Hadoop家族系列文章, 主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等。
从2011年开始,中国进入大数据风起云涌的时代,以Hadoop为代表的家族软件,占据了大数据处理的广阔地盘。开源界及厂商,所有数据软件,无 一不向Hadoop靠拢。Hadoop也从小众的高富帅领域,变成了大数据开发的标准。在Hadoop原有技术基础之上,出现了Hadoop家族产品,通 过“大数据”概念不断创新,推出科技进步。
作为IT界的开发人员,我们也要跟上节奏,抓住机遇,跟着Hadoop一起雄起!
关于作者:
- 张丹(Conan), 程序员Java,R,PHP,Javascript
- weibo:@Conan_Z
- blog: http://blog.fens.me
- email: bsspirit@gmail.com
转载请注明出处:
http://blog.fens.me/mahout-recommendation-api
前言
用Mahout来构建推荐系统,是一件既简单又困难的事情。简单是因为Mahout完整地封装了“协同过滤”算法,并实现了并行化,提供非常简单的API接口;困难是因为我们不了解算法细节,很难去根据业务的场景进行算法配置和调优。
本文将深入算法API去解释Mahout推荐算法底层的一些事。
目录
- Mahout推荐算法介绍
- 算法评判标准:召回率与准确率
- Recommender.java的API接口
- 测试程序:RecommenderTest.java
- 基于用户的协同过滤算法UserCF
- 基于物品的协同过滤算法ItemCF
- SlopeOne算法
- KNN Linear interpolation item–based推荐算法
- SVD推荐算法
- Tree Cluster-based 推荐算法
- Mahout推荐算法总结
1. Mahout推荐算法介绍
Mahoutt推荐算法,从数据处理能力上,可以划分为2类:
- 单机内存算法实现
- 基于Hadoop的分步式算法实现
1). 单机内存算法实现
单机内存算法实现:就是在单机下运行的算法,是由cf.taste项目实现的,像我的们熟悉的UserCF,ItemCF都支持单机内存运行,并且参数可以灵活配置。单机算法的基本实例,请参考文章:用Maven构建Mahout项目
单机内存算法的问题在于,受限于单机的资源。对于中等规模的数据,像1G,10G的数据量,有能力进行计算,但是超过100G的数据量,对于单机来说是不可能完成的任务。
2). 基于Hadoop的分步式算法实现
基于Hadoop的分步式算法实现:就是把单机内存算法并行化,把任务分散到多台计算机一起运行。Mahout提供了ItemCF基于Hadoop并行化算法实现。基于Hadoop的分步式算法实现,请参考文章:
Mahout分步式程序开发 基于物品的协同过滤ItemCF
分步式并行算法的问题在于,如何让单机算法并行化。在单机算法中,我们只需要考虑算法,数据结构,内存,CPU就够了,但是分步式算法还要额外考虑很多的情况,比如多节点的数据合并,数据排序,网路通信的效率,节点宕机重算,数据分步式存储等等的很多问题。
2. 算法评判标准:召回率(recall)与查准率(precision)
Mahout提供了2个评估推荐器的指标,查准率和召回率(查全率),这两个指标是搜索引擎中经典的度量方法。
相关 不相关
检索到 A C
未检索到 B D
- A:检索到的,相关的 (搜到的也想要的)
- B:未检索到的,但是相关的 (没搜到,然而实际上想要的)
- C:检索到的,但是不相关的 (搜到的但没用的)
- D:未检索到的,也不相关的 (没搜到也没用的)
被检索到的越多越好,这是追求“查全率”,即A/(A+B),越大越好。
被检索到的,越相关的越多越好,不相关的越少越好,这是追求“查准率”,即A/(A+C),越大越好。
在大规模数据集合中,这两个指标是相互制约的。当希望索引出更多的数据的时候,查准率就会下降,当希望索引更准确的时候,会索引更少的数据。
3. Recommender的API接口
1). 系统环境:
- Win7 64bit
- Java 1.6.0_45
- Maven 3
- Eclipse Juno Service Release 2
- Mahout 0.8
- Hadoop 1.1.2
2). Recommender接口文件:
org.apache.mahout.cf.taste.recommender.Recommender.java
