`

Problem11~13

阅读更多

问题11:[/size][size=x-small;]What is the greatest product of four adjacent numbers in any direction (up, down, left, right, or diagonally) in the 2020 grid?
(在20*20的矩阵中任意方向,即上下左右斜线反斜线,找出4个连续的数,使他们的积最大,输出积)

 

 

s="08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48" 

st=s.split("\n") 
a=Array.new(20,nil) 
0.upto(19) do |i|
  a[i]=st[i].split(" ") 
end 
0.upto(19) do |i|
  0.upto(19) do |j|
    a[i][j]=a[i][j].to_i
  end end 
  #########以上步骤为把给定矩阵转化为2维数组############
def horizon(a,i,j) 
  r=1
  j.upto(j+3) do |k|
    r*=a[i][k] 
  end
  r 
end
  
 def vertical(a,i,j) 
  r=1 
  i.upto(i+3) do |k| 
    r*=a[k][j] 
  end 
  r 
end 

def diagonal(a,i,j)
  r=1 
  0.upto(3) do |k|
    r*=a[i+k][j+k] 
  end 
  r 
end 
def backlash(a,i,j)
  r=1 
  0.upto(3) do |k|
    r*=a[i+k][19-j-k] 
  end 
  r 
end 
  
def comparator(a,b,c,d) 
  tmp=a>(b>c ? b : c) ? a : (b>c ? b : c) d>tmp ? d : tmp 
end 

r=0 
0.upto(16) do |i|
  0.upto(16) do |j|
    t=comparator(horizon(a,i,j), vertical(a,i,j), diagonal(a,i,j), backlash(a,i,j)) 
    if(r<t)
      r=t 
    end 
  end 
end 
    
puts r
 

 

问题12:We can see that 28 is the first triangle number to have over five divisors.

What is the value of the first triangle number to have over five hundred divisors?

(第一个除数超过500的三角数是多少)

 

public class Problem12 {
/*
 * 其实两个方法耗时差不多,好像是java对乘法进行了优化?
 * */
	public static void main(String[] args) {
		long t1 = System.currentTimeMillis();
		int r1 = Problem12.trangleDiv(500);
		long t2 = System.currentTimeMillis();
		System.out.println(t2-t1);
		System.out.println(r1);
		
		long t3 = System.currentTimeMillis();
		int r2 = Problem12.trangleDiv2(500);
		long t4 = System.currentTimeMillis();
		System.out.println(t4-t3);
		System.out.println(r2);

	}
	
	public static int trangleDiv(int m){
		int count = 0;
		int n = 0;
		int r = 0;
		while(count<m){
			count = 0;
			n++;
			r = (int)(Math.pow(n, 2)+n)/2;
			int k = 1;
			while(k*k<r){
				if(r%k==0)
					count += 2;
				k++;
			}
		}
		return r;
	}
	
	public static int trangleDiv2(int m){
		int count = 0;
		int n = 0;
		int r = 0;
		while(count<m){
			count = 0;
			n++;
			r = r+n;
			int k = 1;
			while(k*k<r){
				if(r%k==0)
					count += 2;
				k++;
			}
		}
		return r;
	}
}
 

 

问题13:Work out the first ten digits of the sum of the following one-hundred 50-digit numbers.

(计算出给定的100个50位数的和的前10个数字)

 

 

