`
m635674608
  • 浏览: 5046085 次
  • 性别: Icon_minigender_1
  • 来自: 南京
社区版块
存档分类
最新评论

ConcurrentSkipListMap深入分析

    博客分类:
  • java
 
阅读更多

一、前言 

concurrentHashMap与ConcurrentSkipListMap性能测试

在4线程1.6万数据的条件下,ConcurrentHashMap 存取速度是ConcurrentSkipListMap 的4倍左右。

但ConcurrentSkipListMap有几个ConcurrentHashMap 不能比拟的优点

1、ConcurrentSkipListMap 的key是有序的。

2、ConcurrentSkipListMap 支持更高的并发。ConcurrentSkipListMap 的存取时间是log(N),和线程数几乎无关。也就是说在数据量一定的情况下,并发的线程越多,ConcurrentSkipListMap越能体现出他 的优势。 


二、使用建议

在 非多线程的情况下,应当尽量使用TreeMap。此外对于并发性相对较低的并行程序可以使用 Collections.synchronizedSortedMap将TreeMap进行包装,也可以提供较好的效率。对于高并发程序,应当使用 ConcurrentSkipListMap,能够提供更高的并发度。


所以在多线程程序中,如果需要对Map的键值进行排序时,请尽量使用ConcurrentSkipListMap,可能得到更好的并发度。
注意,调用ConcurrentSkipListMap的size时,由于多个线程可以同时对映射表进行操作,所以映射表需要遍历整个链表才能返回元素个数,这个操作是个O(log(n))的操作。


二、什么是SkipList

Skip list(跳表)是一种可以代替平衡树的数据结构,默认是按照Key值升序的。Skip list让已排序的数据分布在多层链表中,以0-1随机数决定一个数据的向上攀升与否,通过“空间来换取时间”的一个算法,在每个节点中增加了向前的指 针,在插入、删除、查找时可以忽略一些不可能涉及到的结点,从而提高了效率。


从概率上保持数据结构的平衡比显示 的保持数据结构平衡要简单的多。对于大多数应用,用Skip list要比用树算法相对简单。由于Skip list比较简单,实现起来会比较容易,虽然和平衡树有着相同的时间复杂度(O(logn)),但是skip list的常数项会相对小很多。Skip list在空间上也比较节省。一个节点平均只需要1.333个指针(甚至更少)。
                
图1-1 Skip list结构图(以7,14,21,32,37,71,85序列为例)


Skip list的性质

(1) 由很多层结构组成,level是通过一定的概率随机产生的。
(2) 每一层都是一个有序的链表,默认是升序,也可以根据创建映射时所提供的Comparator进行排序,具体取决于使用的构造方法。
(3) 最底层(Level 1)的链表包含所有元素。
(4) 如果一个元素出现在Level i 的链表中,则它在Level i 之下的链表也都会出现。
(5) 每个节点包含两个指针,一个指向同一链表中的下一个元素,一个指向下面一层的元素。


三、什么是ConcurrentSkipListMap

ConcurrentSkipListMap提供了一种线程安全的并发访问的排序映射表。内部是SkipList(跳表)结构实现,在理论上能够在O(log(n))时间内完成查找、插入、删除操作。
      注意,调用ConcurrentSkipListMap的size时,由于多个线程可以同时对映射表进行操作,所以映射表需要遍历整个链表才能返回元素个数,这个操作是个O(log(n))的操作。


 ConcurrentSkipListMap存储结构



ConcurrentSkipListMap存储结构图

 

跳跃表(SkipList):(如上图所示)
1.多条链构成,是关键字升序排列的数据结构;
2.包含多个级别,一个head引用指向最高的级别,最低(底部)的级别,包含所有的key;
3.每一个级别都是其更低级别的子集,并且是有序的;
4.如果关键字 key在 级别level=i中出现,则,level<=i的链表中都会包含该关键字key;


------------------------

ConcurrentSkipListMap主要用到了Node和Index两种节点的存储方式,通过volatile关键字实现了并发的操作

  

[java]  view plain copy
 
  1. static final class Node<K,V> {  
  2.         final K key;  
  3.         volatile Object value;//value值  
  4.         volatile Node<K,V> next;//next引用  
  5.         ……  
  6. }  
  7. static class Index<K,V> {  
  8.         final Node<K,V> node;  
  9.         final Index<K,V> down;//downy引用  
  10.        volatile Index<K,V> right;//右边引用  
  11.        ……  
  12. }  

