1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,
Sql 代码 : select id from t where num is null;
可以在 num 上设置默认值 0,确保表中 num 列没有 null 值,然后这样查询:
Sql 代码 : select id from t where num=0;
3.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,
Sql 代码 : select id from t where num=10 or num=20;
可以这样查询:
Sql 代码 : select id from t where num=10 union all select id from t where num=20;
5.in 和 not in 也要慎用,否则会导致全表扫描,如:
Sql 代码 : select id from t where num in(1,2,3);
对于连续的数值,能用 between 就不要用 in 了:
Sql 代码 : select id from t where num between 1 and 3;
6.下面的查询也将导致全表扫描:
Sql 代码 : select id from t where name like '%c%';
若要提高效率,可以考虑全文检索。
7.如果在 where 子句中使用参数,也会导致全表扫描。因为 SQL 只有在运行时才会解析局部变量,但优 化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然 而,如果在编译时建立访问计 划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
Sql 代码 : select id from t where num=@num ;
可以改为强制查询使用索引:
Sql 代码 : select id from t with(index(索引名)) where num=@num ;
8.应尽量避免在 where 子句中对字段进行表达式操作, 这将导致引擎放弃使用索引而进行全表扫描。
Sql 代码 : select id from t where num/2=100;
可以这样查询:
Sql 代码 : select id from t where num=100*2;
9.应尽量避免在 where 子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
Sql 代码 : select id from t where substring(name,1,3)='abc';#name 以 abc 开头的 id
应改为:
Sql 代码 : select id from t where name like 'abc%';
10.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用 索引。
11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件 时才能保证系统使用该索引, 否则该索引将不会 被使用, 并且应尽可能的让字段顺序与索引顺序相一致。
12.不要写一些没有意义的查询,如需要生成一个空表结构:
Sql 代码 : select col1,col2 into #t from t where 1=0;
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
Sql 代码 : create table #t(…);
13.很多时候用 exists 代替 in 是一个好的选择:
Sql 代码 : select num from a where num in(select num from b);
用下面的语句替换:
Sql 代码 : select num from a where exists(select 1 from b where num=a.num);
14.并不是所有索引对查询都有效,SQL 是根据表中数据来进行查询优化的,当索引列有大量数据重复时, SQL 查询可能不会去利用索引,如一表中有字段 ***,male、female 几乎各一半,那么即使在 *** 上建 了索引也对查询效率起不了作用。
15.索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过 6 个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。
16.应尽可能的避免更新 clustered 索引数据列, 因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。
17.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并 会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言 只需要比较一次就够了。
18.尽可能的使用 varchar/nvarchar 代替 char/nchar , 因为首先变长字段存储空间小, 可以节省存储空间, 其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
19.任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。
20.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。
21.避免频繁创建和删除临时表,以减少系统表资源的消耗。
22.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用 表中的某个数据集时。但是,对于一次性事件, 最好使用导出表。
23.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先 create table,然后 insert.
24.如果使用到了临时表, 在存储过程的最后务必将所有的临时表显式删除, 先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。
25.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过 1 万行,那么就应该考虑改写。
26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更 有效。
27.与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。
28.在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF .无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。
29.尽量避免大事务操作,提高系统并发能力。 sql 优化方法使用索引来更快地遍历表。 缺省情况下建立的索引是非群集索引,但有时它并不是最佳的。在非群集索引下,数据在物理上随机存放在数据页上。合理的索引设计要建立在对各种查询的分析和预测上。一般来说:
a.有大量重复值、且经常有范围查询( > ,< ,> =,< =)和 order by、group by 发生的列,可考虑建立集群索引;
b.经常同时存取多列,且每列都含有重复值可考虑建立组合索引;
c.组合索引要尽量使关键查询形成索引覆盖,其前导列一定是使用最频繁的列。索引虽有助于提高性能但 不是索引越多越好,恰好相反过多的索引会导致系统低效。用户在表中每加进一个索引,维护索引集合就 要做相应的更新工作。
30.定期分析表和检查表。
分析表的语法:ANALYZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tb1_name[, tbl_name]...
