http://www.blogjava.net/persister/archive/2008/10/27/236813.html
在 explain的帮助下,您就知道什么时候该给表添加索引,以使用索引来查找记录从而让select 运行更快。
如果由于不恰当使用索引而引起一些问题的话,可以运行 analyze table来更新该表的统计信息,例如键的基数,它能帮您在优化方面做出更好的选择。
explain 返回了一行记录,它包括了 select语句中用到的各个表的信息。这些表在结果中按照mysql即将执行的查询中读取的顺序列出来。mysql用一次扫描多次连接(single- sweep,multi-join)的方法来解决连接。这意味着mysql从第一个表中读取一条记录,然后在第二个表中查找到对应的记录,然后在第三个表 中查找,依次类推。当所有的表都扫描完了,它输出选择的字段并且回溯所有的表,直到找不到为止,因为有的表中可能有多条匹配的记录下一条记录将从该表读 取,再从下一个表开始继续处理。
在mysql version 4.1中,explain输出的结果格式改变了,使得它更适合例如 union语句、子查询以及派生表的结构。更令人注意的是,它新增了2个字段: id和 select_type。当你使用早于mysql4.1的版本就看不到这些字段了。
explain结果的每行记录显示了每个表的相关信息,每行记录都包含以下几个字段:
id
本次 select 的标识符。在查询中每个 select都有一个顺序的数值。
select_type
select 的类型,可能会有以下几种:
simple: 简单的 select (没有使用 union或子查询)
primary: 最外层的 select。
union: 第二层,在select 之后使用了 union。
dependent union: union 语句中的第二个select,依赖于外部子查询
subquery: 子查询中的第一个 select
dependent subquery: 子查询中的第一个 subquery依赖于外部的子查询
derived: 派生表 select(from子句中的子查询)
table
记录查询引用的表。
type
表连接类型。以下列出了各种不同类型的表连接,依次是从最好的到最差的:
system:表只有一行记录(等于系统表)。这是 const表连接类型的一个特例。
const:表中最多只有一行匹配的记录,它在查询一开始的时候就会被读取出来。由于只有一行记录,在余下的优化程序里该行记录的字段值可以被当作是一个 恒定值。const表查询起来非常快,因为只要读取一次!const 用于在和 primary key 或unique 索引中有固定值比较的情形。下面的几个查询中,tbl_name 就是 c表了:
select * from tbl_name where primary_key=1; select * from tbl_namewhere primary_key_part1=1 and primary_key_part2=2;
eq_ref:从该表中会有一行记录被读取出来以和从前一个表中读取出来的记录做联合。与const类型不同的是,这是最好的连接类型。它用在索引所有部 分都用于做连接并且这个索引是一个primary key 或 unique 类型。eq_ref可以用于在进行"="做比较时检索字段。比较的值可以是固定值或者是表达式,表达示中可以使用表里的字段,它们在读表之前已经准备好 了。以下的几个例子中,mysql使用了eq_ref 连接来处理 ref_table:
select * from ref_table,other_table whereref_table.key_column=other_table.column; select * fromref_table,other_table whereref_table.key_column_part1=other_table.column andref_table.key_column_part2=1;
ref: 该表中所有符合检索值的记录都会被取出来和从上一个表中取出来的记录作联合。ref用于连接程序使用键的最左前缀或者是该键不是 primary key 或 unique索引(换句话说,就是连接程序无法根据键值只取得一条记录)的情况。当根据键值只查询到少数几条匹配的记录时,这就是一个不错的连接类型。 ref还可以用于检索字段使用 =操作符来比较的时候。以下的几个例子中,mysql将使用 ref 来处理ref_table:
select * from ref_table where key_column=expr; select * fromref_table,other_table whereref_table.key_column=other_table.column; select * fromref_table,other_table whereref_table.key_column_part1=other_table.column andref_table.key_column_part2=1;