 

------------------------

ConcurrentSkipListMap的查找


通过SkipList的方式进行查找操作:(下图以“查找91”进行说明:)

 


红色虚线,表示查找的路径,蓝色向右箭头表示right引用;黑色向下箭头表示down引用;

 

/get方法,通过doGet操作实现

 

[java]  view plain copy
 
  1. public V get(Object key) {  
  2.       return doGet(key);  
  3.  }  
  4.  //doGet的实现  
  5. private V doGet(Object okey) {  
  6.         Comparable<? super K> key = comparable(okey);  
  7.         Node<K,V> bound = null;  
  8.         Index<K,V> q = head;//把头结点作为当前节点的前驱节点  
  9.         Index<K,V> r = q.right;//前驱节点的右节点作为当前节点  
  10.         Node<K,V> n;  
  11.         K k;  
  12.         int c;  
  13.         for (;;) {//遍历  
  14.             Index<K,V> d;  
  15.             // 依次遍历right节点  
  16.             if (r != null && (n = r.node) != bound && (k = n.key) != null) {  
  17.                 if ((c = key.compareTo(k)) > 0) {//由于key都是升序排列的,所有当前关键字大于所要查找的key时继续向右遍历  
  18.                     q = r;  
  19.                     r = r.right;  
  20.                     continue;  
  21.                 } else if (c == 0) {  
  22.                     //如果找到了相等的key节点,则返回该Node的value如果value为空可能是其他并发delete导致的,于是通过另一种  
  23.                     //遍历findNode的方式再查找  
  24.                     Object v = n.value;  
  25.                     return (v != null)? (V)v : getUsingFindNode(key);  
  26.                 } else  
  27.                     bound = n;  
  28.             }  
  29.             //如果一个链表中right没能找到key对应的value,则调整到其down的引用处继续查找  
  30.             if ((d = q.down) != null) {  
  31.                 q = d;  
  32.                 r = d.right;  
  33.             } else  
  34.                 break;  
  35.         }  
  36.         // 如果通过上面的遍历方式,还没能找到key对应的value,再通过Node.next的方式进行查找  
  37.         for (n = q.node.next;  n != null; n = n.next) {  
  38.             if ((k = n.key) != null) {  
  39.                 if ((c = key.compareTo(k)) == 0) {  
  40.                     Object v = n.value;  
  41.                     return (v != null)? (V)v : getUsingFindNode(key);  
  42.                 } else if (c < 0)  
  43.                     break;  
  44.             }  
  45.         }  
  46.         return null;  
  47.     }  

 

------------------------------------------------

ConcurrentSkipListMap的删除


通过SkipList的方式进行删除操作:(下图以“删除23”进行说明:)

 


红色虚线,表示查找的路径,蓝色向右箭头表示right引用;黑色向下箭头表示down引用;

 

 

[java]  view plain copy
 
  1. //remove操作,通过doRemove实现,把所有level中出现关键字key的地方都delete掉  
  2. public V remove(Object key) {  
  3.         return doRemove(key, null);  
  4.  }  
  5.  final V doRemove(Object okey, Object value) {  
  6.         Comparable<? super K> key = comparable(okey);  
  7.         for (;;) {  
  8.             Node<K,V> b = findPredecessor(key);//得到key的前驱(就是比key小的最大节点)  
  9.             Node<K,V> n = b.next;//前驱节点的next引用  
  10.             for (;;) {//遍历  
  11.                 if (n == null)//如果next引用为空,直接返回  
  12.                     return null;  
  13.                 Node<K,V> f = n.next;  
  14.                 if (n != b.next)                    // 如果两次获得的b.next不是相同的Node,就跳转到第一层循环重新获得b和n  
  15.                     break;  
  16.                 Object v = n.value;  
  17.                 if (v == null) {                    // 当n被其他线程delete的时候,其value==null,此时做辅助处理,并重新获取b和n  
  18.                     n.helpDelete(b, f);  
  19.                     break;  
  20.                 }  
  21.                 if (v == n || b.value == null)      // 当其前驱被delet的时候直接跳出,重新获取b和n  
  22.                     break;  
  23.                 int c = key.compareTo(n.key);  
  24.                 if (c < 0)  
  25.                     return null;  
  26.                 if (c > 0) {//当key较大时就继续遍历  
  27.                     b = n;  
  28.                     n = f;  
  29.                     continue;  
  30.                 }  
  31.                 if (value != null && !value.equals(v))  
  32.                     return null;  
  33.                 if (!n.casValue(v, null))  
  34.                     break;  
  35.                 if (!n.appendMarker(f) || !b.casNext(n, f))//casNext方法就是通过比较和设置b(前驱)的next节点的方式来实现删除操作  
  36.                     findNode(key);                  // 通过尝试findNode的方式继续find  
  37.                 else {  
  38.                     findPredecessor(key);           // Clean index  
  39.                     if (head.right == null)   //如果head的right引用为空,则表示不存在该level  
  40.                         tryReduceLevel();  
  41.                 }  
  42.                 return (V)v;  
  43.             }  
  44.         }  
  45.     }  


