一、深入浅出理解索引结构
改善SQL语句
很多人不知道SQL语句在SQL SERVER中是如何执行的,他们担心自己所写的SQL语句会被SQL
SERVER误解。比如:
select * from table1 where name=''zhangsan'' and tID > 10000
和执行:
select * from table1 where tID > 10000 and name=''zhangsan''
一些人不知道以上两条语句的执行效率是否一样,因为如果简单的从语句先后上看,这两个语句的确是不一样,如果tID是一个聚合索引,那么后一句仅仅从表的10000条以后的记录中查找就行了;而前一句则要先从全表中查找看有几个name=''zhangsan''的,而后再根据限制条件条件tID>10000来提出查询结果。
事实上,这样的担心是不必要的。SQL
SERVER中有一个“查询分析优化器”,它可以计算出where子句中的搜索条件并确定哪个索引能缩小表扫描的搜索空间,也就是说,它能实现自动优化。
虽然查询优化器可以根据where子句自动的进行查询优化,但大家仍然有必要了解一下“查询优化器”的工作原理,如非这样,有时查询优化器就会不按照您的本意进行快速查询。
在查询分析阶段,查询优化器查看查询的每个阶段并决定限制需要扫描的数据量是否有用。如果一个阶段可以被用作一个扫描参数(SARG),那么就称之为可优化的,并且可以利用索引快速获得所需数据。
SARG的定义:用于限制搜索的一个操作,因为它通常是指一个特定的匹配,一个值得范围内的匹配或者两个以上条件的AND连接。形式如下:
列名 操作符 <常数 或 变量>
或
<常数 或 变量> 操作符列名
列名可以出现在操作符的一边,而常数或变量出现在操作符的另一边。如:
Name=’张三’
价格>5000
5000<价格
Name=’张三’ and 价格>5000
如果一个表达式不能满足SARG的形式,那它就无法限制搜索的范围了,也就是SQL
SERVER必须对每一行都判断它是否满足WHERE子句中的所有条件。所以一个索引对于不满足SARG形式的表达式来说是无用的。
介绍完SARG后,我们来总结一下使用SARG以及在实践中遇到的和某些资料上结论不同的经验:
1、Like语句是否属于SARG取决于所使用的通配符的类型
如:name like ‘张%’ ,这就属于SARG
而:name like ‘%张’ ,就不属于SARG。
原因是通配符%在字符串的开通使得索引无法使用。
2、or 会引起全表扫描
Name=’张三’ and 价格>5000
符号SARG,而:Name=’张三’ or 价格>5000
则不符合SARG。使用or会引起全表扫描。
3、非操作符、函数引起的不满足SARG形式的语句
不满足SARG形式的语句最典型的情况就是包括非操作符的语句,如:NOT、!=、<>、!<、!>、NOT
EXISTS、NOT IN、NOT LIKE等,另外还有函数。下面就是几个不满足SARG形式的例子:
ABS(价格)<5000
Name like ‘%三’
有些表达式,如:
WHERE 价格*2>5000
SQL SERVER也会认为是SARG,SQL SERVER会将此式转化为:
WHERE 价格>2500/2
但我们不推荐这样使用,因为有时SQL SERVER不能保证这种转化与原始表达式是完全等价的。
4、IN
的作用相当与OR
语句:
Select * from table1 where tid in (2,3)
和
Select * from table1 where tid=2 or tid=3
是一样的,都会引起全表扫描,如果tid上有索引,其索引也会失效。
5、尽量少用NOT
6、exists 和 in
的执行效率是一样的
很多资料上都显示说,exists要比in的执行效率要高,同时应尽可能的用not exists来代替not
in。但事实上,我试验了一下,发现二者无论是前面带不带not,二者之间的执行效率都是一样的。因为涉及子查询,我们试验这次用SQL
SERVER自带的pubs数据库。运行前我们可以把SQL SERVER的statistics I/O状态打开:
(1)select title,price from titles where title_id in (select title_id from sales where qty>30)
该句的执行结果为:
表 ''sales''。扫描计数 18,逻辑读 56 次,物理读 0 次,预读 0 次。
表
''titles''。扫描计数 1,逻辑读 2 次,物理读 0 次,预读 0 次。
(2)select title,price from titles
where exists (select * from sales
where sales.title_id=titles.title_id and qty>30)
第二句的执行结果为:
表 ''sales''。扫描计数 18,逻辑读 56 次,物理读 0 次,预读 0 次。
表
''titles''。扫描计数 1,逻辑读 2 次,物理读 0 次,预读 0
次。
我们从此可以看到用exists和用in的执行效率是一样的。
7、用函数charindex()和前面加通配符%的LIKE执行效率一样
前面,我们谈到,如果在LIKE前面加上通配符%,那么将会引起全表扫描,所以其执行效率是低下的。但有的资料介绍说,用函数charindex()来代替LIKE速度会有大的提升,经我试验,发现这种说明也是错误的:
select gid,title,fariqi,reader from tgongwen
where charindex(''刑侦支队'',reader)>0 and fariqi>''2004-5-5''
用时:7秒,另外:扫描计数 4,逻辑读 7155 次,物理读 0 次,预读 0 次。
select gid,title,fariqi,reader from tgongwen
where reader like ''%'' + ''刑侦支队'' + ''%'' and fariqi>''2004-5-5''
用时:7秒,另外:扫描计数 4,逻辑读 7155 次,物理读 0 次,预读 0
次。
8、union并不绝对比or的执行效率高
我们前面已经谈到了在where子句中使用or会引起全表扫描,一般的,我所见过的资料都是推荐这里用union来代替or。事实证明,这种说法对于大部分都是适用的。
select gid,fariqi,neibuyonghu,reader,title from Tgongwen
where fariqi=''2004-9-16'' or gid>9990000
用时:68秒。扫描计数 1,逻辑读 404008 次,物理读 283 次,预读 392163 次。
