同前一篇一样,本文的分析还是基于Spring的web应用。
从web.xml里面配置的ContextLoaderListener开始。
ContextLoaderListener引用了一个ContextLoader(可以是它自身);
ContextLoader引用了一个WebApplicationContext;
WebApplicationContext本身是一个beanFactory. 如果不指定,默认的实现类是
XmlWebApplicationContext--这个类的实例是一个beanFactory,同时也引用了一个BeanFactory. (Decorator Pattern);
其中bean的加载是由AbstractApplicationContext的refresh方法调用的。
为了稍微形象的描述,我把refresh方法的调用层次贴了出来。

在ContextLoader的createWebApplicationContext里面,新建了一个ApplicationContext,并且刷新这个context.
新建的代码:
ConfigurableWebApplicationContext wac =
(ConfigurableWebApplicationContext) BeanUtils.instantiateClass(contextClass);
刷新的代码:
wac.refresh();
refresh方法的实现是在XmlWebApplicationContext的父类AbstractApplicationContext里面实现的。
refresh里面完成了WebApplicationContext里面的beanfactory的初始化和bean载入,beanfactorypostprocessor的调用,beanpostprocessor的注册,ApplicationEvent的监听和注册,non-lazy-init的bean的初始化。
换言之,已经把该准备的都准备好了,只需要有请求来获取bean,就根据情况或返回已经初始化的bean或进行bean的Instantiation 和 Initialization。
源码如下:
public void refresh() throws BeansException, IllegalStateException {
synchronized (this.startupShutdownMonitor) {
// Prepare this context for refreshing.
prepareRefresh();
// Tell the subclass to refresh the internal bean factory.
ConfigurableListableBeanFactory beanFactory = obtainFreshBeanFactory();
// Prepare the bean factory for use in this context.
prepareBeanFactory(beanFactory);
try {
// Allows post-processing of the bean factory in context subclasses.
postProcessBeanFactory(beanFactory);
// Invoke factory processors registered as beans in the context.
invokeBeanFactoryPostProcessors(beanFactory);
// Register bean processors that intercept bean creation.
registerBeanPostProcessors(beanFactory);
// Initialize message source for this context.
initMessageSource();
// Initialize event multicaster for this context.
initApplicationEventMulticaster();
// Initialize other special beans in specific context subclasses.
onRefresh();
// Check for listener beans and register them.
registerListeners();
// Instantiate all remaining (non-lazy-init) singletons.
finishBeanFactoryInitialization(beanFactory);
// Last step: publish corresponding event.
finishRefresh();
}
catch (BeansException ex) {
// Destroy already created singletons to avoid dangling resources.
destroyBeans();
// Reset 'active' flag.
cancelRefresh(ex);
// Propagate exception to caller.
throw ex;
}
}
}
注意其中的obtainFreshBeanFactory方法,beanFactory的初始化是由这个方法调用的。
protected ConfigurableListableBeanFactory obtainFreshBeanFactory() {
refreshBeanFactory();
ConfigurableListableBeanFactory beanFactory = getBeanFactory();
if (logger.isDebugEnabled()) {
logger.debug("Bean factory for " + getDisplayName() + ": " + beanFactory);
}
return beanFactory;
}
继续追踪refreshBeanFactory方法,发现是在AbstractRefreshableApplicationContext中实现的。
@Override
protected final void refreshBeanFactory() throws BeansException {
if (hasBeanFactory()) {
destroyBeans();
closeBeanFactory();
}
try {
DefaultListableBeanFactory beanFactory = createBeanFactory();
beanFactory.setSerializationId(getId());
customizeBeanFactory(beanFactory);
loadBeanDefinitions(beanFactory);
synchronized (this.beanFactoryMonitor) {
this.beanFactory = beanFactory;
}
}
catch (IOException ex) {
throw new ApplicationContextException("I/O error parsing bean definition source for " + getDisplayName(), ex);
}
}
由此可见,正是在refreshBeanFactory中,新建了一个DefaultListableBeanFactory并且载入了所有BeanDefinition.(载入过程在后续的篇章中继续分析)。
OK.现在脉络清楚了。我们知道了contextLoader在哪里获取了WebApplicationContext,知道了WebApplicationContext在哪里获取了beanFactory,知道了beanFactory在哪里创建和载入bean.