-------------------------------------

ConcurrentSkipListMap的插入

 

通过SkipList的方式进行插入操作:(下图以“添加55”的两种情况,进行说明:)


在level=2(该level存在)的情况下添加55的图示:只需在level<=2的合适位置插入55即可

--------


在level=4(该level不存在,图示level4是新建的)的情况下添加55的情况:首先新建level4,然后在level<=4的合适位置插入55

-----------

 

[java]  view plain copy
 
  1. //put操作,通过doPut实现  
  2.  public V put(K key, V value) {  
  3.         if (value == null)  
  4.             throw new NullPointerException();  
  5.         return doPut(key, value, false);  
  6.  }  
  7. private V doPut(K kkey, V value, boolean onlyIfAbsent) {  
  8.         Comparable<? super K> key = comparable(kkey);  
  9.         for (;;) {  
  10.             Node<K,V> b = findPredecessor(key);//前驱  
  11.             Node<K,V> n = b.next;  
  12.            //定位的过程就是和get操作相似  
  13.             for (;;) {  
  14.                 if (n != null) {  
  15.                     Node<K,V> f = n.next;  
  16.                     if (n != b.next)               // 前后值不一致的情况下,跳转到第一层循环重新获得b和n  
  17.                         break;;  
  18.                     Object v = n.value;  
  19.                     if (v == null) {               // n被delete的情况下  
  20.                         n.helpDelete(b, f);  
  21.                         break;  
  22.                     }  
  23.                     if (v == n || b.value == null// b 被delete的情况,重新获取b和n  
  24.                         break;  
  25.                     int c = key.compareTo(n.key);  
  26.                     if (c > 0) {  
  27.                         b = n;  
  28.                         n = f;  
  29.                         continue;  
  30.                     }  
  31.                     if (c == 0) {  
  32.                         if (onlyIfAbsent || n.casValue(v, value))  
  33.                             return (V)v;  
  34.                         else  
  35.                             break// restart if lost race to replace value  
  36.                     }  
  37.                     // else c < 0; fall through  
  38.                 }  
  39.                 Node<K,V> z = new Node<K,V>(kkey, value, n);  
  40.                 if (!b.casNext(n, z))  
  41.                     break;         // restart if lost race to append to b  
  42.                 int level = randomLevel();//得到一个随机的level作为该key-value插入的最高level  
  43.                 if (level > 0)  
  44.                     insertIndex(z, level);//进行插入操作  
  45.                 return null;  
  46.             }  
  47.         }  
  48.     }  
  49.   
  50.  /** 
  51.      * 获得一个随机的level值 
  52.      */  
  53.     private int randomLevel() {  
  54.         int x = randomSeed;  
  55.         x ^= x << 13;  
  56.         x ^= x >>> 17;  
  57.         randomSeed = x ^= x << 5;  
  58.         if ((x & 0x8001) != 0// test highest and lowest bits  
  59.             return 0;  
  60.         int level = 1;  
  61.         while (((x >>>= 1) & 1) != 0) ++level;  
  62.         return level;  
  63.     }  
  64. //执行插入操作:如上图所示,有两种可能的情况:  
  65. //1.当level存在时,对level<=n都执行insert操作  
  66. //2.当level不存在(大于目前的最大level)时,首先添加新的level,然后在执行操作1   
  67. private void insertIndex(Node<K,V> z, int level) {  
  68.         HeadIndex<K,V> h = head;  
  69.         int max = h.level;  
  70.         if (level <= max) {//情况1  
  71.             Index<K,V> idx = null;  
  72.             for (int i = 1; i <= level; ++i)//首先得到一个包含1~level个级别的down关系的链表,最后的inx为最高level  
  73.                 idx = new Index<K,V>(z, idx, null);  
  74.             addIndex(idx, h, level);//把最高level的idx传给addIndex方法  
  75.         } else { // 情况2 增加一个新的级别  
  76.             level = max + 1;  
  77.             Index<K,V>[] idxs = (Index<K,V>[])new Index[level+1];  
  78.             Index<K,V> idx = null;  
  79.             for (int i = 1; i <= level; ++i)//该步骤和情况1类似  