ref_or_null: 这种连接类型类似 ref,不同的是mysql会在检索的时候额外的搜索包含null 值的记录。这种连接类型的优化是从mysql4.1.1开始的,它经常用于子查询。在以下的例子中,mysql使用ref_or_null 类型来处理 ref_table:
select * from ref_table where key_column=expr or key_column is null;
unique_subquery: 这种类型用例如一下形式的 in 子查询来替换 ref:
value in (select primary_key from single_table where some_expr)
unique_subquery: 只是用来完全替换子查询的索引查找函数效率更高了。
index_subquery: 这种连接类型类似 unique_subquery。它用子查询来代替in,不过它用于在子查询中没有唯一索引的情况下,例如以下形式:
value in (select key_column from single_table where some_expr)
range: 只有在给定范围的记录才会被取出来,利用索引来取得一条记录。key字段表示使用了哪个索引。key_len字段包括了使用的键的最长部分。这种类型时 ref 字段值是 null。range用于将某个字段和一个定植用以下任何操作符比较时 =, <>, >,>=, <, <=, is null, <=>, between, 或 in:
select * from tbl_name where key_column = 10; select * fromtbl_name where key_column between 10 and 20; select * from tbl_namewhere key_column in (10,20,30); select * from tbl_name wherekey_part1= 10 and key_part2 in (10,20,30);
index: 连接类型跟 all 一样,不同的是它只扫描索引树。它通常会比 all快点,因为索引文件通常比数据文件小。mysql在查询的字段知识单独的索引的一部分的情况下使用这种连接类型。
all: 将对该表做全部扫描以和从前一个表中取得的记录作联合。这时候如果第一个表没有被标识为const的话就不大好了,在其他情况下通常是非常糟糕的。正常地,可以通过增加索引使得能从表中更快的取得记录以避免all。
possible_keys
possible_keys字段是指 mysql在搜索表记录时可能使用哪个索引。注意,这个字段完全独立于explain 显示的表顺序。这就意味着 possible_keys里面所包含的索引可能在实际的使用中没用到。如果这个字段的值是null,就表示没有索引被用到。这种情况下,就可以检查 where子句中哪些字段那些字段适合增加索引以提高查询的性能。就这样,创建一下索引,然后再用explain 检查一下。详细的查看章节"14.2.2 alter tablesyntax"。想看表都有什么索引,可以通过 show index from tbl_name来看。
key
key字段显示了mysql实际上要用的索引。当没有任何索引被用到的时候,这个字段的值就是null。想要让mysql强行使用或者忽略在 possible_keys字段中的索引列表,可以在查询语句中使用关键字force index, use index,或 ignore index。如果是 myisam 和 bdb 类型表,可以使用 analyzetable 来帮助分析使用使用哪个索引更好。如果是 myisam类型表,运行命令 myisamchk --analyze也是一样的效果。详细的可以查看章节"14.5.2.1 analyze tablesyntax"和"5.7.2 table maintenance and crash recovery"。
key_len
key_len 字段显示了mysql使用索引的长度。当 key 字段的值为 null时,索引的长度就是 null。注意,key_len的值可以告诉你在联合索引中mysql会真正使用了哪些索引。
ref
ref 字段显示了哪些字段或者常量被用来和 key配合从表中查询记录出来。
rows
rows 字段显示了mysql认为在查询中应该检索的记录数。
extra
本字段显示了查询中mysql的附加信息。以下是这个字段的几个不同值的解释:
distinct:mysql当找到当前记录的匹配联合结果的第一条记录之后,就不再搜索其他记录了。
not exists:mysql在查询时做一个 left join优化时,当它在当前表中找到了和前一条记录符合 left join条件后,就不再搜索更多的记录了。下面是一个这种类型的查询例子:
select * from t1 left join t2 on t1.id=t2.id where t2.id isnull;
假使 t2.id 定义为 not null。这种情况下,mysql将会扫描表 t1并且用 t1.id 的值在 t2 中查找记录。当在 t2中找到一条匹配的记录时,这就意味着 t2.id 肯定不会都是null,就不会再在 t2 中查找相同 id值的其他记录了。也可以这么说,对于 t1 中的每个记录,mysql只需要在t2 中做一次查找,而不管在 t2 中实际有多少匹配的记录。
