`

关联关系-动手-一对一单向主键(不重要)

阅读更多
/**
 * Person类中有一个属性指向另外一个实体,但是另外一个实体没有属性指向Person,所以单向
 * 由于Person表中是主键属性关联,所以主键,它的主键id是根据Address的主键id而来,因此不能使用代理主键
 * @author Macrotea
 *
 */
public class Person {
	private int id;
	private String name;
	private Address address;
	
	public Address getAddress() {
		return address;
	}
	public int getId() {
		return id;
	}
	public String getName() {
		return name;
	}
	public void setAddress(Address address) {
		this.address = address;
	}
	public void setId(int id) {
		this.id = id;
	}
	public void setName(String name) {
		this.name = name;
	}
	@Override
	public String toString() {
		return "Person [id=" + id + ", name=" + name + "]";
	}
}


public class Address {
	private int id;
	private String city;
	public String getCity() {
		return city;
	}
	public int getId() {
		return id;
	}
	public void setCity(String city) {
		this.city = city;
	}
	public void setId(int id) {
		this.id = id;
	}
	@Override
	public String toString() {
		return "Address [city=" + city + ", id=" + id + "]";
	}
}


	private static void prepare_data() {

		Session session = HibernateSessionFactory.getSession();
		Transaction transaction = session.beginTransaction();
		transaction.begin();

		Address addr = new Address();
		addr.setCity("广州");

		Person p = new Person();
		p.setName("macrotea");
		p.setAddress(addr);

		session.save(addr);
		session.save(p);

		transaction.commit();
		session.close();
	}

 

 

 

<hibernate-mapping package="com.macrotea.hb.model">
	<class name="Person">
		<id name="id">
            <!--基于主键关联,主键生成策略是foreign,说明根据关联类生成主键-->
            <generator class="foreign">
                <!--关联类的属性名-->
                <param name="property">address</param>
            </generator>
		</id>
		<property name="name" />
		<one-to-one name="address" constrained="true"></one-to-one>
	</class>
</hibernate-mapping>



<hibernate-mapping package="com.macrotea.hb.model">
	<class name="Address">
		<id name="id">
			<generator class="native" />
		</id>
		<property name="city" />
	</class>
</hibernate-mapping>
 
分享到:
评论

相关推荐

    白色大气风格的旅游酒店企业网站模板.zip

    白色大气风格的旅游酒店企业网站模板.zip

    python实现用户注册

    python实现用户注册

    【图像压缩】基于matlab GUI Haar小波变换图像压缩(含PSNR)【含Matlab源码 9979期】.zip

    Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作

    (177354822)java小鸟游戏.zip

    内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。

    VB+access学生管理系统(论文+系统)(2024am).7z

    1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;

    数学计算中的平方表与圆周率π的应用

    内容概要:文档名为《平方表,派表集合.docx》,主要内容是1至1000的平方值以及1至1000与π的乘积结果。每个数字从1开始,逐步增加至1000,对应地计算了平方值和乘以π后的值。所有计算均通过Python脚本完成,并在文档中列出了详细的计算结果。 适合人群:需要进行数学计算或程序验证的学生、教师和研究人员。 使用场景及目标:用于快速查找特定数字的平方值或其与π的乘积,适用于教学、科研及程序测试等场景。 阅读建议:可以直接查阅所需的具体数值,无需从头到尾逐行阅读。建议在使用时配合相应的计算工具,以验证和拓展数据的应用范围。

    VB+SQL光盘信息管理系统(源代码+系统+答辩PPT)(20244m).7z

    1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;

    白色大气风格的健身私人教练模板下载.zip

    白色大气风格的健身私人教练模板下载.zip

    白色简洁风的商务网站模板下载.zip

    白色简洁风的商务网站模板下载.zip

    白色大气风格的前端设计案例展示模板.zip

    白色大气风格的前端设计案例展示模板.zip

    圣诞树项目中的硬件和MATLAB实现指南

    内容概要:本文介绍了两个有趣的圣诞树项目方向:一是使用Arduino或Raspberry Pi开发可编程的圣诞树灯光控制系统;二是基于MATLAB开发一个圣诞树模拟器。前者通过硬件连接、编写Arduino/Raspberry Pi程序、MATLAB控制程序来实现LED灯带的闪烁;后者则通过创建圣诞树图形、添加动画效果、用户交互功能来实现虚拟的圣诞树效果。 适合人群:具备基本电子工程和编程基础的爱好者和学生。 使用场景及目标:①通过硬件和MATLAB的结合,实现实际的圣诞树灯光控制系统;②通过MATLAB模拟器,实现一个有趣的圣诞树动画展示。 阅读建议:读者可以根据自己的兴趣选择合适的项目方向,并按照步骤进行动手实践,加深对硬件编程和MATLAB编程的理解。

    白色扁平风格的温室大棚公司企业网站源码下载.zip

    白色扁平风格的温室大棚公司企业网站源码下载.zip

    Navicat.zip

    Navicat.zip

    Scikit-learn库中主成分分析(PCA)技术的Python实现教程

    内容概要:本文详细介绍了主成分分析(PCA)技术的原理及其在Scikit-learn库中的Python实现。首先讲解了PCA的基本概念和作用,接着通过具体示例展示了如何使用Scikit-learn进行PCA降维。内容涵盖了数据准备、模型训练、数据降维、逆转换数据等步骤,并通过可视化和实际应用案例展示了PCA的效果。最后讨论了PCA的局限性和参数调整方法。 适合人群:数据科学家、机器学习工程师、数据分析从业者及科研人员。 使用场景及目标:适用于高维数据处理,特别是在需要降维以简化数据结构、提高模型性能的场景中。具体目标包括减少计算复杂度、提高数据可视化效果和改进模型训练速度。 其他说明:本文不仅提供了详细的代码示例,还讨论了PCA在手写数字识别和机器学习模型中的应用。通过比较原始数据和降维后数据的模型性能,读者可以更好地理解PCA的影响。

    (175846434)目标检测-将VOC格式的数据集一键转化为COCO和YOLO格式

    VOC格式的数据集转COCO格式数据集 VOC格式的数据集转YOLO格式数据集。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。

    数字信号处理课程设计.doc

    数字信号处理课程设计.doc

    白色扁平化风格的灯饰灯具销售企业网站模板.zip

    白色扁平化风格的灯饰灯具销售企业网站模板.zip

    华豫佰佳组合促销视图.sql

    华豫佰佳组合促销视图.sql

    白色大气风格的商务团队公司模板下载.zip

    白色大气风格的商务团队公司模板下载.zip

    白色大气风格的VPS销售网站模板.zip

    白色大气风格的VPS销售网站模板.zip

Global site tag (gtag.js) - Google Analytics