- 浏览: 1103340 次
- 性别:
- 来自: 南京
-
博客专栏
-
-
Oracle管理和开发
浏览量:354480
最新评论
-
Simon.Ezer:
请问对于“如果非主键字段值发生改变,则不会同步过去”这种情况, ...
创建增量同步Oracle物化视图问题 -
dahai639:
挺好的,支持一下
Oracle的pipelined函数实现高性能大数据处理 -
zealotpz:
不错,原来是用户oracle 的所属组的问题
以sysdba身份登录oracle报ORA-1031权限不足错误之完美分析 -
mikixiyou:
zhangyuslam 写道如果担心全局索引失效,可以使用如下 ...
Oracle分区表的分区交互技术实现数据快速转移 -
sea0108:
...
Oracle sql loader使用速成
Oracle shared pool 主要分为library cache 、dictionary cache 和control structure 三个部分。
第一部分library cache 保存已执行的SQL 和PL/SQL 语句,和它们的执行计划等信息。
library cache 管理机制是采用一种hash 算法,实现library cache object 的快速查找和保存。
该hash 算法将library cache 空间定义为hash table 。hash table 中由多个bucket 组成,每个bucket 中,又由一个或多个library cache object handle 组成。library cache object handle 包含了library cache object 、名称等信息。通过handle 可以找到library cache object 和它们的内容。
(注:hash table 有多个hash bucket 组成,形成数组。hash bucket 有一个或多个object handle 组成。同一个bucket 中的不同的object handle 对象之间的关系是怎么样的?是数组还是链表?)
(miki西游 @mikixiyou 原文链接: http://mikixiyou.iteye.com/blog/1661948 )
library cache object handle 的结构如下:
- handle addr
- name
- namespace
- lock owners
- lock waiters
- pin owners
- pin waits
- flag
- heap 0(Object)
在library cache object handle 中,heap 0 又称object ,是一个指向对象的指针。heap 0 指向的对象的结构为:
- object type
- object name
- flags
- tables
- data blocks
在heap 0 中,tables 和data blocks 也是指向其他两个对象的指针。
tables 指向的对象的结构为:
- dependency table
- child table
- translation table
- authorization table
- access table
- r-o dependency table
- schema name table
data blocks 指向的对象的结构为:
- object
- source
- diana
- pcode
- mcode
- errors
- sql context 。
其中source 也称为heap 1 用于存储sql 文本,sql context 称为heap 6 用于存储SQL 执行计划。
手工将一个SQL 的类型为CRSR 的object handle 从内存中dump 出来。分别为parent cursor 和child cursor ,分别在不同bucket 。
在parent cursor 的children 栏中有指向child cursor 的handle 地址。
BUCKET 5944: LIBRARY OBJECT HANDLE: handle=1895899e8 mtx=0x189589b18(1) cdp=1 name=select* from sys.obj$ where obj#=:x hash=8cd0bd4dbb09ea7c3d007f1ce9b01738 timestamp=08-21-2012 10:02:35 namespace= CRSR flags=RON/KGHP/TIM/PN0/SML/KST/DBN/MTX/[120100d0] kkkk-dddd-llll=0000-0001-0001 lock=N pin=0 latch#=6 hpc=0002 hlc=0002 lwt=0x189589a90[0x189589a90,0x189589a90] ltm=0x189589aa0[0x189589aa0,0x189589aa0] pwt=0x189589a58[0x189589a58,0x189589a58] ptm=0x189589a68[0x189589a68,0x189589a68] ref=0x189589ac0[0x189589ac0,0x189589ac0] lnd=0x189589ad8[0x189589ad8,0x189589ad8] LOCK OWNERS: lock user session count mode flags -------- -------- -------- ----- ---- ------------------------ 17f72e938 1852c9890 1852c9890 1 N [00] LIBRARY OBJECT: object=1786e6168 type=CRSR flags=EXS[0001] pflags=[0000] status=VALD load=0 CHILDREN: size=16 child# table reference handle ------ -------- --------- -------- 0 17816fa10 17816f680 144768330 DATA BLOCKS: data# heap pointer status pins change whr ----- -------- -------- --------- ---- ------ --- 0 144773248 1786e6280 I/P/A/-/- 0 NONE 00 BUCKET 5944 total object count=1