  80.                 idxs[i] = idx = new Index<K,V>(z, idx, null);  
  81.             HeadIndex<K,V> oldh;  
  82.             int k;  
  83.             for (;;) {  
  84.                 oldh = head;  
  85.                 int oldLevel = oldh.level;  
  86.                 if (level <= oldLevel) { // lost race to add level  
  87.                     k = level;  
  88.                     break;  
  89.                 }  
  90.                 HeadIndex<K,V> newh = oldh;  
  91.                 Node<K,V> oldbase = oldh.node;  
  92.                 for (int j = oldLevel+1; j <= level; ++j)  
  93.                     newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);//创建新的  
  94.                 if (casHead(oldh, newh)) {  
  95.                     k = oldLevel;  
  96.                     break;  
  97.                 }  
  98.             }  
  99.             addIndex(idxs[k], oldh, k);  
  100.         }  
  101.     }  
  102. /** 
  103.      *在1~indexlevel层中插入数据  
  104.      */  
  105.     private void addIndex(Index<K,V> idx, HeadIndex<K,V> h, int indexLevel) {  
  106.         //  insertionLevel 代表要插入的level,该值会在indexLevel~1间遍历一遍  
  107.         int insertionLevel = indexLevel;  
  108.         Comparable<? super K> key = comparable(idx.node.key);  
  109.         if (key == nullthrow new NullPointerException();  
  110.         // 和get操作类似,不同的就是查找的同时在各个level上加入了对应的key  
  111.         for (;;) {  
  112.             int j = h.level;  
  113.             Index<K,V> q = h;  
  114.             Index<K,V> r = q.right;  
  115.             Index<K,V> t = idx;  
  116.             for (;;) {  
  117.                 if (r != null) {  
  118.                     Node<K,V> n = r.node;  
  119.                     // compare before deletion check avoids needing recheck  
  120.                     int c = key.compareTo(n.key);  
  121.                     if (n.value == null) {  
  122.                         if (!q.unlink(r))  
  123.                             break;  
  124.                         r = q.right;  
  125.                         continue;  
  126.                     }  
  127.                     if (c > 0) {  
  128.                         q = r;  
  129.                         r = r.right;  
  130.                         continue;  
  131.                     }  
  132.                 }  
  133.                 if (j == insertionLevel) {//在该层level中执行插入操作  
  134.                     // Don't insert index if node already deleted  
  135.                     if (t.indexesDeletedNode()) {  
  136.                         findNode(key); // cleans up  
  137.                         return;  
  138.                     }  
  139.                     if (!q.link(r, t))//执行link操作,其实就是inset的实现部分  
  140.                         break// restart  
  141.                     if (--insertionLevel == 0) {  
  142.                         // need final deletion check before return  
  143.                         if (t.indexesDeletedNode())  
  144.                             findNode(key);  
  145.                         return;  
  146.                     }  
  147.                 }  
  148.                 if (--j >= insertionLevel && j < indexLevel)//key移动到下一层level  
  149.                     t = t.down;  
  150.                 q = q.down;  
  151.                 r = q.right;  
  152.             }  
  153.         }  
  154.     }  


参考:

集合框架 Map篇(5)----ConcurrentSkipListMap http://hi.baidu.com/yao1111yao/item/0f3008163c4b82c938cb306d
Java里多个Map的性能比较(TreeMap、HashMap、ConcurrentSkipListMap) http://blog.hongtium.com/java-map-skiplist/
跳表SkipList的原理和实现 http://imtinx.iteye.com/blog/1291165 

分享到:
评论

相关推荐

    ConcurrentSkipListMap源码1

    通过深入理解`ConcurrentSkipListMap`的实现,我们可以更好地应用它到并发编程中,以提升数据结构的性能和可扩展性。同时,这也为我们提供了一种思考并发数据结构设计的视角,帮助我们在解决实际问题时选择最适合的...