接口中方法的解释:
- recommend(long userID, int howMany): 获得推荐结果,给userID推荐howMany个Item
- recommend(long userID, int howMany, IDRescorer rescorer): 获得推荐结果,给userID推荐howMany个Item,可以根据rescorer对结构重新排序。
- estimatePreference(long userID, long itemID): 当打分为空,估计用户对物品的打分
- setPreference(long userID, long itemID, float value): 赋值用户,物品,打分
- removePreference(long userID, long itemID): 删除用户对物品的打分
- getDataModel(): 提取推荐数据
通过Recommender接口,我可以猜出核心算法,应该会在子类的estimatePreference()方法中进行实现。
3). 通过继承关系到Recommender接口的子类:
推荐算法实现类:
- GenericUserBasedRecommender: 基于用户的推荐算法
- GenericItemBasedRecommender: 基于物品的推荐算法
- KnnItemBasedRecommender: 基于物品的KNN推荐算法
- SlopeOneRecommender: Slope推荐算法
- SVDRecommender: SVD推荐算法
- TreeClusteringRecommender:TreeCluster推荐算法
下面将分别介绍每种算法的实现。
4. 测试程序:RecommenderTest.java
测试数据集:item.csv
1,101,5.0
1,102,3.0
1,103,2.5
2,101,2.0
2,102,2.5
2,103,5.0
2,104,2.0
3,101,2.5
3,104,4.0
3,105,4.5
3,107,5.0
4,101,5.0
4,103,3.0
4,104,4.5
4,106,4.0
5,101,4.0
5,102,3.0
5,103,2.0
5,104,4.0
5,105,3.5
5,106,4.0
测试程序:org.conan.mymahout.recommendation.job.RecommenderTest.java
package org.conan.mymahout.recommendation.job;
import java.io.IOException;
import java.util.List;
import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.eval.RecommenderBuilder;
import org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.apache.mahout.common.RandomUtils;
public class RecommenderTest {
final static int NEIGHBORHOOD_NUM = 2;
final static int RECOMMENDER_NUM = 3;
public static void main(String[] args) throws TasteException, IOException {
RandomUtils.useTestSeed();
String file = "datafile/item.csv";
DataModel dataModel = RecommendFactory.buildDataModel(file);
slopeOne(dataModel);
}
public static void userCF(DataModel dataModel) throws TasteException{}
public static void itemCF(DataModel dataModel) throws TasteException{}
public static void slopeOne(DataModel dataModel) throws TasteException{}
...
每种算法都一个单独的方法进行算法测试,如userCF(),itemCF(),slopeOne()….