LIBRARY OBJECT HANDLE: handle=144768330 mtx=0x144768460(0) cdp=0 namespace=CRSR flags=RON/KGHP/PN0/EXP/[10010100] kkkk-dddd-llll=0000-0001-0001 lock=N pin=0 latch#=6 hpc=fffe hlc=fffe lwt=0x1447683d8[0x1447683d8,0x1447683d8] ltm=0x1447683e8[0x1447683e8,0x1447683e8] pwt=0x1447683a0[0x1447683a0,0x1447683a0] ptm=0x1447683b0[0x1447683b0,0x1447683b0] ref=0x144768408[0x17816f680,0x17816f680] lnd=0x144768420[0x144768420,0x144768420] CHILD REFERENCES: reference latch flags --------- ----- ------------------- 17816f680 11 CHL[02] LOCK OWNERS: lock user session count mode flags -------- -------- -------- ----- ---- ------------------------ 17f72f1d8 1852c9890 1852c9890 1 N [00] LIBRARY OBJECT: object=178161a10 type=CRSR flags=EXS[0001] pflags=[0000] status=VALD load=0 DEPENDENCIES: count=1 size=16 dependency# table reference handle position flags ----------- -------- --------- -------- -------- ------------------- 0 17837dae8 17837d828 189addbb8 17 DEP[01] AUTHORIZATIONS: count=1 size=16 minimum entrysize=16 00000000 00000000 00020000 00000000 ACCESSES: count=1 size=16 dependency# types ----------- ----- 0 0009 SCHEMA: count=1 size=262144 00000000 DATA BLOCKS: data# heap pointer status pins change whr ----- -------- -------- --------- ---- ------ --- 0 144e55298 178161b28 I/P/A/-/- 0 NONE 00 6 1786cd5a0 16ece5dc0 I/-/A/-/E 0 NONE 00
Oracle 执行每一个SQL ,都在shared pool 的library cache 中。library cache 中的对象,使用hash table 方式管理。
当一个SQL 第一次发送到Oracle Server 时,Oracle 首先会将该SQL 转换成ASCII 码,然后通过hash 算法得到一个hash 值。这就是经常看到的存在于v$sql 和v$sqlarea 的hash_value 。
Oracle 会请求一个shared pool latch 在library cache 中分配一个存储空间,然后释放该shared pool latch ,再请求一个library cache latch ,将这个SQL 写入到library cache 中的相应的bucket 中。这时生成的对象称为library cache object handle ,它的namespace 值也就是type 的值称为CRSR 。
类型为CRSR 的library cache object handle 的对象有两个,分别PARENT CRSR 和CHILD CRSR 。这也就是我们在SQL 优化中常见的CURSOR 。
类型为PARENT CURSOR 的library cache object handle 对应的动态性能视图为v$sqlarea 。
类型为child cursor 的library cache object handle 对应的动态性能视图是v$sql 。
可以试着这样理解一下。parent cursor 保存SQL 文本,一条SQL 就是一个parent cursor 。child cursor 和parent cursor 的子类,保存不同用户、不同优化器模式、不同索引,不同参数传入值等而生成的SQL 执行计划、执行次数、执行时间、执行逻辑读和物理读等信息。
因此,同一个SQL ,会生成多个child cursor 和一个parent cursor 。
每生成一个child cursor ,在parent cursor 就记录为一个version 。在v$sqlarea.version_count 中记录的数字是所有曾生成过的child cursor 。
