使用Hive可以高效而又快速地编写复杂的MapReduce查询逻辑。但是某些情况下,因为不熟悉数据特性,或没有遵循Hive的优化约定,Hive计算任务会变得非常低效,甚至无法得到结果。一个”好”的Hive程序仍然需要对Hive运行机制有深入的了解。
有一些大家比较熟悉的优化约定包括:Join中需要将大表写在靠右的位置;尽量使用UDF而不是transfrom……诸如此类。下面讨论5个性能和逻辑相关的问题,帮助你写出更好的Hive程序。
全排序
Hive的排序关键字是SORT BY,它有意区别于传统数据库的ORDER BY也是为了强调两者的区别–SORT BY只能在单机范围内排序。考虑以下表定义:
CREATE TABLE if not exists t_order( id int, -- 订单编号 sale_id int, -- 销售ID customer_id int, -- 客户ID product _id int, -- 产品ID amount int -- 数量 ) PARTITIONED BY (ds STRING);
在表中查询所有销售记录,并按照销售ID和数量排序:
set mapred.reduce.tasks=2; Select sale_id, amount from t_order Sort by sale_id, amount;
这一查询可能得到非期望的排序。指定的2个reducer分发到的数据可能是(各自排序):
Reducer1:
Sale_id | amount 0 | 100 1 | 30 1 | 50 2 | 20
Reducer2:
Sale_id | amount 0| 110 0 | 120 3 | 50 4 | 20
因为上述查询没有reduce key,hive会生成随机数作为reduce key。这样的话输入记录也随机地被分发到不同reducer机器上去了。为了保证reducer之间没有重复的sale_id记录,可以使用DISTRIBUTE BY关键字指定分发key为sale_id。改造后的HQL如下:
set mapred.reduce.tasks=2; Select sale_id, amount from t_order Distribute by sale_id Sort by sale_id, amount;
这样能够保证查询的销售记录集合中,销售ID对应的数量是正确排序的,但是销售ID不能正确排序,原因是hive使用hadoop默认的HashPartitioner分发数据。
这就涉及到一个全排序的问题。解决的办法无外乎两种:
1.) 不分发数据,使用单个reducer:
set mapred.reduce.tasks=1;
这一方法的缺陷在于reduce端成为了性能瓶颈,而且在数据量大的情况下一般都无法得到结果。但是实践中这仍然是最常用的方法,原因是通常排序的查询是为了得到排名靠前的若干结果,因此可以用limit子句大大减少数据量。使用limit n后,传输到reduce端(单机)的数据记录数就减少到n* (map个数)。
2.) 修改Partitioner
这种方法可以做到全排序。这里可以使用Hadoop自带的TotalOrderPartitioner(来自于Yahoo!的TeraSort项目),这是一个为了支持跨reducer分发有序数据开发的Partitioner,它需要一个SequenceFile格式的文件指定分发的数据区间。如果我们已经生成了这一文件(存储在/tmp/range_key_list,分成100个reducer),可以将上述查询改写为
set mapred.reduce.tasks=100; set hive.mapred.partitioner=org.apache.hadoop.mapred.lib.TotalOrderPartitioner; set total.order.partitioner.path=/tmp/ range_key_list; Select sale_id, amount from t_order Cluster by sale_id Sort by amount;
有很多种方法生成这一区间文件(例如hadoop自带的o.a.h.mapreduce.lib.partition.InputSampler工具)。这里介绍用Hive生成的方法,例如有一个按id有序的t_sale表:
CREATE TABLE if not exists t_sale ( id int, name string, loc string );
则生成按sale_id分发的区间文件的方法是:
create external table range_keys(sale_id int) row format serde 'org.apache.hadoop.hive.serde2.binarysortable.BinarySortableSerDe' stored as inputformat 'org.apache.hadoop.mapred.TextInputFormat' outputformat 'org.apache.hadoop.hive.ql.io.HiveNullValueSequenceFileOutputFormat' location '/tmp/range_key_list'; insert overwrite table range_keys select distinct sale_id from source t_sale sampletable(BUCKET 100 OUT OF 100 ON rand()) s sort by sale_id;
生成的文件(/tmp/range_key_list目录下)可以让TotalOrderPartitioner按sale_id有序地分发reduce处理的数据。区间文件需要考虑的主要问题是数据分发的均衡性,这有赖于对数据深入的理解。
怎样做笛卡尔积?