5. 基于用户的协同过滤算法UserCF
基于用户的协同过滤,通过不同用户对物品的评分来评测用户之间的相似性,基于用户之间的相似性做出推荐。简单来讲就是:给用户推荐和他兴趣相似的其他用户喜欢的物品。
举例说明:
基于用户的 CF 的基本思想相当简单,基于用户对物品的偏好找到相邻邻居用户,然后将邻居用户喜欢的推荐给当前用户。计算上,就是将一个用户对所有物品的偏好作为一个向量 来计算用户之间的相似度,找到 K 邻居后,根据邻居的相似度权重以及他们对物品的偏好,预测当前用户没有偏好的未涉及物品,计算得到一个排序的物品列表作为推荐。图 2 给出了一个例子,对于用户 A,根据用户的历史偏好,这里只计算得到一个邻居 – 用户 C,然后将用户 C 喜欢的物品 D 推荐给用户 A。
上文中图片和解释文字,摘自: https://www.ibm.com/developerworks/cn/web/1103_zhaoct_recommstudy2/
算法API: org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender
@Override
public float estimatePreference(long userID, long itemID) throws TasteException {
DataModel model = getDataModel();
Float actualPref = model.getPreferenceValue(userID, itemID);
if (actualPref != null) {
return actualPref;
}
long[] theNeighborhood = neighborhood.getUserNeighborhood(userID);
return doEstimatePreference(userID, theNeighborhood, itemID);
}
protected float doEstimatePreference(long theUserID, long[] theNeighborhood, long itemID) throws TasteException {
if (theNeighborhood.length == 0) {
return Float.NaN;
}
DataModel dataModel = getDataModel();
double preference = 0.0;
double totalSimilarity = 0.0;
int count = 0;
for (long userID : theNeighborhood) {
if (userID != theUserID) {
// See GenericItemBasedRecommender.doEstimatePreference() too
Float pref = dataModel.getPreferenceValue(userID, itemID);
if (pref != null) {
double theSimilarity = similarity.userSimilarity(theUserID, userID);
if (!Double.isNaN(theSimilarity)) {
preference += theSimilarity * pref;
totalSimilarity += theSimilarity;
count++;
}
}
}
}
// Throw out the estimate if it was based on no data points, of course, but also if based on
// just one. This is a bit of a band-aid on the 'stock' item-based algorithm for the moment.
// The reason is that in this case the estimate is, simply, the user's rating for one item
// that happened to have a defined similarity. The similarity score doesn't matter, and that
// seems like a bad situation.
if (count <= 1) {
return Float.NaN;
}
float estimate = (float) (preference / totalSimilarity);
if (capper != null) {
estimate = capper.capEstimate(estimate);
}
return estimate;
}
测试程序:
public static void userCF(DataModel dataModel) throws TasteException {
UserSimilarity userSimilarity = RecommendFactory.userSimilarity(RecommendFactory.SIMILARITY.EUCLIDEAN, dataModel);
UserNeighborhood userNeighborhood = RecommendFactory.userNeighborhood(RecommendFactory.NEIGHBORHOOD.NEAREST, userSimilarity, dataModel, NEIGHBORHOOD_NUM);
RecommenderBuilder recommenderBuilder = RecommendFactory.userRecommender(userSimilarity, userNeighborhood, true);
RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
LongPrimitiveIterator iter = dataModel.getUserIDs();
while (iter.hasNext()) {
long uid = iter.nextLong();
List list = recommenderBuilder.buildRecommender(dataModel).recommend(uid, RECOMMENDER_NUM);
RecommendFactory.showItems(uid, list, true);
}
}
程序输出:
AVERAGE_ABSOLUTE_DIFFERENCE Evaluater Score:1.0
Recommender IR Evaluator: [Precision:0.5,Recall:0.5]
uid:1,(104,4.333333)(106,4.000000)
uid:2,(105,4.049678)
uid:3,(103,3.512787)(102,2.747869)
uid:4,(102,3.000000)
用R语言重写UserCF的实现,请参考文章:用R解析Mahout用户推荐协同过滤算法(UserCF)
6. 基于物品的协同过滤算法ItemCF
基于item的协同过滤,通过用户对不同item的评分来评测item之间的相似性,基于item之间的相似性做出推荐。简单来讲就是:给用户推荐和他之前喜欢的物品相似的物品。
举例说明:
基于物品的 CF 的原理和基于用户的 CF 类似,只是在计算邻居时采用物品本身,而不是从用户的角度,即基于用户对物品的偏好找到相似的物品,然后根据用户的历史偏好,推荐相似的物品给他。从计算 的角度看,就是将所有用户对某个物品的偏好作为一个向量来计算物品之间的相似度,得到物品的相似物品后,根据用户历史的偏好预测当前用户还没有表示偏好的 物品,计算得到一个排序的物品列表作为推荐。图 3 给出了一个例子,对于物品 A,根据所有用户的历史偏好,喜欢物品 A 的用户都喜欢物品 C,得出物品 A 和物品 C 比较相似,而用户 C 喜欢物品 A,那么可以推断出用户 C 可能也喜欢物品 C。
上文中图片和解释文字,摘自: https://www.ibm.com/developerworks/cn/web/1103_zhaoct_recommstudy2/
算法API: org.apache.mahout.cf.taste.impl.recommender.GenericItemBasedRecommender
@Override
public float estimatePreference(long userID, long itemID) throws TasteException {
PreferenceArray preferencesFromUser = getDataModel().getPreferencesFromUser(userID);
Float actualPref = getPreferenceForItem(preferencesFromUser, itemID);
if (actualPref != null) {
return actualPref;
}
return doEstimatePreference(userID, preferencesFromUser, itemID);
}
protected float doEstimatePreference(long userID, PreferenceArray preferencesFromUser, long itemID)
throws TasteException {
double preference = 0.0;
double totalSimilarity = 0.0;
int count = 0;
double[] similarities = similarity.itemSimilarities(itemID, preferencesFromUser.getIDs());
for (int i = 0; i < similarities.length; i++) {
double theSimilarity = similarities[i];
if (!Double.isNaN(theSimilarity)) {
// Weights can be negative!