后面需要关注的就是bean的载入和初始话过程了。具体细节在后续的文章里面分析。
分享到:
相关推荐
在源码分析中,我们首先看到`prepareContext`方法被调用,这是`SpringApplication`类中的一个重要方法,它负责初始化`ApplicationContext`(应用上下文)并为后续的bean加载做准备。 `prepareContext`方法做了以下...
Spring框架的源代码分析主要集中在它的核心特性——控制反转(IOC)容器上。IOC容器是Spring的核心组件,它负责管理应用程序中的对象,也就是所谓的"bean"。BeanFactory接口是IOC容器的基础,它定义了最基础的bean...
接着,我们转向微服务的关键组件——Spring Cloud。Spring Cloud提供了大量的工具,用于快速构建一些常见的微服务结构,如服务发现(Eureka)、配置中心(Config Server)、API网关(Zuul或Gateway)等。以服务发现...
COMSOL激光增材制造技术:热流力三场耦合模型的构建与模拟研究,COMSOL激光增材制造中热-流-力三场耦合模型的研究与应用:基于固体传热、固体力学、层流和动网格技术的多物理场分析,comsol激光增材制造热-流-力三场偶合模型 选用固体传热,固体力学,层流和动网格,考虑热物性以及马兰戈尼效应、表面张力,相变潜热,热对流和热辐射等 【软件工具】COMSOL5.6 【备注】,comsol三维模型 ,核心关键词:comsol; 激光增材制造; 热-流-力三场偶合模型; 固体传热; 固体力学; 层流; 动网格; 热物性; 马兰戈尼效应; 表面张力; 相变潜热; 热对流; 热辐射; COMSOL5.6; 三维模型。,COMSOL 5.6激光增材制造三场耦合模型
基于PLL的SMO滑模观测器算法在永磁同步电机无传感器矢量控制中的应用及其与反正切SMO的对比:有效消除转速抖动,基于PLL的SMO滑模观测器算法在永磁同步电机无传感器矢量控制中的应用及其与反正切SMO的对比:有效消除转速抖动,基于PLL的SMO滑模观测器算法,永磁同步电机无传感器矢量控制,跟基于反正切的SMO做对比,可以有效消除转速的抖动。 ,基于PLL的SMO滑模观测器算法; 永磁同步电机无传感器矢量控制; 反正切SMO; 转速抖动消除。,基于PLL SMO滑模观测器:永磁同步电机无传感器矢量控制新算法,优化抖动消除效能
【毕业设计】java-springboot+vue个人云盘管理系统实现源码(完整前后端+mysql+说明文档+LunW).zip
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
【毕业设计】java-springboot-vue电影推荐系统实现源码(完整前后端-mysql-说明文档-LunW).zip
基于OpenCV和Python的实时口罩识别系统:支持摄像头与图片检测,界面简洁操作便捷,基于OpenCV的口罩识别系统 相关技术:python,opencv,pyqt (请自行安装向日葵远程软件,以便提供远程帮助) 软件说明:读取用户设备的摄像头,可实时检测画面中的人的口罩佩戴情况,并给予提示。 有基础的同学,可稍作修改,检测图片。 第一张为运行主界面。 第二张为部分代码截图。 第三和第四张为运行界面。 ,基于OpenCV的口罩识别系统; Python; OpenCV; PyQt; 远程协助; 摄像头读取; 实时检测; 口罩佩戴情况提示; 代码截图; 运行界面。,"基于OpenCV与Python的口罩识别系统:实时检测与提醒"