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi=''2004-9-16''
union
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where gid>9990000
用时:9秒。扫描计数 8,逻辑读 67489 次,物理读 216 次,预读 7499
次。
看来,用union在通常情况下比用or的效率要高的多。
但经过试验,笔者发现如果or两边的查询列是一样的话,那么用union则反倒和用or的执行速度差很多,虽然这里union扫描的是索引,而or扫描的是全表。
select gid,fariqi,neibuyonghu,reader,title from Tgongwen
where fariqi=''2004-9-16'' or fariqi=''2004-2-5''
用时:6423毫秒。扫描计数 2,逻辑读 14726 次,物理读 1 次,预读 7176 次。
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi=''2004-9-16''
union
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi=''2004-2-5''
用时:11640毫秒。扫描计数 8,逻辑读 14806 次,物理读 108 次,预读 1144
次。
9、字段提取要按照“需多少、提多少”的原则,避免“select *”
我们来做一个试验:
select top 10000 gid,fariqi,reader,title from tgongwen order by gid desc
用时:4673毫秒
select top 10000 gid,fariqi,title from tgongwen order by gid desc
用时:1376毫秒
select top 10000 gid,fariqi from tgongwen order by gid desc
用时:80毫秒
由此看来,我们每少提取一个字段,数据的提取速度就会有相应的提升。提升的速度还要看您舍弃的字段的大小来判断。
10、count(*)不比count(字段)慢
某些资料上说:用*会统计所有列,显然要比一个世界的列名效率低。这种说法其实是没有根据的。我们来看:
select count(*) from Tgongwen
用时:1500毫秒
select count(gid) from Tgongwen
用时:1483毫秒
select count(fariqi) from Tgongwen
用时:3140毫秒
select count(title) from Tgongwen
用时:52050毫秒
从以上可以看出,如果用count(*)和用count(主键)的速度是相当的,而count(*)却比其他任何除主键以外的字段汇总速度要快,而且字段越长,汇总的速度就越慢。我想,如果用count(*),
SQL SERVER可能会自动查找最小字段来汇总的。当然,如果您直接写count(主键)将会来的更直接些。
11、order
by按聚集索引列排序效率最高
我们来看:(gid是主键,fariqi是聚合索引列):
select top 10000 gid,fariqi,reader,title from tgongwen
用时:196 毫秒。 扫描计数 1,逻辑读 289 次,物理读 1 次,预读 1527 次。
select top 10000 gid,fariqi,reader,title from tgongwen order by gid asc
用时:4720毫秒。 扫描计数 1,逻辑读 41956 次,物理读 0 次,预读 1287 次。
select top 10000 gid,fariqi,reader,title from tgongwen order by gid desc
用时:4736毫秒。 扫描计数 1,逻辑读 55350 次,物理读 10 次,预读 775 次。
select top 10000 gid,fariqi,reader,title from tgongwen order by fariqi asc
用时:173毫秒。 扫描计数 1,逻辑读 290 次,物理读 0 次,预读 0 次。
select top 10000 gid,fariqi,reader,title from tgongwen order by fariqi desc
用时:156毫秒。 扫描计数 1,逻辑读 289 次,物理读 0 次,预读 0
次。
从以上我们可以看出,不排序的速度以及逻辑读次数都是和“order by 聚集索引列” 的速度是相当的,但这些都比“order by
非聚集索引列”的查询速度是快得多的。
同时,按照某个字段进行排序的时候,无论是正序还是倒序,速度是基本相当的。
12、高效的TOP
事实上,在查询和提取超大容量的数据集时,影响数据库响应时间的最大因素不是数据查找,而是物理的I/0操作。如:
select top 10 * from (
select top 10000 gid,fariqi,title from tgongwen
where neibuyonghu=''办公室''
order by gid desc) as a
order by gid asc
这条语句,从理论上讲,整条语句的执行时间应该比子句的执行时间长,但事实相反。因为,子句执行后返回的是10000条记录,而整条语句仅返回10条语句,所以影响数据库响应时间最大的因素是物理I/O操作。而限制物理I/O操作此处的最有效方法之一就是使用TOP关键词了。TOP关键词是SQL
SERVER中经过系统优化过的一个用来提取前几条或前几个百分比数据的词。经笔者在实践中的应用,发现TOP确实很好用,效率也很高。但这个词在另外一个大型数据库ORACLE中却没有,这不能说不是一个遗憾,虽然在ORACLE中可以用其他方法(如:rownumber)来解决。在以后的关于“实现千万级数据的分页显示存储过程”的讨论中,我们就将用到TOP这个关键词。
到此为止,我们上面讨论了如何实现从大容量的数据库中快速地查询出您所需要的数据方法。当然,我们介绍的这些方法都是“软”方法,在实践中,我们还要考虑各种“硬”因素,如:网络性能、服务器的性能、操作系统的性能,甚至网卡、交换机等。
分享到:
相关推荐
SQL Server的索引结构及其使用是数据库管理中的关键概念,主要分为聚集索引(Clustered Index)和非聚集索引(Nonclustered Index)。 聚集索引,顾名思义,是表数据按照索引键的顺序物理存储的索引。在SQL Server...