preference += theSimilarity * preferencesFromUser.getValue(i);
totalSimilarity += theSimilarity;
count++;
}
}
// Throw out the estimate if it was based on no data points, of course, but also if based on
// just one. This is a bit of a band-aid on the 'stock' item-based algorithm for the moment.
// The reason is that in this case the estimate is, simply, the user's rating for one item
// that happened to have a defined similarity. The similarity score doesn't matter, and that
// seems like a bad situation.
if (count <= 1) {
return Float.NaN;
}
float estimate = (float) (preference / totalSimilarity);
if (capper != null) {
estimate = capper.capEstimate(estimate);
}
return estimate;
}
测试程序:
public static void itemCF(DataModel dataModel) throws TasteException {
ItemSimilarity itemSimilarity = RecommendFactory.itemSimilarity(RecommendFactory.SIMILARITY.EUCLIDEAN, dataModel);
RecommenderBuilder recommenderBuilder = RecommendFactory.itemRecommender(itemSimilarity, true);
RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
LongPrimitiveIterator iter = dataModel.getUserIDs();
while (iter.hasNext()) {
long uid = iter.nextLong();
List list = recommenderBuilder.buildRecommender(dataModel).recommend(uid, RECOMMENDER_NUM);
RecommendFactory.showItems(uid, list, true);
}
}
程序输出:
AVERAGE_ABSOLUTE_DIFFERENCE Evaluater Score:0.8676552772521973
Recommender IR Evaluator: [Precision:0.5,Recall:1.0]
uid:1,(105,3.823529)(104,3.722222)(106,3.478261)
uid:2,(106,2.984848)(105,2.537037)(107,2.000000)
uid:3,(106,3.648649)(102,3.380000)(103,3.312500)
uid:4,(107,4.722222)(105,4.313953)(102,4.025000)
uid:5,(107,3.736842)
7. SlopeOne算法
这个算法在mahout-0.8版本中,已经被@Deprecated。
SlopeOne是一种简单高效的协同过滤算法。通过均差计算进行评分。SlopeOne论文下载(PDF)
1). 举例说明:
用户X,Y,Z,对于物品A,B进行打分,如下表,求Z对B的打分是多少?
Slope one算法认为:平均值可以代替某两个未知个体之间的打分差异,事物A对事物B的平均差是:((5 - 4) + (4 - 2)) / 2 = 1.5,就得到Z对B的打分是,3-1.5 = 1.5。
Slope one算法将用户的评分之间的关系看作简单的线性关系:
Y = mX + b
2). 平均加权计算:
用户X,Y,Z,对于物品A,B,C进行打分,如下表,求Z对A的打分是多少?
