前言
在日常java开发过程中使用线程池一般都是通过Executors提供的静态方法创建线程池,但目前还没有提供使用DelayQueue(延迟队列)作为任务队列的线程池创建方法。在笔者另一篇博客中《DelayQueue--阅读源码从jdk开始》,有个场景需要使用DelayQueue实现定时的页面发布功能,在那次实现过程中使用DelayQueue的take方法获取到任务后再放入线程池,由于这里是串行take,如果在同一时刻有多个任务需要被执行,这时势必有有延迟,虽然延迟不多,但不是最佳实现方案。
通过前一篇对ThreadPoolExecutor总结(点这里),我们可以直接使用ThreadPoolExecutor的构造方法构造自定义的线程池,使用DelayQueue作为“任务队列”即可。
使用DelayQueue创建线程池
这个步骤很简单,只要理解了ThreadPoolExecutor构造方法的各个参数即可(对各个参数的详细讲解见上一篇文章):
DelayQueue queue = new DelayQueue<>();//延迟队列 ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(3,10,1000l, TimeUnit.MILLISECONDS,queue);
之后,只需调用ThreadPoolExecutor的execute提交任务即可。
创建延迟任务类
我们知道ThreadPoolExecutor的execute方法,需要一个实现了Runnable接口的对象,那么这个任务类必须是实现Runnable接口;并且最终这个对象要能放到DelayQueue中,这个任务类必须实现Delayed接口。最终这个任务类实现如下:
public class TaskInfo implements Delayed,Runnable { //任务id private int id; //业务类型 private int type; //业务数据 private String data; //执行时间 private long excuteTime; public TaskInfo(int id, int type, String data, long excuteTime) { this.id = id; this.type = type; this.data = data; this.excuteTime = TimeUnit.NANOSECONDS.convert(excuteTime, TimeUnit.MILLISECONDS)+System.nanoTime(); } public int getId() { return id; } public void setId(int id) { this.id = id; } public int getType() { return type; } public void setType(int type) { this.type = type; } public String getData() { return data; } public void setData(String data) { this.data = data; } public long getExcuteTime() { return excuteTime; } public void setExcuteTime(long excuteTime) { this.excuteTime = excuteTime; } @Override public long getDelay(TimeUnit unit) { return unit.convert(this.excuteTime- System.nanoTime() , TimeUnit.NANOSECONDS); } @Override public int compareTo(Delayed o) { TaskInfo msg = (TaskInfo)o; return this.excuteTime>msg.excuteTime?1:( this.excuteTime<msg.excuteTime?-1:0); } @Override public void run() { System.out.println("run task:"+id); } }
初始化核心线程
上面已经创建好任务类了,也许大家会觉得直接new TaskInfo(),并且调用ThreadPoolExecutor的execute方法提交任务就行,如下:
//创建任务 TaskInfo t1 = new TaskInfo(1,1,"任务1",8000); TaskInfo t2 = new TaskInfo(2,2,"任务2",8000); //提交任务 threadPoolExecutor.execute(t1); threadPoolExecutor.execute(t2);
通过前一篇文章的分析,在线程池刚初始化时,由于核心线程数为0,此时执行execute提交任务,任务不会进入延迟队列,而是直接执行,就无法满足业务需求(任务被提前执行了)。正确做法是在线程初始化完成后,先调用prestartAllCoreThreads方法,先创建好核心线程,即:
threadPoolExecutor.prestartAllCoreThreads();
完成示例代码:
public class ThreadPoolExecutorTest { private static ExecutorService es = Executors.newFixedThreadPool(3);//3个线程的线程池 public static void main(String[] args){ DelayQueue queue = new DelayQueue<>();//延迟队列 ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(3,10,1000l, TimeUnit.MILLISECONDS,queue); threadPoolExecutor.prestartAllCoreThreads();//初始化核心线程 TaskInfo t1 = new TaskInfo(1,1,"任务1",8000); TaskInfo t2 = new TaskInfo(2,2,"任务2",8000); TaskInfo t3 = new TaskInfo(3,3,"任务3",9000); TaskInfo t4 = new TaskInfo(4,4,"任务4",5000); TaskInfo t5 = new TaskInfo(5,5,"任务5",5000); TaskInfo t6 = new TaskInfo(6,6,"任务6",6000); TaskInfo t7 = new TaskInfo(7,7,"任务7",7000); TaskInfo t8 = new TaskInfo(8,8,"任务8",10000); threadPoolExecutor.execute(t1); threadPoolExecutor.execute(t2); threadPoolExecutor.execute(t3); threadPoolExecutor.execute(t4); threadPoolExecutor.execute(t5); threadPoolExecutor.execute(t6); threadPoolExecutor.execute(t7); threadPoolExecutor.execute(t8); } }
执行main方法,可以发现任务是按时延迟执行的,而且如果在同一刻如果有多个任务需要执行,这时也可以利用线程池并行执行,进一步降低延迟。
另外大家也可以注释掉threadPoolExecutor.prestartAllCoreThreads();这句,验证下如果不初始化核心线程会有什么后果。
心灵鸡汤
有的程序员觉得整天实现一些简单的功能没有技术含量,如果你觉得某项工作没有技术含量,那只是你自己把它做得没有技术含量,认真的写好自己的每一行代码,不停的去完善,它就会成为有技术含量的工作。想想达芬奇画鸡蛋的故事。
摘自--《天星老师语录》
相关推荐
├─第一阶段 │ 源码+ppt.rar │ 高并发编程第一阶段01讲、课程大纲及主要内容介绍.wmv │ 高并发编程第一阶段02讲、简单介绍什么是线程.wmv ... 高并发编程第三阶段40讲 ThreadPoolExecutor关闭(很重要)精讲...