当Hive设定为严格模式(hive.mapred.mode=strict)时,不允许在HQL语句中出现笛卡尔积,这实际说明了Hive对笛卡尔积支持较弱。因为找不到Join key,Hive只能使用1个reducer来完成笛卡尔积。
当然也可以用上面说的limit的办法来减少某个表参与join的数据量,但对于需要笛卡尔积语义的需求来说,经常是一个大表和一个小表的Join操作,结果仍然很大(以至于无法用单机处理),这时MapJoin才是最好的解决办法。
MapJoin,顾名思义,会在Map端完成Join操作。这需要将Join操作的一个或多个表完全读入内存。
MapJoin的用法是在查询/子查询的SELECT关键字后面添加/*+ MAPJOIN(tablelist) */提示优化器转化为MapJoin(目前Hive的优化器不能自动优化MapJoin)。其中tablelist可以是一个表,或以逗号连接的表的列表。tablelist中的表将会读入内存,应该将小表写在这里。
PS:有用户说MapJoin在子查询中可能出现未知BUG。在大表和小表做笛卡尔积时,规避笛卡尔积的方法是,给Join添加一个Join key,原理很简单:将小表扩充一列join key,并将小表的条目复制数倍,join key各不相同;将大表扩充一列join key为随机数。
怎样写exist in子句?
Hive不支持where子句中的子查询,SQL常用的exist in子句需要改写。这一改写相对简单。考虑以下SQL查询语句:
SELECT a.key, a.value FROM a WHERE a.key in (SELECT b.key FROM B);
可以改写为
SELECT a.key, a.value FROM a LEFT OUTER JOIN b ON (a.key = b.key) WHERE b.key <> NULL;
一个更高效的实现是利用left semi join改写为:
SELECT a.key, a.val FROM a LEFT SEMI JOIN b on (a.key = b.key);
left semi join是0.5.0以上版本的特性。
Hive怎样决定reducer个数?
Hadoop MapReduce程序中,reducer个数的设定极大影响执行效率,这使得Hive怎样决定reducer个数成为一个关键问题。遗憾的是Hive的估计机制很弱,不指定reducer个数的情况下,Hive会猜测确定一个reducer个数,基于以下两个设定:
1. hive.exec.reducers.bytes.per.reducer(默认为1000^3)
2. hive.exec.reducers.max(默认为999)
计算reducer数的公式很简单:
通常情况下,有必要手动指定reducer个数。考虑到map阶段的输出数据量通常会比输入有大幅减少,因此即使不设定reducer个数,重设参数2还是必要的。依据Hadoop的经验,可以将参数2设定为0.95*(集群中TaskTracker个数)。
合并MapReduce操作
Multi-group by
Multi-group by是Hive的一个非常好的特性,它使得Hive中利用中间结果变得非常方便。例如,
FROM (SELECT a.status, b.school, b.gender FROM status_updates a JOIN profiles b ON (a.userid = b.userid and a.ds='2009-03-20' ) ) subq1 INSERT OVERWRITE TABLE gender_summary PARTITION(ds='2009-03-20') SELECT subq1.gender, COUNT(1) GROUP BY subq1.gender INSERT OVERWRITE TABLE school_summary PARTITION(ds='2009-03-20') SELECT subq1.school, COUNT(1) GROUP BY subq1.school
上述查询语句使用了Multi-group by特性连续group by了2次数据,使用不同的group by key。这一特性可以减少一次MapReduce操作。
Multi-distinct
Multi-distinct是淘宝开发的另一个multi-xxx特性,使用Multi-distinct可以在同一查询/子查询中使用多个distinct,这同样减少了多次MapReduce操作。
相关推荐
标题中提到的“写好Hive程序的五个提示”指向了在大数据领域内使用Hive语言编写的程序优化和最佳实践。Hive作为一个建立在Hadoop之上的数据仓库工具,可以将SQL语句转换为MapReduce任务进行执行,非常适合处理大数据...