内容概要:本文是一份关于 Git 和 GitHub 的入门指南,详细介绍了一整套从安装到进阶使用的完整流程。文章首先阐述了版本控制的重要性,并解释了 Git 的特点和优势。接着逐步介绍了 Git 和 GitHub 的使用方法,包括安装设置 Git、创建和管理 GitHub 账户、创建和克隆仓库,以及日常操作如提交、推送、拉取、分支管理和处理冲突的具体指令和操作步骤。还涉及到高级主题如合并请求、持续集成等功能的介绍,帮助读者深入了解 Git 和 GitHub 的应用范围和最佳实践。 适用人群:适用于刚开始接触版本控制系统的初学者,特别是那些正在寻找 Git 和 GitHub 实际操作指导的学生和技术爱好者。 使用场景及目标:①为刚踏入软件开发领域的新人提供详尽的基础教学,使其能够快速理解和掌握必要的技能;②指导已有一定经验但仍想进一步深化理解的开发人员如何优化日常工作流程;③促进团队合作效率提升,通过具体的实例演示如何利用版本控制系统协调多人协作。 其他说明:随着 Git 和 GitHub 成为现代软件开发的标准工具之一,这份资料不仅涵盖了关键知识点,而且配有多图例解析和实操练习,确保每个阶段的学习都能得到良好反馈和支持。读者可以通过动手实践来巩固所学知识,在实践中遇到困难也能及时参考本文获得解决方案。
python安装-16. 使用指定序列和数值创建一个字典——分配伴侣.py
本研究的目的是基于Python和OpenCV开发一个魔方识别系统,并提供相应的源码和部署教程。通过该系统,用户可以将魔方的图像输入,系统可以自动识别魔方的状态,并给出相应的还原方案。具体来说,本研究的主要内容包括以下几个方面: 图像预处理:通过使用OpenCV提供的图像处理算法,对输入的魔方图像进行预处理,包括图像去噪、边缘检测、图像分割等操作,以提高后续的识别准确率。 特征提取与模式识别:通过使用OpenCV提供的特征提取算法,对预处理后的图像进行特征提取,以获取魔方的状态信息。然后,通过机器学习算法,对提取到的特征进行模式识别,以确定魔方的状态。 还原方案生成:根据识别到的魔方状态,使用经典的还原算法,生成相应的还原方案。通过该方案,用户可以轻松地还原魔方,提高解决效率。
基于Springboot与Vue.js的WMS仓库管理系统源码详解:前后端分离架构下的Java实践与功能详述,基于Springboot和Vue的前后端分离WMS仓库管理系统源码,详细功能参考详情。,Springboot vue仓库管理系统源码Java 前后端分离 WMS仓库管理 BS 功能见详情 ,Springboot; Vue; 仓库管理系统; 源码; Java; 前后端分离; WMS仓库管理; BS; 功能详情,Springboot+Vue仓库管理系统源码:前后端分离的WMS管理BS应用
用AI学安卓游戏开发1——控制小球上下左右移动2代码, 初始化小球随机自有移动,遇到屏幕边缘反弹,摇杆介入后小球停止自有移动,按照摇杆控制方向移动。
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
CSDN Matlab武动乾坤上传的资料均是完整代码运行出的仿真结果图,可见完整代码亲测可用,适合小白; 1、完整的代码内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
基于ATP-EMTP的110kV海底电缆与架空线雷击过电压仿真分析与研究,基于ATP-EMTP的110kV海底电缆与架空线雷击过电压仿真分析与研究,110kV海底电缆-架空线雷击过电压ATP-EMTP仿真分析 ,核心关键词: 110kV海底电缆; 架空线; 雷击过电压; ATP-EMTP仿真分析; 分析。 关键词用分号分隔,如上所示。,雷击过电压仿真分析:110kV海底电缆及架空线ATP-EMTP研究
基于800kV高压直流输电的VSC-HVDC仿真模型研究:控制策略与性能分析,基于800kV-VSC-HVDC的直流输电仿真模型研究:深入探讨控制结构与电压稳定性,800kV-VSC-HVDC直流输电仿真模型(Matlab) 流器拓扑:VSC两电平流器 电压等级:直流800kV,交流500kV 控制结构:逆变侧定有功控制与电流内环PI+前馈解耦,整流侧定直流电压与电流内环+PI前馈解耦; 输电距离:100km; 双端电压电流均为对称的三相电压电流; 直流电压稳定在800kV; 双端网侧THD<2% 电子资料, ,800kV; VSC HVDC; 直流输电仿真模型; Matlab; VSC两电平换流器; 直流电压稳定; 逆变侧定有功控制; 电流内环PI+前馈解耦; 整流侧定直流电压与电流内环; 输电距离; 双端电压电流对称; 双端网侧THD<2%。,Matlab仿真模型:800kV VSC两电平换流器HVDC输电系统