s=
"37107287533902102798797998220837590246510135740250
46376937677490009712648124896970078050417018260538
74324986199524741059474233309513058123726617309629
91942213363574161572522430563301811072406154908250
23067588207539346171171980310421047513778063246676
89261670696623633820136378418383684178734361726757
28112879812849979408065481931592621691275889832738
44274228917432520321923589422876796487670272189318
47451445736001306439091167216856844588711603153276
70386486105843025439939619828917593665686757934951
62176457141856560629502157223196586755079324193331
64906352462741904929101432445813822663347944758178
92575867718337217661963751590579239728245598838407
58203565325359399008402633568948830189458628227828
80181199384826282014278194139940567587151170094390
35398664372827112653829987240784473053190104293586
86515506006295864861532075273371959191420517255829
71693888707715466499115593487603532921714970056938
54370070576826684624621495650076471787294438377604
53282654108756828443191190634694037855217779295145
36123272525000296071075082563815656710885258350721
45876576172410976447339110607218265236877223636045
17423706905851860660448207621209813287860733969412
81142660418086830619328460811191061556940512689692
51934325451728388641918047049293215058642563049483
62467221648435076201727918039944693004732956340691
15732444386908125794514089057706229429197107928209
55037687525678773091862540744969844508330393682126
18336384825330154686196124348767681297534375946515
80386287592878490201521685554828717201219257766954
78182833757993103614740356856449095527097864797581
16726320100436897842553539920931837441497806860984
48403098129077791799088218795327364475675590848030
87086987551392711854517078544161852424320693150332
59959406895756536782107074926966537676326235447210
69793950679652694742597709739166693763042633987085
41052684708299085211399427365734116182760315001271
65378607361501080857009149939512557028198746004375
35829035317434717326932123578154982629742552737307
94953759765105305946966067683156574377167401875275
88902802571733229619176668713819931811048770190271
25267680276078003013678680992525463401061632866526
36270218540497705585629946580636237993140746255962
24074486908231174977792365466257246923322810917141
91430288197103288597806669760892938638285025333403
34413065578016127815921815005561868836468420090470
23053081172816430487623791969842487255036638784583
11487696932154902810424020138335124462181441773470
63783299490636259666498587618221225225512486764533
67720186971698544312419572409913959008952310058822
95548255300263520781532296796249481641953868218774
76085327132285723110424803456124867697064507995236
37774242535411291684276865538926205024910326572967
23701913275725675285653248258265463092207058596522
29798860272258331913126375147341994889534765745501
18495701454879288984856827726077713721403798879715
38298203783031473527721580348144513491373226651381
34829543829199918180278916522431027392251122869539
40957953066405232632538044100059654939159879593635
29746152185502371307642255121183693803580388584903
41698116222072977186158236678424689157993532961922
62467957194401269043877107275048102390895523597457
23189706772547915061505504953922979530901129967519
86188088225875314529584099251203829009407770775672
11306739708304724483816533873502340845647058077308
82959174767140363198008187129011875491310547126581
97623331044818386269515456334926366572897563400500
42846280183517070527831839425882145521227251250327
55121603546981200581762165212827652751691296897789
32238195734329339946437501907836945765883352399886
75506164965184775180738168837861091527357929701337
62177842752192623401942399639168044983993173312731
32924185707147349566916674687634660915035914677504
99518671430235219628894890102423325116913619626622
73267460800591547471830798392868535206946944540724
76841822524674417161514036427982273348055556214818
97142617910342598647204516893989422179826088076852
87783646182799346313767754307809363333018982642090
10848802521674670883215120185883543223812876952786
71329612474782464538636993009049310363619763878039
62184073572399794223406235393808339651327408011116
66627891981488087797941876876144230030984490851411
60661826293682836764744779239180335110989069790714
85786944089552990653640447425576083659976645795096
66024396409905389607120198219976047599490197230297
64913982680032973156037120041377903785566085089252
16730939319872750275468906903707539413042652315011
94809377245048795150954100921645863754710598436791
78639167021187492431995700641917969777599028300699
15368713711936614952811305876380278410754449733078
40789923115535562561142322423255033685442488917353
44889911501440648020369068063960672322193204149535
41503128880339536053299340368006977710650566631954
81234880673210146739058568557934581403627822703280
82616570773948327592232845941706525094512325230608
22918802058777319719839450180888072429661980811197
77158542502016545090413245809786882778948721859617
72107838435069186155435662884062257473692284509516
20849603980134001723930671666823555245252804609722
53503534226472524250874054075591789781264330331690"


a=s.split("\n")


n=0
a.each{|i| a[n]=i.split(//);n+=1}
0.upto(99) do |i|
  0.upto(49) do |j|
    a[i][j]=a[i][j].to_i
  end
end

r=Array.new(50)
0.upto(49) do |j|
  sum=0
  0.upto(99) do |i|
    sum+=a[i][j]
  end
  r[j]=sum
end

49.downto(1) do |i|
  r[i-1]+=r[i]/10
  r[i]%=10
end

p r
分享到:
评论

相关推荐

    Computer-Based.Problem.Solving.Process

    Chapter 11. I/O Device Management System Chapter 12. Computation Activity and Its Management Tools Part 4 Software Tools Supporting Program Development Chapter 13. Problem Solving by Software Tools ...

    Artificial Intelligence and Problem Solving

    Title: Artificial Intelligence and Problem Solving Author(s): Danny Kopec, Christopher Pileggi, David Ungar, Shweta Shetty Publisher: Mercury Learning & Information Year: 2017 Language: english ...