含两个文件hive-jdbc-3.1.2-standalone.jar和apache-hive-3.1.2-bin.tar.gz 含两个文件hive-jdbc-3.1.2-standalone.jar和apache-hive-3.1.2-bin.tar.gz 含两个文件hive-jdbc-3.1.2-standalone.jar和apache-hive-...
hive 开发UDF 使用maven工程 引发jar包缺失 hive 开发UDF 使用maven工程 引发jar包缺失
Apache Hive 是一个基于Hadoop的数据仓库工具,它允许用户通过SQL-like语法查询、管理大量结构化数据。在大数据处理领域,Hive 提供了一个灵活、可扩展的框架,使得数据分析人员能够对存储在Hadoop分布式文件系统...
Apache Hive 是一个基于Hadoop的数据仓库工具,它允许用户通过SQL-like语言(称为HQL,Hive Query Language)对大规模数据集进行分析和查询。在Hadoop生态系统中,Hive扮演着数据仓库和数据分析的重要角色,尤其适用...
将 Hive 与 JDBC 结合,我们就得到了 Hive JDBC,它为 Hadoop 生态系统提供了一个通用的、基于 JDBC 的接口,使非 Java 语言的应用程序也能通过 JDBC 连接访问 Hive 数据。 Hive JDBC 2.6.2.1002 版本是 Cloudera ...
Apache Hive 是一个开源的数据仓库和分析工具,它构建在 Hadoop 生态系统之上,用于处理大规模数据集。Hive 提供了对结构化数据的存储、管理和分析能力,使得非编程背景的用户也能通过类 SQL 的查询语言(HQL,Hive ...
apache-hive-3.1.2-bin.tar.gz, 下载自:https://mirrors.bfsu.edu.cn/apache/hive/hive-3.1.2/, 上传至CSDN备份,本资源下载后需要解压缩zip文件,才是原本的apache-hive-3.1.2-bin.tar.gz文件
3. **Hive Server**:提供了远程访问Hive的接口,支持多种客户端连接方式,如Beeline(一个基于JDBC的命令行工具)和Hive JDBC/ODBC驱动,使得其他应用程序可以方便地与Hive交互。 4. **HQL (Hive Query Language)*...
Hive错误之 Execution Error, return code 2 from org.apache.hadoop.hive.ql.exec.mr.MapRedTask错误分析_xiaohu21的博客-CSDN博客.mht
Caused by: java.sql.SQLException: java.lang.ClassNotFoundException: org.apache.hive.jdbc.HiveDriver at com.trs.gateway.commons.hive.HiveFeature.getConnection(HiveFeature.java:57) at ...
Apache Hive 是一个基于 Hadoop 的数据仓库工具,用于查询、管理和处理大数据集。Hive 提供了一种结构化的数据模型,使得非结构化的海量数据可以通过SQL-like 的查询语言(HQL,Hive Query Language)进行分析。在...
Class.forName("org.apache.hive.jdbc.HiveDriver"); ``` 2. 建立数据库连接: ```java Connection conn = DriverManager.getConnection("jdbc:hive2://<server>:<port>/<database>", "<username>", "<password>"); ...
Caused by: java.sql.SQLException: java.lang.ClassNotFoundException: org.apache.hive.jdbc.HiveDriver at com.trs.gateway.commons.hive.HiveFeature.getConnection(HiveFeature.java:57) at ...
Apache Hive 是一个基于Hadoop的数据仓库工具,它允许用户通过SQL-like语言(称为HQL,Hive Query Language)对大规模数据集进行分析和查询。Hive最初由Facebook开发,后来成为Apache软件基金会的一个顶级项目,广泛...
3. 在数据源配置界面,找到“Driver Class”字段,输入相应的Hive JDBC驱动类(通常是`org.apache.hive.jdbc.HiveDriver`)。 4. 在“JDBC URL”字段中,根据实际的Hive服务器配置填写URL(例如:`jdbc:hive2://...
Apache Hive(apache-hive-3.1.3-bin.tar.gz、apache-hive-3.1.3-src.tar.gz)是一种分布式容错数据仓库系统,支持大规模分析,并使用 SQL 促进读取、写入和管理驻留在分布式存储中的 PB 级数据。Hive 构建在 Apache...
Apache Hive是大数据处理领域的一个重要组件,主要用于结构化和半结构化数据的查询、分析以及管理。Hive是由Facebook开源的,它构建在Hadoop之上,提供了SQL-like的查询语言——HQL(Hive Query Language),使得非...