├─第一阶段 │ 源码+ppt.rar │ 高并发编程第一阶段01讲、课程大纲及主要内容介绍.wmv │ 高并发编程第一阶段02讲、简单介绍什么是线程.wmv ... 高并发编程第三阶段40讲 ThreadPoolExecutor关闭(很重要)精讲...
- **atomic部分**:原子变量类,用于构建高性能的非阻塞算法,例如`AtomicInteger`和`AtomicReference`。 - **executor部分**:线程池相关的类和接口,如`ExecutorService`和`ThreadPoolExecutor`。 - **collections...
基于的手势识别系统可控制灯的亮_3
untitled2.zip
S7-1500和分布式外围系统ET200MP模块数据
anaconda配置pytorch环境
高校教室管理系统,主要的模块包括查看首页、个人中心、教师管理、学生管理、教室信息管理、教师申请管理、学生申请管理、课时表管理、教师取消预约管理、学生取消预约管理等功能。
半挂汽车列车横向稳定性控制研究:基于模糊PID与制动力矩分配的联合仿真分析在典型工况下的表现,半挂汽车列车在典型工况下的横向稳定性控制研究:基于模糊PID与制动力矩分配的联合仿真分析,半挂汽车列车4自由度6轴整车model,横向稳定性控制,在低附着系数路面,进行典型3个工况,角阶跃,双移线,方向盘转角。 采用算法:模糊PID,制动力矩分配,最优滑移率滑膜控制。 以上基于trucksim和simulink联合仿真,有对应 p-a-p-e-r参考 ,关键词: 1. 半挂汽车列车 2. 4自由度6轴整车model 3. 横向稳定性控制 4. 低附着系数路面 5. 典型工况(角阶跃、双移线、方向盘转角) 6. 模糊PID算法 7. 制动力矩分配 8. 最优滑移率滑膜控制 9. Trucksim和Simulink联合仿真 10. P-A-P-E-R参考; 用分号隔开上述关键词为:半挂汽车列车; 4自由度6轴整车model; 横向稳定性控制; 低附着系数路面; 典型工况; 模糊PID算法; 制动力矩分配; 最优滑移率滑膜控制; Trucksim和Simulink联合仿真; P-A-P-E-R参考
路径规划人工势场法及其改进算法Matlab代码实现,路径规划人工势场法及其改进算法Matlab代码实现,路径规划人工势场法以及改进人工势场法matlab代码,包含了 ,路径规划; 人工势场法; 改进人工势场法; MATLAB代码; 分隔词“;”。,基于Matlab的改进人工势场法路径规划算法研究
本文介绍了范德堡大学深脑刺激器(DBS)项目,该项目旨在开发和临床评估一个系统,以辅助从规划到编程的整个过程。DBS是一种高频刺激治疗,用于治疗运动障碍,如帕金森病。由于目标区域在现有成像技术中可见性差,因此DBS电极的植入和编程过程复杂且耗时。项目涉及使用计算机辅助手术技术,以及一个定制的微定位平台(StarFix),该平台允许在术前进行图像采集和目标规划,提高了手术的精确性和效率。此外,文章还讨论了系统架构和各个模块的功能,以及如何通过中央数据库和网络接口实现信息共享。
三菱FX3U步进电机FB块的应用:模块化程序实现电机换算,提高稳定性和移植性,三菱FX3U步进电机换算FB块:模块化编程实现电机控制的高效性与稳定性提升,三菱FX3U 步进电机算FB块 FB块的使用可以使程序模块化简单化,进而提高了程序的稳定性和可移植性。 此例中使用FB块,可以实现步进电机的算,已知距离求得脉冲数,已知速度可以求得频率。 程序中包含有FB和ST内容;移植方便,在其他程序中可以直接添加已写好的FB块。 ,三菱FX3U;步进电机换算;FB块;程序模块化;稳定性;可移植性;距离与脉冲数换算;速度与频率换算;FB和ST内容;移植方便。,三菱FX3U步进电机换算FB块:程序模块化与高稳定性实现