在v$sqlarea 中,有些字段是v$sql 的字段的聚合值,如fetchs,executions,buffer_gets,disk_reads 。
当这个SQL 第二次发送到Oracel Server 中,生成的hash_value 值,在parent cursor ,即libarary cache object handle 的链表,也就是v$sqlarea 中找到符合的记录时,会继续到child cursor 中去找,如有此SQL 相关信息完全相同的记录时,则共享使用该child cursor ,这在oracle 会记录为一次soft parse 。如果在child cursor 中没找到可以共享的记录,则会生成一个child cursor ,在parent cursor 中会增加一个version ,这在oracle 会记录为一次hard parse 。
在soft parse 中,还有一种情况,就是child cursor 被共享3 次(此值属于道听途说,不确定)后,oracle 会将此child cursor 放到session cached cursor 中。Oracle 在找child cursor 之前会在session cached cursor 链表中去找,有符合条件的记录则会记录一次soft soft parse 。
简而言之,在session cached cursor 中找到,则称为soft soft parse ,若在child cursor 中找到则称为soft parse ,都没有找到,则生成一个child cursor ,称为hard parse 。
在Oracle 中,library cache object handle 的hash table 是一个逻辑概念,dump 出来的shared pool 内容也不全面,v$sql 和v$sqlarea 也仅仅是一个查看对象的视角。窥豹一斑,也可能是盲人摸象。需要理解Oracle 的内部机制,真是不容易。
发表评论
-
Oracle分区表的分区交互技术实现数据快速转移
2013-01-22 11:48 14860有一个需求,将某业务表的某个时间点之前的记录转移到它的历史 ... -
等待事件enq TX row lock contention分析
2013-01-17 17:16 33319在Oracle数据库性能报告AWRRPT分析时,发现top ... -
Oracle的UNDO表空间管理总结
2013-01-14 15:06 13004UNDO是Oracle中的一个很 ... -
Oracle在不同windows系统中的迁移
2013-01-09 15:41 3835在Windows操作系统环境下 ... -
Oracle 10.2.0.1在windows 2008上安装失败经历
2013-01-07 10:29 8725这两天遇到这个一个项目上的数据库迁移的问题。原来的环境是数据库 ... -
所有的物化视图刷新脚本
2012-12-28 13:59 0select 'execute dbms_mview.refr ... -
Oracle数据库的SQL性能问题分析
2012-12-27 15:31 5307在Oracle 10.2.0.4数据库中,有一个SQL执行缓慢 ... -
db block gets和consistent gets的分析
2012-12-26 18:09 0在Oracle的文档中有这样一段解释: db block g ... -
创建增量同步Oracle物化视图问题
2012-12-25 14:07 15364我们采用Oracle的物化视图增量刷新机制定时将数据库A上的某 ... -
查归档日志文件每小时生成量
2012-12-18 16:13 10810在O racle数据库中,通过v$archived_lo ... -
如何删掉临时表空间的文件
2012-12-18 15:40 0Unlike Oracle datafiles which m ... -
Oracle sql性能诊断暨event 10046和10053使用
2012-12-17 10:24 0早上em grid control监控显示数据库的负载增加,其 ... -
查LOB字段占用的空间大小
2012-12-13 16:00 4601查询Oracle表中LOB字段的占用空间大小。表中每一个LOB ... -
Oracle Data Guard的重做日志传输和应用状况监控
2012-12-04 14:05 4088这是一个用来监控Oracle Data Guard环境下从主库 ... -
Oracle sql loader使用速成
2012-11-30 14:14 5013Oracle SQL LOADER是Oracle的 ... -
Oracle 11g2的监听器配置
2012-11-29 14:34 4414Oracle的监听器服务注册 ... -
Deleting archivelog on physical standby with RMAN in Oracle 10g
2012-11-28 13:25 0Turns out to be quite easy ... -
to_char将number转成string的小技巧
2012-11-27 14:14 10660很多数据转换处理操作时,会遇到将0.007007040000转 ... -
to_date转成字符串时ORA-01843 not a valid month 问题分析
2012-11-26 16:38 29348(注,本文三度易稿) 在开发Oracle SQL或PL/SQL ... -
Data Guard 10g 的保护级别为RESYNCHRONIZATION问题
2012-11-25 11:01 1936Oracle的data guard创建完成 ...