- 1. 计算A和B的平均差, ((5-3)+(3-4))/2=0.5
- 2. 计算A和C的平均差, (5-2)/1=3
- 3. Z对A的评分,通过AB得到, 2+0.5=2.5
- 4. Z对A的评分,通过AC得到,5+3=8
- 5. 通过加权平均计算Z对A的评分:A和B都有评价的用户数为2,A和C都有评价的用户数为1,权重为别是2和1, (2*2.5+1*8)/(2+1)=13/3=4.33
通过这种简单的方式,我们可以快速计算出一个评分项,完成推荐过程!
算法API: org.apache.mahout.cf.taste.impl.recommender.slopeone.SlopeOneRecommender
@Override
public float estimatePreference(long userID, long itemID) throws TasteException {
DataModel model = getDataModel();
Float actualPref = model.getPreferenceValue(userID, itemID);
if (actualPref != null) {
return actualPref;
}
return doEstimatePreference(userID, itemID);
}
private float doEstimatePreference(long userID, long itemID) throws TasteException {
double count = 0.0;
double totalPreference = 0.0;
PreferenceArray prefs = getDataModel().getPreferencesFromUser(userID);
RunningAverage[] averages = diffStorage.getDiffs(userID, itemID, prefs);
int size = prefs.length();
for (int i = 0; i < size; i++) {
RunningAverage averageDiff = averages[i];
if (averageDiff != null) {
double averageDiffValue = averageDiff.getAverage();
if (weighted) {
double weight = averageDiff.getCount();
if (stdDevWeighted) {
double stdev = ((RunningAverageAndStdDev) averageDiff).getStandardDeviation();
if (!Double.isNaN(stdev)) {
weight /= 1.0 + stdev;
}
// If stdev is NaN, then it is because count is 1. Because we're weighting by count,
// the weight is already relatively low. We effectively assume stdev is 0.0 here and
// that is reasonable enough. Otherwise, dividing by NaN would yield a weight of NaN
// and disqualify this pref entirely
// (Thanks Daemmon)
}
totalPreference += weight * (prefs.getValue(i) + averageDiffValue);
count += weight;
} else {
totalPreference += prefs.getValue(i) + averageDiffValue;
count += 1.0;
}
}
}
if (count <= 0.0) {
RunningAverage itemAverage = diffStorage.getAverageItemPref(itemID);
return itemAverage == null ? Float.NaN : (float) itemAverage.getAverage();
} else {
return (float) (totalPreference / count);
}
}
测试程序:
public static void slopeOne(DataModel dataModel) throws TasteException {
RecommenderBuilder recommenderBuilder = RecommendFactory.slopeOneRecommender();
RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
LongPrimitiveIterator iter = dataModel.getUserIDs();
while (iter.hasNext()) {
long uid = iter.nextLong();
List list = recommenderBuilder.buildRecommender(dataModel).recommend(uid, RECOMMENDER_NUM);
RecommendFactory.showItems(uid, list, true);
}
}
程序输出:
AVERAGE_ABSOLUTE_DIFFERENCE Evaluater Score:1.3333333333333333
Recommender IR Evaluator: [Precision:0.25,Recall:0.5]
uid:1,(105,5.750000)(104,5.250000)(106,4.500000)
uid:2,(105,2.286115)(106,1.500000)
uid:3,(106,2.000000)(102,1.666667)(103,1.625000)
uid:4,(105,4.976859)(102,3.509071)
8. KNN Linear interpolation item–based推荐算法
这个算法在mahout-0.8版本中,已经被@Deprecated。
算法来自论文:
This algorithm is based in the paper of Robert M. Bell and Yehuda Koren in ICDM '07.
