转发自:http://www.blogjava.net/hello-yun/archive/2012/04/27/376744.html
在足球比赛里,一个球员在一场比赛中进三个球,称之为帽子戏法(Hat-trick)。在分布式数据系统中,也有一个帽子原理(CAP Theorem),不过此帽子非彼帽子。CAP原理中,有三个要素:
一致性(Consistency)
可用性(Availability)
分区容忍性(Partition tolerance)
CAP原理指的是,这三个要素最多只能同时实现两点,不可能三者兼顾。因此在进行分布式架构设计时,必须做出取舍。而对于分布式数据系统,分区容忍性是基本要求,否则就失去了价值。因此设计分布式数据系统,就是在一致性和可用性之间取一个平衡。对于大多数web应用,其实并不需要强一致性,因此牺牲一致性而换取高可用性,是目前多数分布式数据库产品的方向。
当然,牺牲一致性,并不是完全不管数据的一致性,否则数据是混乱的,那么系统可用性再高分布式再好也没有了价值。牺牲一致性,只是不再要求关系型数据库中的强一致性,而是只要系统能达到最终一致性即可,考虑到客户体验,这个最终一致的时间窗口,要尽可能的对用户透明,也就是需要保障“用户感知到的一致性”。通常是通过数据的多份异步复制来实现系统的高可用和数据的最终一致性的,“用户感知到的一致性”的时间窗口则取决于数据复制到一致状态的时间。
最终一致性(eventually consistent)
对于一致性,可以分为从客户端和服务端两个不同的视角。从客户端来看,一致性主要指的是多并发访问时更新过的数据如何获取的问题。从服务端来看,则是更新如何复制分布到整个系统,以保证数据最终一致。一致性是因为有并发读写才有的问题,因此在理解一致性的问题时,一定要注意结合考虑并发读写的场景。
从客户端角度,多进程并发访问时,更新过的数据在不同进程如何获取的不同策略,决定了不同的一致性。对于关系型数据库,要求更新过的数据能被后续的访问都能看到,这是强一致性。如果能容忍后续的部分或者全部访问不到,则是弱一致性。如果经过一段时间后要求能访问到更新后的数据,则是最终一致性。
最终一致性根据更新数据后各进程访问到数据的时间和方式的不同,又可以区分为:
因果一致性。如果进程A通知进程B它已更新了一个数据项,那么进程B的后续访问将返回更新后的值,且一次写入将保证取代前一次写入。与进程A无因果关系的进程C的访问遵守一般的最终一致性规则。
“读己之所写(read-your-writes)”一致性。当进程A自己更新一个数据项之后,它总是访问到更新过的值,绝不会看到旧值。这是因果一致性模型的一个特例。
会话(Session)一致性。这是上一个模型的实用版本,它把访问存储系统的进程放到会话的上下文中。只要会话还存在,系统就保证“读己之所写”一致性。如果由于某些失败情形令会话终止,就要建立新的会话,而且系统的保证不会延续到新的会话。
单调(Monotonic)读一致性。如果进程已经看到过数据对象的某个值,那么任何后续访问都不会返回在那个值之前的值。
单调写一致性。系统保证来自同一个进程的写操作顺序执行。要是系统不能保证这种程度的一致性,就非常难以编程了。
上述最终一致性的不同方式可以进行组合,例如单调读一致性和读己之所写一致性就可以组合实现。并且从实践的角度来看,这两者的组合,读取自己更新的数据,和一旦读取到最新的版本不会再读取旧版本,对于此架构上的程序开发来说,会少很多额外的烦恼。
从服务端角度,如何尽快将更新后的数据分布到整个系统,降低达到最终一致性的时间窗口,是提高系统的可用度和用户体验非常重要的方面。对于分布式数据系统:
N — 数据复制的份数
W — 更新数据是需要保证写完成的节点数
R — 读取数据的时候需要读取的节点数
如果W+R>N,写的节点和读的节点重叠,则是强一致性。例如对于典型的一主一备同步复制的关系型数据库,N=2,W=2,R=1,则不管读的是主库还是备库的数据,都是一致的。
如果W+R<=N,则是弱一致性。例如对于一主一备异步复制的关系型数据库,N=2,W=1,R=1,则如果读的是备库,就可能无法读取主库已经更新过的数据,所以是弱一致性。
对于分布式系统,为了保证高可用性,一般设置N>=3。不同的N,W,R组合,是在可用性和一致性之间取一个平衡,以适应不同的应用场景。
如果N=W,R=1,任何一个写节点失效,都会导致写失败,因此可用性会降低,但是由于数据分布的N个节点是同步写入的,因此可以保证强一致性。
如果N=R,W=1,只需要一个节点写入成功即可,写性能和可用性都比较高。但是读取其他节点的进程可能不能获取更新后的数据,因此是弱一致性。这种情况下,如果W<(N+1)/2,并且写入的节点不重叠的话,则会存在写冲突
分享到:
相关推荐
### 分布式系统CAP理论模型 #### 一、引言 在分布式系统设计与实现的过程中,CAP理论模型作为一项核心理论被广泛讨论和应用。CAP理论由Eric A. Brewer教授于2000年首次提出,并在PODC会议上进行了详细介绍。这一...