相关推荐
Oracle in Processes ........................................................................................................... 1 Oracle in Action ........................................................
第5章“Caches and Copies”关注Oracle的数据缓冲区高速缓存(Buffer Cache)和共享池(Shared Pool),讨论了如何优化内存使用以提高性能。 第6章“Writing and Recovery”讨论了Oracle的数据写入流程,包括检查点...
在Oracle 10.2及更高版本中,Library Cache的大小直接影响内存分配,其大小可以通过两种方式设定:如果启用了自动内存管理(Automatic Memory Management),并且指定了SGA_TARGET,那么如果也指定了SHARED_POOL_...
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
MMC整流器技术解析:基于Matlab的双闭环控制策略与环流抑制性能研究,Matlab下的MMC整流器技术文档:18个子模块,双闭环控制稳定直流电压,环流抑制与最近电平逼近调制,优化桥臂电流波形,高效并网运行。,MMC整流器(Matlab),技术文档 1.MMC工作在整流侧,子模块个数N=18,直流侧电压Udc=25.2kV,交流侧电压6.6kV 2.控制器采用双闭环控制,外环控制直流电压,采用PI调节器,电流内环采用PI+前馈解耦; 3.环流抑制采用PI控制,能够抑制环流二倍频分量; 4.采用最近电平逼近调制(NLM), 5.均压排序:电容电压排序采用冒泡排序,判断桥臂电流方向确定投入切除; 结果: 1.输出的直流电压能够稳定在25.2kV; 2.有功功率,无功功率稳态时波形稳定,有功功率为3.2MW,无功稳定在0Var; 3.网侧电压电流波形均为对称的三相电压和三相电流波形,网侧电流THD=1.47%<2%,符合并网要求; 4.环流抑制后桥臂电流的波形得到改善,桥臂电流THD由9.57%降至1.93%,环流波形也可以看到得到抑制; 5.电容电压能够稳定变化 ,工作点关键词:MMC
Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构,Simulink建模,MPPT最大功率点追踪,扰动观察法采用功率反馈方式,若ΔP>0,说明电压调整的方向正确,可以继续按原方向进行“干扰”;若ΔP<0,说明电压调整的方向错误,需要对“干扰”的方向进行改变。 ,Boost升压;光伏并网结构;Simulink建模;MPPT最大功率点追踪;扰动观察法;功率反馈;电压调整方向。,光伏并网结构中Boost升压MPPT控制策略的Simulink建模与功率反馈扰动观察法
STM32F103C8T6 USB寄存器开发详解(12)-键盘设备
科技活动人员数专指直接从事科技活动以及专门从事科技活动管理和为科技活动提供直接服务的人员数量
Matlab Simulink仿真探究Flyback反激式开关电源性能表现与优化策略,Matlab Simulink仿真探究Flyback反激式开关电源的工作机制,Matlab Simulimk仿真,Flyback反激式开关电源仿真 ,Matlab; Simulink仿真; Flyback反激式; 开关电源仿真,Matlab Simulink在Flyback反激式开关电源仿真中的应用
基于Comsol的埋地电缆电磁加热计算模型:深度解析温度场与电磁场分布学习资料与服务,COMSOL埋地电缆电磁加热计算模型:温度场与电磁场分布的解析与学习资源,comsol 埋地电缆电磁加热计算模型,可以得到埋地电缆温度场及电磁场分布,提供学习资料和服务, ,comsol;埋地电缆电磁加热计算模型;温度场分布;电磁场分布;学习资料;服务,Comsol埋地电缆电磁加热模型:温度场与电磁场分布学习资料及服务