(TODO未完)
算法API: org.apache.mahout.cf.taste.impl.recommender.knn.KnnItemBasedRecommender
@Override
protected float doEstimatePreference(long theUserID, PreferenceArray preferencesFromUser, long itemID)
throws TasteException {
DataModel dataModel = getDataModel();
int size = preferencesFromUser.length();
FastIDSet possibleItemIDs = new FastIDSet(size);
for (int i = 0; i < size; i++) {
possibleItemIDs.add(preferencesFromUser.getItemID(i));
}
possibleItemIDs.remove(itemID);
List mostSimilar = mostSimilarItems(itemID, possibleItemIDs.iterator(),
neighborhoodSize, null);
long[] theNeighborhood = new long[mostSimilar.size() + 1];
theNeighborhood[0] = -1;
List usersRatedNeighborhood = Lists.newArrayList();
int nOffset = 0;
for (RecommendedItem rec : mostSimilar) {
theNeighborhood[nOffset++] = rec.getItemID();
}
if (!mostSimilar.isEmpty()) {
theNeighborhood[mostSimilar.size()] = itemID;
for (int i = 0; i < theNeighborhood.length; i++) {
PreferenceArray usersNeighborhood = dataModel.getPreferencesForItem(theNeighborhood[i]);
int size1 = usersRatedNeighborhood.isEmpty() ? usersNeighborhood.length() : usersRatedNeighborhood.size();
for (int j = 0; j < size1; j++) {
if (i == 0) {
usersRatedNeighborhood.add(usersNeighborhood.getUserID(j));
} else {
if (j >= usersRatedNeighborhood.size()) {
break;
}
long index = usersRatedNeighborhood.get(j);
if (!usersNeighborhood.hasPrefWithUserID(index) || index == theUserID) {
usersRatedNeighborhood.remove(index);
j--;
}
}
}
}
}
double[] weights = null;
if (!mostSimilar.isEmpty()) {
weights = getInterpolations(itemID, theNeighborhood, usersRatedNeighborhood);
}
int i = 0;
double preference = 0.0;
double totalSimilarity = 0.0;
for (long jitem : theNeighborhood) {
Float pref = dataModel.getPreferenceValue(theUserID, jitem);
if (pref != null) {
double weight = weights[i];
preference += pref * weight;
totalSimilarity += weight;
}
i++;
}
return totalSimilarity == 0.0 ? Float.NaN : (float) (preference / totalSimilarity);
}
}
测试程序:
public static void itemKNN(DataModel dataModel) throws TasteException {
ItemSimilarity itemSimilarity = RecommendFactory.itemSimilarity(RecommendFactory.SIMILARITY.EUCLIDEAN, dataModel);
RecommenderBuilder recommenderBuilder = RecommendFactory.itemKNNRecommender(itemSimilarity, new NonNegativeQuadraticOptimizer(), 10);
RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
LongPrimitiveIterator iter = dataModel.getUserIDs();
while (iter.hasNext()) {
long uid = iter.nextLong();
List list = recommenderBuilder.buildRecommender(dataModel).recommend(uid, RECOMMENDER_NUM);
RecommendFactory.showItems(uid, list, true);
}
}
程序输出:
AVERAGE_ABSOLUTE_DIFFERENCE Evaluater Score:1.5
Recommender IR Evaluator: [Precision:0.5,Recall:1.0]
uid:1,(107,5.000000)(104,3.501168)(106,3.498198)
uid:2,(105,2.878995)(106,2.878086)(107,2.000000)
uid:3,(103,3.667444)(102,3.667161)(106,3.667019)
uid:4,(107,4.750247)(102,4.122755)(105,4.122709)
uid:5,(107,3.833621)
9. SVD推荐算法
(TODO未完)
算法API: org.apache.mahout.cf.taste.impl.recommender.svd.SVDRecommender
@Override
public float estimatePreference(long userID, long itemID) throws TasteException {
double[] userFeatures = factorization.getUserFeatures(userID);