range checked for each record (index map: #)
mysql没找到合适的可用的索引。取代的办法是,对于前一个表的每一个行连接,它会做一个检验以决定该使用哪个索引(如果有的话),并且使用这个索引来从表里取得记录。这个过程不会很快,但总比没有任何索引时做表连接来得快。
using filesort: mysql需要额外的做一遍从而以排好的顺序取得记录。排序程序根据连接的类型遍历所有的记录,并且将所有符合 where条件的记录的要排序的键和指向记录的指针存储起来。这些键已经排完序了,对应的记录也会按照排好的顺序取出来。详情请看"7.2.9how mysql optimizes order by"。
using index
字段的信息直接从索引树中的信息取得,而不再去扫描实际的记录。这种策略用于查询时的字段是一个独立索引的一部分。
using temporary: mysql需要创建临时表存储结果以完成查询。这种情况通常发生在查询时包含了groupby 和 order by 子句,它以不同的方式列出了各个字段。
using where
where子句将用来限制哪些记录匹配了下一个表或者发送给客户端。除非你特别地想要取得或者检查表种的所有记录,否则的话当查询的extra 字段值不是 using where 并且表连接类型是 all 或 index时可能表示有问题。
如果你想要让查询尽可能的快,那么就应该注意 extra 字段的值为usingfilesort 和 using temporary 的情况。
你可以通过 explain 的结果中 rows字段的值的乘积大概地知道本次连接表现如何。它可以粗略地告诉我们mysql在查询过程中会查询多少条记录。如果是使用系统变量 max_join_size 来取得查询结果,这个乘积还可以用来确定会执行哪些多表select 语句。
下面的例子展示了如何通过 explain提供的信息来较大程度地优化多表联合查询的性能。
假设有下面的 select 语句,正打算用 explain 来检测:
explain select tt.ticketnumber, tt.timein, tt.projectreference,tt.estimatedshipdate, tt.actualshipdate, tt.clientid,tt.servicecodes, tt.repetitiveid, tt.currentprocess,tt.currentdppers tt.recordvolume, tt.dpprinted, et.country,et_1.country, do.custname from tt, et, et as et_1, do wherett.submittime is null and tt.actualpc = et.employid andtt.assignedpc = et_1.employid and tt.clientid = do.custnmbr;
在这个例子中,先做以下假设:
要比较的字段定义如下:
table column columntype
tt actualpc char(10)
tt assignedpc char(10)
tt clientid char(10)
et employid char(15)
do custnmbr char(15)
数据表的索引如下:
table index
tt actualpc
tt assignedpc
tt clientid
et employid (primary key)
do custnmbr (primary key)
tt.actualpc 的值是不均匀分布的。
在任何优化措施未采取之前,经过 explain分析的结果显示如下:
table type possible_keys key key_len ref rows extra
et all primarynull null null 74
do all primary null null null 2135
et_1 allprimary null null null 74
tt all assignedpc, null null null 3872 clientid, actualpc range checked for each record (key map: 35)
由于字段 type 的对于每个表值都是all,这个结果意味着mysql对所有的表做一个迪卡尔积;这就是说,每条记录的组合。这将需要花很长的时间,因为需要扫描每个表总 记录数乘积的总和。在这情况下,它的积是74 * 2135 * 74 * 3872 = 45,268,558,720条记录。如果数据表更大的话,你可以想象一下需要多长的时间。
在这里有个问题是当字段定义一样的时候,mysql就可以在这些字段上更快的是用索引(对isam类型的表来说,除非字段定义完全一样,否则不会使用索 引)。在这个前提下,varchar和 char是一样的除非它们定义的长度不一致。由于 tt.actualpc 定义为char(10),et.employid 定义为 char(15),二者长度不一致。