    汪文君高并发编程实战视频资源下载.txt

    │ 高并发编程第一阶段27讲、wait和sleep的本质区别是什么,深入分析(面试常见问题).mp4 │ 高并发编程第一阶段28讲、线程生产者消费者的综合实战结合Java8语法.mp4 │ 高并发编程第一阶段29讲、如何实现一个...

    汪文君高并发编程实战视频资源全集

    │ 高并发编程第一阶段27讲、wait和sleep的本质区别是什么,深入分析(面试常见问题).mp4 │ 高并发编程第一阶段28讲、线程生产者消费者的综合实战结合Java8语法.mp4 │ 高并发编程第一阶段29讲、如何实现一个...

    Java基础学习25.pdf

    通过以上内容的介绍,读者应能更深入地理解Java集合框架中的Set接口及其各种实现的内部原理,并掌握如何在Java编程中使用这些集合来解决实际问题。同时,还应该对并发集合类有所了解,以及如何在多线程环境下安全地...

    关于 Java Collections API 您不知道的 5 件事,第 2 部分

    Collections API 提供了一些线程安全的集合实现,如`ConcurrentHashMap`, `CopyOnWriteArrayList`, 和 `ConcurrentSkipListMap`。这些类在多线程环境中能保证并发访问的安全,但要注意它们的设计目标和性能特性,...

    JAVA后端架构师.pdf

    JAVA后端架构师是指具有深入理解操作系统、网络、并发等技术底层知识的高级技术专家。他们能够熟练应对常见的并发编程问题,掌握至少一个常见中间件的源码,能够运用设计模式、OOA/D进行软件设计,并在微服务层面...

    A Tree Map_map_tree_

    描述"A TreeMap for you to examine and analyze"提示我们,这个压缩包可能包含有关`TreeMap`的详细资料,供学习者深入研究和分析其内部工作原理、操作以及性能特点。 **`TreeMap`详解** `TreeMap`是Java中用于...

    Java后端体系高级面试题

    Java后端体系高级面试题是针对Java开发人员的深度技术面试准备材料,涵盖了广泛的Java...这些知识点是Java后端开发人员在面试过程中可能会遇到的,深入了解并掌握这些内容,将有助于提升个人的技术水平和面试竞争力。

    [电子书][java类]java并发编程实践

    《Java并发编程实践》这本书是Java开发者深入理解并发编程的重要参考资料。并发编程是现代多核处理器环境下不可或缺的技能,它涉及到如何在多个线程或进程之间有效地分配计算资源,以提高程序性能。Java语言提供了...

    java_collection_source_code_analyze:Java集合部分源码分析-Source code collection

    本项目"java_collection_source_code_analyze"专注于对Java集合框架的源代码进行深入分析,帮助开发者理解其内部机制,从而更好地利用这些工具。下面我们将详细探讨Java集合框架中的主要类、接口以及它们的实现和...

    最小松弛优先

    "最小松弛优先"是一种任务调度算法,...通过深入分析这些文件,我们可以更好地理解和学习如何在Java中实现和应用“最小松弛优先”算法。这将是一个有价值的资源,特别是对于那些对任务调度和优化感兴趣的Java开发者。

    多线程排序---希尔排序、快速排序、堆排序

    在计算机科学中,排序是数据处理的一个重要环节,尤其是在大数据处理和数据分析中。多线程技术则能够有效地利用现代多核处理器的计算能力,提高程序的执行效率。本主题主要探讨了三种经典的排序算法——希尔排序、...

    java面试题(非常好)

    理解并发容器如CopyOnWriteArrayList和ConcurrentSkipListMap的用途。 4. **内存管理**:理解Java的垃圾回收机制,包括引用类型(强引用、软引用、弱引用、虚引用),以及GC的基本原理和几种常见的垃圾收集器。 5....

    Java-Trees:与使用Java Trees的数据结构相关的程序

    本节将深入探讨Java中与树相关的关键概念和实现。 首先,我们来看一下Java API中提供的树相关类。`java.util.TreeSet`和`java.util.TreeMap`是两个基于红黑树实现的集合类,它们提供了有序的存储和高效的操作。`...

Global site tag (gtag.js) - Google Analytics