double[] itemFeatures = factorization.getItemFeatures(itemID);
double estimate = 0;
for (int feature = 0; feature < userFeatures.length; feature++) {
estimate += userFeatures[feature] * itemFeatures[feature];
}
return (float) estimate;
}
测试程序:
public static void svd(DataModel dataModel) throws TasteException {
RecommenderBuilder recommenderBuilder = RecommendFactory.svdRecommender(new ALSWRFactorizer(dataModel, 10, 0.05, 10));
RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
LongPrimitiveIterator iter = dataModel.getUserIDs();
while (iter.hasNext()) {
long uid = iter.nextLong();
List list = recommenderBuilder.buildRecommender(dataModel).recommend(uid, RECOMMENDER_NUM);
RecommendFactory.showItems(uid, list, true);
}
}
程序输出:
AVERAGE_ABSOLUTE_DIFFERENCE Evaluater Score:0.09990564982096355
Recommender IR Evaluator: [Precision:0.5,Recall:1.0]
uid:1,(104,4.032909)(105,3.390885)(107,1.858541)
uid:2,(105,3.761718)(106,2.951908)(107,1.561116)
uid:3,(103,5.593422)(102,2.458930)(106,-0.091259)
uid:4,(105,4.068329)(102,3.534025)(107,0.206257)
uid:5,(107,0.105169)
10. Tree Cluster-based 推荐算法
这个算法在mahout-0.8版本中,已经被@Deprecated。
(TODO未完)
算法API: org.apache.mahout.cf.taste.impl.recommender.TreeClusteringRecommender
@Override
public float estimatePreference(long userID, long itemID) throws TasteException {
DataModel model = getDataModel();
Float actualPref = model.getPreferenceValue(userID, itemID);
if (actualPref != null) {
return actualPref;
}
buildClusters();
List topRecsForUser = topRecsByUserID.get(userID);
if (topRecsForUser != null) {
for (RecommendedItem item : topRecsForUser) {
if (itemID == item.getItemID()) {
return item.getValue();
}
}
}
// Hmm, we have no idea. The item is not in the user's cluster
return Float.NaN;
}
测试程序:
public static void treeCluster(DataModel dataModel) throws TasteException {
UserSimilarity userSimilarity = RecommendFactory.userSimilarity(RecommendFactory.SIMILARITY.LOGLIKELIHOOD, dataModel);
ClusterSimilarity clusterSimilarity = RecommendFactory.clusterSimilarity(RecommendFactory.SIMILARITY.FARTHEST_NEIGHBOR_CLUSTER, userSimilarity);
RecommenderBuilder recommenderBuilder = RecommendFactory.treeClusterRecommender(clusterSimilarity, 10);
RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
LongPrimitiveIterator iter = dataModel.getUserIDs();
while (iter.hasNext()) {
long uid = iter.nextLong();
List list = recommenderBuilder.buildRecommender(dataModel).recommend(uid, RECOMMENDER_NUM);
RecommendFactory.showItems(uid, list, true);
}
}
程序输出:
AVERAGE_ABSOLUTE_DIFFERENCE Evaluater Score:NaN
Recommender IR Evaluator: [Precision:NaN,Recall:0.0]
11. Mahout推荐算法总结
算法及适用场景:
算法评分的结果:
通过对上面几种算法的一平分比较:itemCF,itemKNN,SVD的Rrecision,Recall的评分值是最好的,并且itemCF和 SVD的AVERAGE_ABSOLUTE_DIFFERENCE是最低的,所以,从算法的角度知道了,哪个算法是更准确的或者会索引到更多的数据集。
另外的一些因素:
- 1. 这3个指标,并不能直接决定计算结果一定itemCF,SVD好
- 2. 各种算法的参数我们并没有调优
- 3. 数据量和数据分布,是影响算法的评分
相关推荐
### Mahout算法详解 #### Mahout推荐算法概览 Mahout是一个开源项目,专注于为开发者提供一系列用于构建高度可伸缩的大数据推荐引擎、聚类分析以及分类算法库。其核心算法包括协同过滤、聚类分析及分类算法,广泛...
《基于Mahout的MovieRecommender电影推荐系统详解》 在大数据时代,个性化推荐系统已成为互联网服务中的重要一环,特别是在娱乐领域,如电影推荐。本文将深入探讨一个基于Apache Mahout实现的电影推荐系统——...
