convert X转帖工具 2.新增批量替换关键词(原来是单个词语替换,可以利用这个功能删除一些网站的防转帖代码) 3.批量随机新增文字(新增内容可自定义,从而实现伪原创) 4.cookie记录替换和新增关键词(避免每次...

    转帖工具插件 for PHPwind 7.5 正式版.rar

    "转帖工具插件 for PHPwind 7.5 正式版" 是专门为 PHPwind 7.5 版本设计的一个功能插件,旨在提供便捷的帖子转移功能,帮助管理员或者用户将内容从一个地方轻松移动到另一个地方,而无需直接编辑论坛的原始文件。...

    一键转帖功能插件 for 帝国CMS 6.0 GBK utf8 V1.0.rar

    《一键转帖功能插件 for 帝国CMS 6.0 GBK utf8 V1.0》 本文将深入探讨“一键转帖功能插件”在帝国CMS 6.0系统中的应用与实现,该插件适用于GBK及UTF-8编码环境,旨在提升网站内容的分享与传播效率。我们将从安装...

    转帖图片提取工具 v1.0.zip

    转帖图片提取工具可以对论坛图片附件信息进行清除,只保留图片代码,操作很简单,推荐有需要转帖图片工具的朋友下载 转帖图片提取工具使用方法: 将IP138上处理过的东西复制到上方的编辑框内,点击只要图片,下面...

    Html2UBBMaxcj_Softii论坛专用转帖工具

    HTML2UBBMaxcj 是一款专为Softii论坛设计的转帖工具,它主要用于将HTML格式的帖子内容转换成UBB代码,以便在论坛中更好地显示和分享。UBB(Universal BBCode)是一种轻量级的标记语言,常用于网络论坛,与HTML类似,...

    一键转帖功能插件 for 帝国CMS v1.0.rar

    "一键转帖功能插件 for 帝国CMS v1.0.rar" 是一个专为帝国CMS设计的扩展工具,其主要目标是简化用户在网站上分享内容的过程,提高用户体验。这个插件允许用户轻松地将网站上的文章或信息复制并转发到其他平台,如...

    超级无敌转帖手

    看到论坛里帖子由精美的图片想转过来,或者批量提取地址时很好用

    高三政治教学总结(转帖)教学工作总结.doc

    高三政治教学总结(转帖)教学工作总结.doc

    J2ME全方位开发讲解基础汇总[转帖]

    J2ME全方位开发讲解基础汇总[转帖] 一、J2ME中需要的Java基础知识 现在有大部分人,都是从零开始学J2ME的,学习J2ME的时候,总是从Java基础开始学习,而且现在讲Java基础的书籍中都是以J2SE来讲基础,这就给学习造成...

    轻松转帖之突破网页复制限制宣贯.pdf

    UBB转帖王是一种插件,它能够帮助用户快速去除复制下来的网页内容中的无用空格、文字干扰码、水印和空行等,优化复制内容,便于分享和阅读。 【其他浏览器解决方案】 除了火狐,其他浏览器如搜狗、遨游和世界之窗也...

    H42131-转帖《关于用净值计算法计算收益》.doc

    H42131-转帖《关于用净值计算法计算收益》.doc

    转帖PLCDCSFCS三大控制系统的特点和差异.doc

    转帖PLCDCSFCS三大控制系统的特点和差异 PLC、DCS、FCS 三大控制系统是自动化技术中的热点,各有其特点和差异。下面对这三大控制系统的特点和差异进行分析。 1.PLC(Programmable Logic Controller) PLC 是一种...

    【转帖】 使用 JProfiler 监控 JBoss 运行情况

    通过深入地分析内存使用、线程活动、垃圾回收等关键性能指标,帮助开发人员及系统管理员定位并解决性能瓶颈。 #### 安装JProfiler 对于不同的操作系统,JProfiler提供了对应的安装包。例如,在Red Hat Linux 3.4.3-...

Global site tag (gtag.js) - Google Analytics