CAP理论,也称为Brewer的猜想,是由加州大学伯克利分校教授Eric Brewer在2000年的PODC会议上提出的,它描述了分布式计算系统中三个基本保证:一致性(Consistency)、可用性(Availability)和分区容错性(Partition...
### Linux 下分布式系统及 CAP 理论深入分析 ...未来,随着分布式系统的发展和技术的进步,可能会出现新的方法和技术来进一步优化CAP理论中的权衡,但当前CAP理论仍然是理解和设计分布式系统的基础。
CAP 理论与分布式系统设计 CAP 理论是分布式系统设计中一个非常重要的概念,Michael Stonebraker 也曾断言分区必然会发生,并且系统内发生节点失败的机会随着系统规模的增加而增加。本文将详细介绍 CAP 理论的概念...
分布式系统的CAP理论是计算机科学中分布式计算领域的一个重要原则,由加州大学伯克利分校的计算机科学家Eric Brewer在2000年提出。该理论指出,在一个分布式计算系统中,Consistency(一致性)、Availability(可用...
CAP理论是分布式计算领域的一个基础概念,由计算机科学家Eric Brewer提出。它指出,在设计分布式系统时,无法同时满足一致性(Consistency)、可用性(Availability)和分区容错性(Partition tolerance)这三个基本...
CAP 理论与分布式数据库 CAP 理论是指在分布式系统中,一致性(Consistency)、可用性(Availability)和分区容错性(Partition Tolerance)三者不可兼得,必须有所取舍。传统数据库保证了强一致性和高可用性,但这...
在传统的CAP理论中,一个分布式系统无法同时保证一致性、可用性和分区容忍性,但Spanner通过巧妙的设计策略,尤其是在引入“真时”(TrueTime)的概念,成功地在全局范围内实现了强一致性和高可用性。 2. Spanner是CA...
CAP理论是分布式系统设计中的核心概念,它指出在分布式环境中,任何系统都无法同时保证一致性(Consistency)、可用性(Availability)和分区容忍性(Partition Tolerance)这三个特性。当网络分区发生时,系统必须...
CAP理论是分布式系统设计中的核心概念,全称为Consistency、Availability和Partition Tolerance。这个理论指出,在分布式系统中,无法同时保证数据一致性(C)、高可用性(A)和分区容错性(P)。在面临网络分区的...
根据CAP理论,一致性(C),可用性(A),分区容错性(P),三者不可兼得,必须有所取舍。而传统数据库保证了强一致性(ACID模型)和高可用性,所以要想实现一个分布式数据库集群非常困难,这也解释了为什么数据库的扩展能力...
Easy-Retry是一款基于服务治理的重试组件,其基于CAP理论设计,具有操作简单、实时监控、后台配置、支持多样化退避策略、支持多种告警方法等特点。支持本地重试和远程重试两种模式,提供管理后台,使得重试任务可视...
CAP理论是分布式系统设计中的重要概念,由Eric Brewer教授提出,它揭示了在分布式环境中,一致性(Consistency)、可用性(Availability)和分区容错性(Partition Tolerance)这三个基本需求之间的权衡关系。...
CAP理论:一个分布式系统不可能同时满足一致性(Consistence)、可用性(Availability)、分区容错性(Partition tolerance),最多只能同时满足两个(CA / CP / AP)。 一致性(Consistence):在某个写操作完成后...
CAP理论是分布式系统设计中的一个基础概念,由Eric Brewer在1999年提出,并在2002年由Seth Gilbert和Nancy Lynch通过数学模型进行了证明。CAP理论指出,在分布式系统中,不能同时保证一致性(Consistency)、可用性...
CAP理论是由Eric Brewer在1998年提出的,指出在分布式系统中,一致性(Consistency)、可用性(Availability)和分区容忍性(Partition Tolerance)不能同时得到保证。 - **一致性**:确保所有节点在同一时间看到...
图文并茂吃透面试题,看完这个,吊打面试官,拿高薪offer!