**Mahout用户基础推荐系统详解** Apache Mahout是一款开源机器学习库,专为大数据处理而设计,尤其在推荐系统、分类和聚类方面有广泛的应用。在这个“mahout的基于用户的推荐Demo”中,我们将深入探讨如何利用...
《基于Mahout的协同过滤算法实现详解》 在大数据领域,推荐系统已成为不可或缺的一部分,它能够根据用户的历史行为和偏好,为用户提供个性化的产品或服务推荐。Mahout作为Apache的一个开源项目,提供了丰富的机器...
**Apache Mahout 0.5 知识点详解** Apache Mahout 是一个开源机器学习库,专注于大规模数据集上的算法实现。在Mahout 0.5版本中,它提供了多种机器学习算法,包括推荐系统、分类和聚类,以及一些基础的数学和统计...
【甘道夫】通过Mahout构建贝叶斯文本分类器案例详解 -- 配套源码 在本案例中,我们将深入探讨如何使用Apache Mahout这一强大的机器学习库来构建一个贝叶斯文本分类器。Apache Mahout是一个开源项目,旨在提供可扩展...
1. **编译好的JAR文件**:这些是运行Mahout算法所需的库文件,通常以`.jar`扩展名。 2. **源代码**:以`.java`文件形式存在,允许用户查看和修改Mahout的实现。 3. **文档**:可能包括README文件,指导用户如何安装...
Mahout的API设计使得用户可以方便地集成算法到自己的系统中,极大地降低了开发成本。 2. **Hadoop集成** Mahout 0.7紧密集成于Hadoop,这意味着它可以处理PB级别的数据。通过Hadoop MapReduce框架,Mahout可以在...
《基于Spark、Mahout和Spring Boot构建的推荐系统详解》 在现代大数据处理领域,推荐系统已经成为提升用户体验、个性化服务的重要工具。Grab项目利用Spark、Mahout和Spring Boot这三个强大的技术框架,构建了一套...
《Mahout测试数据详解与Spark应用》 Apache Mahout是一个基于Apache Hadoop的机器学习库,致力于提供可扩展的、易于使用的机器学习算法。在大数据领域,Mahout扮演着重要的角色,它允许开发者构建复杂的预测模型,...
- 推荐系统:Mahout提供了协同过滤、基于内容的推荐等多种推荐算法。例如,可以查看如何使用UserBasedRecommender或ItemBasedRecommender进行用户相似度计算和推荐。 - 分类与聚类:如K-Means聚类算法,可以用来将...
《Mahout与Guava-r09-jar在数据挖掘中的应用详解》 Apache Mahout是一款基于Hadoop的数据挖掘库,它为大规模机器学习提供了丰富的算法支持,包括分类、聚类、协同过滤等。在Mahout的生态系统中,Guava是一个不可或...
在Java中,可以使用Apache Mahout或者自行实现这些算法。 7. **性能优化** 对于大规模用户和图书的数据,推荐系统需要考虑性能优化。例如,通过缓存机制减少数据库查询,使用MapReduce或Spark进行分布式计算,以及...
SpringBoot应用中,可以利用Spring Data JPA进行数据操作,结合Apache Mahout或TensorFlow等工具实现推荐算法。 六、API接口设计 为了与其他服务(如前端展示、数据分析)交互,推荐系统需提供API接口。SpringBoot...
例如,Apache Mahout和Spark MLlib是两个常用的机器学习库,它们提供了许多推荐算法的实现。同时,项目可能使用了Spring Boot框架构建微服务架构,实现高可扩展性和易维护性。数据库方面,MySQL或MongoDB可能用于...
在电影推荐系统中,Mahout可能被用来实现协同过滤、基于内容的推荐或者其他机器学习算法,根据用户的观影历史和喜好,为用户推荐他们可能感兴趣的电影。 项目地址虽然没有给出,但在实际的开发过程中,开发者通常会...