光伏逆变器TMS320F28335设计方案:Boost升压与单相全桥逆变,PWM与SPWM控制,MPPT恒压跟踪法实现,基于TMS320F28335DSP的光伏逆变器设计方案:Boost升压与单相全桥逆变电路实现及MPPT技术解析,光伏逆变器设计方案TMS320F28335-176资料 PCB 原理图 源代码 1. 本设计DC-DC采用Boost升压,DCAC采用单相全桥逆变电路结构。 2. 以TI公司的浮点数字信号控制器TMS320F28335DSP为控制电路核心,采用规则采样法和DSP片内ePWM模块功能实现PWM和SPWM波。 3. PV最大功率点跟踪(MPPT)采用了恒压跟踪法(CVT法)来实现,并用软件锁相环进行系统的同频、同相控制,控制灵活简单。 4.资料包含: 原理图,PCB(Protel或者AD打开),源程序代码(CCS打开),BOM清单,参考资料 ,核心关键词:TMS320F28335-176; 光伏逆变器; 升压; 逆变电路; 数字信号控制器; 规则采样法; ePWM模块; PWM; SPWM波; MPPT; 恒压跟踪法; 原理图; PCB; 源程序代码; BOM
centos9内核安装包
昆仑通态触摸屏与两台台达VFD-M变频器通讯实现:频率设定、启停控制与状态指示功能接线及设置说明,昆仑通态TPC7062KD触摸屏与两台台达VFD-M变频器通讯程序:实现频率设定、启停控制与状态指示,昆仑通态MCGS与2台台达VFD-M变频器通讯程序实现昆仑通态触摸屏与2台台达VFD-M变频器通讯,程序稳定可靠 器件:昆仑通态TPC7062KD触摸屏,2台台达VFD-M变频器,附送接线说明和设置说明 功能:实现频率设定,启停控制,实际频率读取等,状态指示 ,昆仑通态MCGS; 台达VFD-M变频器; 通讯程序; 稳定可靠; 频率设定; 启停控制; 实际频率读取; 状态指示; 接线说明; 设置说明,昆仑通态MCGS与台达VFD-M变频器通讯程序:稳定可靠,双机控制全实现
研控步进电机驱动器方案验证通过,核心技术成熟可生产,咨询优惠价格!硬件原理图与PCB源代码全包括。,研控步进电机驱动器方案验证通过,核心技术掌握,生产准备,咨询实际价格,包含硬件原理图及PCB源代码。,研控步进电机驱动器方案 验证可用,可以生产,欢迎咨询实际价格,快速掌握核心技术。 包括硬件原理图 PCB源代码 ,研控步进电机驱动器方案; 验证可用; 可生产; 核心技术; 硬件原理图; PCB源代码,研控步进电机驱动器方案验证通过,现可生产供应,快速掌握核心技术,附硬件原理图及PCB源代码。
高质量的OPCClient_UA源码分享:基于C#的OPC客户端开发源码集(测试稳定、多行业应用实例、VS编辑器支持),高质量OPC客户端源码解析:OPCClient_UA C#开发,适用于VS2019及多行业现场应用源码分享,OPCClient_UA源码OPC客户端源码(c#开发) 另外有opcserver,opcclient的da,ua版本的见其他链接。 本项目为VS2019开发,可用VS其他版本的编辑器打开项目。 已应用到多个行业的几百个应用现场,长时间运行稳定,可靠。 本项目中提供测试OPCClient的软件开发源码,有详细的注释,二次开发清晰明了。 ,OPCClient_UA; OPC客户端源码; C#开发; VS2019项目; 稳定可靠; 详细注释; 二次开发,OPC客户端源码:稳定可靠的C#开发实现,含详细注释支持二次开发
毕业设计