为了解决这个问题,需要用 alter table 来加大 actualpc的长度从10到15个字符:
mysql> alter table tt modify actualpc varchar(15);
现在 tt.actualpc 和 et.employid 都是 varchar(15)
了。再来执行一次 explain 语句看看结果:
table type possible_keys key key_len ref rows extra
tt allassignedpc, null null null 3872 using clientid, where actualpc
do all primary null null null 2135 range checked for each record (keymap: 1)
et_1 all primary null null null 74 range checked for eachrecord (key map: 1) et eq_ref primary primary 15 tt.actualpc 1
这还不够,它还可以做的更好:现在 rows值乘积已经少了74倍。这次查询需要用2秒钟。
第二个改变是消除在比较 tt.assignedpc = et_1.employid 和 tt.clientid= do.custnmbr 中字段的长度不一致问题:
mysql> alter table tt modify assignedpc varchar(15), ->modify clientid varchar(15);
现在 explain 的结果如下:
table type possible_keys key key_len ref rows extra
et all primary null null null 74
tt ref assignedpc, actualpc 15 et.employid 52 using clientid, where actualpc
et_1 eq_ref primary primary 15 tt.assignedpc 1
do eq_ref primary primary 15 tt.clientid 1
这看起来已经是能做的最好的结果了。
遗留下来的问题是,mysql默认地认为字段 tt.actualpc的值是均匀分布的,然而表 tt并非如此。幸好,我们可以很方便的让mysql分析索引的分布:
mysql> analyze table tt;
到此为止,表连接已经优化的很完美了,explain 的结果如下:
table type possible_keys key key_len ref rows extra
tt all assignedpc null null null 3872 using clientid, where actualpc
et eq_ref primary primary 15 tt.actualpc 1
et_1 eq_ref primary primary 15 tt.assignedpc 1
do eq_ref primary primary 15 tt.clientid 1
请注意,explain 结果中的 rows字段的值也是mysql的连接优化程序大致猜测的,请检查这个值跟真实值是否基本一致。如果不是,可以通过在select 语句中使用 straight_join 来取得更好的性能,同时可以试着在from分句中用不同的次序列出各个表。
相关推荐
在MySQL的基础知识章节中,作者从MySQL的安装与配置讲起,带领读者一步步进入数据库的世界。学习如何创建和管理数据库、表和索引,以及执行数据查询和事务处理是掌握MySQL的必经之路。书中对基本操作和SQL语法进行了...
以上是根据给定文件信息整理出的《MySQL数据库高性能处理开发实战指南70讲》各章节涉及的主要知识点。这些内容不仅涵盖了MySQL数据库的核心技术要点,还融入了大量实践经验和技巧,对于希望在数据库领域深入学习和...
电力日负荷曲线预测程序和数据集(预测未来一天的负荷曲线)
勾正科技向新而生智赢未来-2024年H1中国家庭智能大屏行业发展白皮书83页.pdf
题目2.2(成绩分析问题):设计并实现一个成绩分析系统,们能够实现录入、保存一个班级学生多门课程的成绩,并成绩进行分析等功能。
更多毕业设计https://cv2022.blog.csdn.net/article/details/124463185
系统选用B/S模式,后端应用springboot框架,前端应用vue框架, MySQL为后台数据库。 本系统基于java设计的各项功能,数据库服务器端采用了Mysql作为后台数据库,使Web与数据库紧密联系起来。 在设计过程中,充分保证了系统代码的良好可读性、实用性、易扩展性、通用性、便于后期维护、操作方便以及页面简洁等特点。