"SQL Server 索引结构及其使用(聚集索引与非聚集索引)" 数据库索引是数据库性能优化的关键技术之一。SQL Server 提供了两种索引:聚集索引(clustered index)和非聚集索引(nonclustered index)。本文将详细介绍...
在数据库管理系统中,索引是一种...了解和掌握了SQL Server中索引的结构及其使用方法之后,数据库管理员和开发者可以更有效地构建和调整数据库结构,使其满足快速、准确的数据访问需求,从而提高整个系统的运行效率。
Microsoft SQL Server的索引结构及其优化.pdf
本文将深入浅出地解析SQL Server的索引结构,包括聚集索引(Clustered Index)和非聚集索引(Nonclustered Index)。 1. 聚集索引 聚集索引决定了表数据的物理存储顺序,就像汉语字典的正文部分,数据行和索引键值...
**SQLServer索引查询优化指南** SQLServer是一个广泛使用的数据库管理系统,尤其在企业级应用中,性能优化至关重要。本指南将深入探讨SQLServer中的索引原理及其对查询优化的影响。索引是数据库性能的关键因素,它...
每个非聚集索引都拥有一个独立的索引结构。 - **存储特性**: - 非聚集索引对应的索引号通常为2至250。 - 每个非聚集索引都构成了一个B树结构,其中根节点指向中间节点,中间节点再指向叶节点。 - 叶节点包含了...
- **定义**:非聚集索引独立于表中的数据存储,它包含一个索引结构,其中包含指向实际数据行的指针。 - **特点**: - 可以在同一个表上创建多个非聚集索引。 - 对于频繁查询但不经常更改的数据列非常有用。 ### ...
索引结构主要分为两种:B-Tree索引(包括聚集索引和非聚集索引)和特殊类型的索引,如哈希索引、全文索引等。聚集索引决定了数据行在表中的物理顺序,而非聚集索引则包含指向数据行的逻辑指针。 当执行SQL语句时,...
### SQL Server 2000 索引结构及使用方法 #### 一、深入浅出理解索引结构 在数据库管理系统中,索引是一种特殊的数据结构,它可以帮助提高数据检索的速度。对于SQL Server 2000而言,索引的重要性不言而喻。根据...
### SQL Server索引碎片及其解决方法 #### 一、索引碎片的概念 索引是数据库管理系统(DBMS)中一种重要的数据结构,用于提高数据检索的速度。然而,随着时间的推移,索引可能会出现碎片化的情况,这会影响查询...
3. **存储引擎**:解析SQL Server如何存储数据,涉及页结构、索引类型及其维护机制。 4. **查询优化器**:详细介绍SQL Server查询优化器的工作原理,包括成本估算模型、执行计划生成等关键过程。 5. **恢复模型与...
本文旨在帮助读者深入理解如何设计最佳的SQL Server索引,并提供一系列实用技巧来调整现有索引,使其发挥最大效能。 #### SQL Server 集群索引设计 - **重要性**:集群索引设计直接影响到SQL Server数据库系统的...
SQL Server 2005 的全文索引是其数据库管理系统中的一个重要特性,它允许用户对存储在text或ntext数据类型的列中的非结构化文本数据进行高效、灵活的搜索。全文索引通过创建一个预处理的索引,使得查询能够快速定位...
- **事务处理**:阐述了事务的基本概念及其在SQL Server中的实现方式,包括如何使用BEGIN TRANSACTION、COMMIT和ROLLBACK语句来确保数据的一致性和完整性。 #### 四、性能优化与最佳实践 为了帮助读者更好地利用...
- **介绍**:本实验介绍了SQL Server 2005及其管理工具——SQL Server Management Studio的基本功能。 - **学习目标**: - 创建数据库。 - 查看数据库中的对象和默认表。 - 使用查询编辑器。 - 通过多种方式...
本篇文章将深入探讨"SQLSERVER数据库结构比较工具"及其在比较两个数据库之间表差异和字段差异方面的应用。 首先,我们要理解数据库结构比较的基本概念。数据库结构主要包括表、视图、索引、存储过程、触发器等对象...