1、文件内容:ibus-table-chinese-yong-1.4.6-3.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/ibus-table-chinese-yong-1.4.6-3.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊
基于51单片机protues仿真的汽车智能灯光控制系统设计(仿真图、源代码) 一、设计项目 根据本次设计的要求,设计出一款基于51单片机的自动切换远近光灯的设计。 技术条件与说明: 1. 设计硬件部分,中央处理器采用了STC89C51RC单片机; 2. 使用两个灯珠代表远近光灯,感光部分采用了光敏电阻,因为光敏电阻输出的是电压模拟信号,单片机不能直接处理模拟信号,所以经过ADC0832进行转化成数字信号; 3. 显示部分采用了LCD1602液晶,还增加按键部分电路,可以选择手自动切换远近光灯; 4. 用超声模块进行检测距离;
altermanager的企业微信告警服务
MyAgent测试版本在线下载
Comsol技术:可调BIC应用的二氧化钒VO2材料探索,Comsol模拟二氧化钒VO2的可调BIC特性研究,Comsol二氧化钒VO2可调BIC。 ,Comsol; 二氧化钒VO2; 可调BIC,Comsol二氧化钒VO2材料:可调BIC技术的关键应用
C++学生成绩管理系统源码
基于Matlab与Cplex的激励型需求响应模式:负荷转移与电价响应的差异化目标函数解析,基于Matlab与CPLEX的激励型需求响应负荷转移策略探索,激励型需求响应 matlab +cplex 激励型需求响应采用激励型需求响应方式对负荷进行转移,和电价响应模式不同,具体的目标函数如下 ,激励型需求响应; matlab + cplex; 负荷转移; 目标函数。,Matlab与Cplex结合的激励型需求响应模型及其负荷转移策略
scratch介绍(scratch说明).zip
内容概要:本文全面介绍了深度学习模型的概念、工作机制和发展历程,详细探讨了神经网络的构建和训练过程,包括反向传播算法和梯度下降方法。文中还列举了深度学习在图像识别、自然语言处理、医疗和金融等多个领域的应用实例,并讨论了当前面临的挑战,如数据依赖、计算资源需求、可解释性和对抗攻击等问题。最后,文章展望了未来的发展趋势,如与量子计算和区块链的融合,以及在更多领域的应用前景。 适合人群:对该领域有兴趣的技术人员、研究人员和学者,尤其适合那些希望深入了解深度学习原理和技术细节的读者。 使用场景及目标:①理解深度学习模型的基本原理和结构;②了解深度学习模型的具体应用案例;③掌握应对当前技术挑战的方向。 阅读建议:文章内容详尽丰富,读者应在阅读过程中注意理解各个关键技术的概念和原理,尤其是神经网络的构成及训练过程。同时也建议对比不同模型的特点及其在具体应用中的表现。
该文档提供了一个关于供应链管理系统开发的详细指南,重点介绍了项目安排、技术实现和框架搭建的相关内容。 文档分为以下几个关键部分: 项目安排:主要步骤包括搭建框架(1天),基础数据模块和权限管理(4天),以及应收应付和销售管理(5天)。 供应链概念:供应链系统的核心流程是通过采购商品放入仓库,并在销售时从仓库提取商品,涉及三个主要订单:采购订单、销售订单和调拨订单。 大数据的应用:介绍了数据挖掘、ETL(数据抽取)和BI(商业智能)在供应链管理中的应用。 技术实现:讲述了DAO(数据访问对象)的重用、服务层的重用、以及前端JS的继承机制、jQuery插件开发等技术细节。 系统框架搭建:包括Maven环境的配置、Web工程的创建、持久化类和映射文件的编写,以及Spring配置文件的实现。 DAO的需求和功能:供应链管理系统的各个模块都涉及分页查询、条件查询、删除、增加、修改操作等需求。 泛型的应用:通过示例说明了在Java语言中如何使用泛型来实现模块化和可扩展性。 文档非常技术导向,适合开发人员参考,用于构建供应链管理系统的架构和功能模块。