    Problem Solving with C++

    #### 第13章:链表的遍历(p.762) 链表是一种常用的数据结构,在C++中使用指针进行实现。本节介绍了一种遍历链表的方法,并展示了如何通过链表来管理类的对象。 - **遍历**:从链表的头节点开始,依次访问每个...

    C++.Programming.From.Problem.Analysis.to.Program.Design.7th.Edition

    Chapter 11. Inheritance and Composition. Chapter 12. Pointers, Classes, Virtual Functions, and Abstract Classes. Chapter 13. Operator Overloading and Templates. Chapter 14. Exception Handling. Chapter...

    Prime Ring Problem 深度探索

    int M, g, a[20] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, ag[20], c[20]; ``` - 初始化数组`a`,用于存储可能填入环中的数字。 - `ag`数组用于标记数字是否已被使用。 - `c`...

    Problem Solving in Data Structures & Algorithms Using Java

    CHAPTER 11: PRIORITY QUEUE CHAPTER 12: HASH-TABLE CHAPTER 13: GRAPHS CHAPTER 14: STRING ALGORITHMS CHAPTER 15: ALGORITHM DESIGN TECHNIQUES CHAPTER 16: BRUTE FORCE ALGORITHM CHAPTER 17: GREEDY ...

    C++ Programming: From Problem Analysis to Program Design, 8th Edition

    C++ Programming: From Problem Analysis to Program Design By 作者: D. S. Malik ISBN-10 书号: 1337102083 ISBN-13 书号: 9781337102087 Edition 版本: 8 出版日期: 2017-02-13 pages 页数: 1491 Contents ...

    Problem-Solving-with-C++-9th

    #### 第13章:链表中的类 - **链表中的类**:通过实例展示了如何使用链表来组织类对象,并提供了遍历和操作链表的方法。 #### 第14章:递归与栈 - **递归与栈**:讲解了递归的基本原理以及递归函数如何使用调用栈...

    子数组最大和 Maximal Contiguous Subsequent Sum Problem

    - 解释:最大和子数组是`{11, -4, 13}`,其和为20。 **示例2:** - 输入数组:`{1, -3, 4, -2, -1, 6}` - 输出结果:`7` - 解释:最大和子数组是`{4, -2, -1, 6}`,其和为7。 **特殊情况:** - 输入数组:`{-2, ...

    Problem Solving with C++ (7th edition)

    #### Chapter 11: Dynamic Memory and Classes This chapter covers dynamic memory allocation and its use in classes: - **Dynamic Allocation of Arrays**: Explanation of allocating arrays dynamically ...

    project euler problem 5

    具体来说,N=2^4×3^2×5^1×7^1×11^1×13^1×17^1×19^1=232792560。 通过这种方式,我们不仅解决了Project Euler问题5,还了解了如何高效地计算较大范围内的最小公倍数。这种方法不仅适用于特定的数学问题,也...

    Java, Java, Java, Object-Oriented Problem Solving (3rd Edition 2016)

    11.Exceptions: When Things Go Wrong. 12. Recursive Problem Solving. 13. Threads and Concurrent Programming. 14. Files, Streams, and Input/Output Techniques. 15. Sockets and Networking. 16. Data ...

    Problem.Solving.in.Data.Structures.and.Algorithms.Using.Cplusplus.epub

    Designing an efficient algorithm to solve a computer science problem is a skill of Computer programmer. This is the skill which tech companies like Google, Amazon, Microsoft, Adobe and many others ...

    爱立信CSR数据采集规范

    13. Group Switch problem 8 14. IN problem 9 15. ONE WAY SPEECH 9 16. CALL WAITING 9 17. Location Update problem 10 18. Cannot make/receive call, send/receive SMS 10 19. CP Overload (Call restrict) 12...

    ASP.NET 3.5 Website Programming: Problem - Design - Solution

    Chapter 13: Deploying the Site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

    CentOS 8.0 安装docker 报错:Problem package docker-ce-3 19.03.4-3.el7.x86_64 require

    文章目录CentOS 8.0 安装docker 报错:Problem: package docker-ce-3:19.03.4-3.el7.x86_64 requires containerd.io &gt;= 1.2.2-31、错误内容2、分析原因3、解决4、检查是否安装成功 CentOS 8.0 安装docker 报错:...

    0-1-knapsack-problem-master (84)c.zip

    13. `&lt;strong&gt;` 和 `&lt;em&gt;`:强调文本,分别表示加粗和斜体。 14. `&lt;span&gt;`:用于对文本进行局部样式控制。 15. `&lt;table&gt;`、`&lt;tr&gt;`、`&lt;td&gt;` 和 `&lt;th&gt;`:用于创建表格。 【标签】"html" 确认了这个项目的核心内容是...

Global site tag (gtag.js) - Google Analytics