内容概要:本文主要介绍了鸿蒙原生应用开发过程中可能遇到的内存问题以及相应的解决方案。针对这些问题,华为提供的 DevEco Studio 包含了性能分析工具 DevEco Profiler,提供两种场景化的分析模板——Snapshot Insight 和 Allocation Insight,支持实时监控、ArkTS 和 Native 内存的深度分析。这使得开发者能够有效识别、定界定位并优化内存问题,大幅提升应用的稳定性和性能。此外,文章还介绍了 DevEco Studio 强大的模拟器功能,该模拟器能仿真各类设备及场景,包括GPS定位、导航和低电量管理,极大提高了开发效率和测试灵活性。最后,文中详细列出了常见的快捷键,并给出了保持 DevEco Studio 与 Android Studio 快捷键同步的方法。 适合人群:专注于鸿蒙生态系统内的应用开发的技术人员,特别是有一定经验的中级至高级程序员。 使用场景及目标:本文旨在帮助开发者更好地理解和掌握 DevEco Studio 的强大工具链,尤其是解决开发过程中经常遇见的内存管理和多设备兼容问题,目标是优化开发流程,减少调测时间,增强产品的质量和用户体验。 阅读建议:开发者可通过鸿蒙官方提供的资源链接下载最新版本的 DevEco Studio 并探索相关技术博客,以获得最新的技术和使用技巧。建议在实践中逐步熟悉各个功能模块,并积极利用性能分析工具和模拟器来解决现实中的问题。
我是谁
精美导航引导页HTML源码,自适应手机/电脑,无后台,上传网站根目录就能用,首页内容在index里面修改 可以双页切换,亲测可用,搭建简单,附带修改教程
hap手机软件包测试,测试使用
内容概要:本文档是一份针对自动化专业的《电子线路CAD训练》实习报告,详细介绍了通过使用Altium Designer冬春软件进行电子线路的原理图设计、元件库文件设计、PCB板设计及元件封装库设计的过程。文档首先概述了训练的目的和重要性,随后逐步讲解Altium Designer Winter的安装与配置,然后重点展示了具体元件的设计细节,如温度传感器、AD输入通道、四双向模拟开关等的实际应用。此外,还详细阐述了自动布线和手动布线的具体步骤与注意事项,最后通过对此次实习的回顾,强调了本次训练对于提升电路设计能力和后续学习的支持。 适用人群:本报告适用于正在学习自动化及相关专业的在校大学生或从事电气工程领域的工程师和技术人员。 使用场景及目标:旨在帮助读者深入了解电子线路CAD的基础理论知识及其实际应用场景,特别是在Altium Designer环境下的操作流程。目标在于强化学生或技术人员的专业技能,以便他们能够在未来的工作或研究中有更强的设计能力。同时,该报告也可作为相关课程的教学材料。 其他说明:附录部分提供了完整的电路原理图和详细的元器件列表,供读者进一步理解和参照练习。
“2019年金融网点分县统计数据”提供了中国县域金融机构布局的详细信息,覆盖国有大型商业银行、股份制商业银行、城市商业银行及农村商业银行的网点分布特征。截至2019年底,全国银行网点总量为197,719个,其中县域地区分布87,003个,占比44%;市区网点110,716个,占比56%。 从银行类型看,国有大型商业银行县域网点数量最多(46,481个),但分布不均,如交通银行县域网点仅占9.01%,而邮政储蓄银行县域覆盖率高达59%。股份制商业银行县域网点仅占10%,主要集中于华东地区(73%)。农村商业银行县域网点占比60%(34,525个),华北和华中地区占其总量的53%。 区域分布上,华中地区县域网点占比最高(57.66%),其次是华东(34%)和西南(46%);华南地区县域网点最少,仅占7%。国有大行在华东地区县域网点占比32%,农村商业银行则集中在华北(32%)和华中(21%)。 该数据为研究金融资源城乡配置、普惠金融发展及区域经济差异提供了基础支撑。例如,国有大行2019年县域网点数量较前一年增加,反映其下沉服务趋势;而农村金融机构通过人缘地缘优势持续优化县域服务。数据格式包含分银行、分地区的统计表格,适用于量化分析金融网络覆盖与经济社会发展的关联性。
GFP-ATOMIC参数的含义
ollama国内源,bash使用
内容概要:本文详细介绍了一家电动汽车(EV)制造商面临的数据处理挑战以及为解决这些问题所采取的举措——将现有数据平台迁移到Snowflake云平台上。文中阐述了制造商目前遇到的问题,如查询速度慢、运营成本高、难以整合结构化及非结构化的数据来源,并提出了具体的改进方向和技术细节。为了帮助潜在技术人员更好地理解和准备相关技术测试,还提供了一个详细的步骤指南来构建数据管道。具体要求分为两大部分:一是在当前架构上进行操作演示,二是利用Snowflake完成未来状态架构搭建并做技术示范,同时提供了预期产出物列表、所需技能概述及观众构成等关键信息。 适用人群:对于想要深入理解数据仓库迁移流程及其技术实施的专业人士非常有价值,特别适合作为数据工程师、数据科学家和其他IT专业人士参与面试的技术评估资料。 使用场景及目标:旨在展示候选人在构建现代数据工程基础设施方面的技术和创新能力。此外还可以作为内部培训材料供团队成员提高技能,或者为计划类似转型项目的企业决策层提供借鉴参考,从而优化其自身的数据管理策略和架构规划。 其他说明:演示时间被安排为60分钟,其中包括用例讲解(5分钟)、架构讨论(10分钟
自动封装javaBean的工具类
更多毕业设计https://cv2022.blog.csdn.net/article/details/124463185
更多毕业设计https://cv2022.blog.csdn.net/article/details/124463185
wireshark log for ethercat io