以上语句用于分析和存储表的关键字分布,分析的结果将可以使得系统得到准确的统计信息,使得SQL能够生成正确的执行计划。如果用户感觉实际执行计划并不是预期的执行计划,执行一次分析表可能会解决问题。在分析期间,使用一个读取锁定对表进行锁定。这对于MyISAM,DBD和InnoDB表有作用。
例如分析一个数据表:analyze table table_name
检查表的语法:CHECK TABLE tb1_name[,tbl_name]...[option]...option = {QUICK | FAST | MEDIUM | EXTENDED | CHANGED}
检查表的作用是检查一个或多个表是否有错误,CHECK TABLE 对MyISAM 和 InnoDB表有作用,对于MyISAM表,关键字统计数据被更新
CHECK TABLE 也可以检查视图是否有错误,比如在视图定义中被引用的表不存在。
31.定期优化表。
优化表的语法:OPTIMIZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tb1_name [,tbl_name]...
如果删除了表的一大部分,或者如果已经对含有可变长度行的表(含有 VARCHAR、BLOB或TEXT列的表)进行更多更改,则应使用OPTIMIZE TABLE命令来进行表优化。这个命令可以将表中的空间碎片进行合并,并且可以消除由于删除或者更新造成的空间浪费,但OPTIMIZE TABLE 命令只对MyISAM、 BDB 和InnoDB表起作用。
例如: optimize table table_name
注意: analyze、check、optimize执行期间将对表进行锁定,因此一定注意要在MySQL数据库不繁忙的时候执行相关的操作。
补充:
1、在海量查询时尽量少用格式转换。
2、ORDER BY 和 GROPU BY:使用 ORDER BY 和 GROUP BY 短语,任何一种索引都有助于 SELECT 的性能提高。
3、任何对列的操作都将导致表扫描,它包括数据库教程函数、计算表达式等等,查询时要尽可能将操作移 至等号右边。
4、IN、OR 子句常会使用工作表,使索引失效。如果不产生大量重复值,可以考虑把子句拆开。拆开的子 句中应该包含索引。
5、只要能满足你的需求,应尽可能使用更小的数据类型:例如使用 MEDIUMINT 代替 INT
6、尽量把所有的列设置为 NOT NULL,如果你要保存 NULL,手动去设置它,而不是把它设为默认值。
7、尽量少用 VARCHAR、TEXT、BLOB 类型
8、如果你的数据只有你所知的少量的几个。最好使用 ENUM 类型
9、正如 graymice 所讲的那样,建立索引。
10、合理用运分表与分区表提高数据存放和提取速度。
相关推荐
2. 支持大型数据库:MySQL可以处理拥有上千万条记录的大型数据库。 3. 标准的SQL语言:MySQL使用标准的SQL数据语言形式。 4. 跨平台支持:MySQL可以允许于多个系统上,并且支持多种语言。 5. 好的PHP支持:MySQL对...
1.使用人员可以指定迁移数据库类型 如:(orcal,sqlServer,csv 迁移至mysql) 2.在迁移数据库时,可以只迁移指定字段. 3.开发多任务的平台,按权重去执行任务,如:权重为1,1,2,3,4 那么1,1的权重一起执行,执行完毕后2...
### MySQL 百万级分页优化(Mysql千万级快速分页) #### 背景与挑战 在处理大规模数据集时,例如拥有数百万乃至数千万条记录的数据库表,传统的分页查询方法可能会遇到性能瓶颈。特别是使用`LIMIT`进行分页时,随着...
【MySQL千万级大表深度分页慢的原因及优化方法】 在MySQL中,处理千万级大表的深度分页查询时,通常会遇到性能问题。这是因为MySQL的查询优化器在面对大量数据的分页请求时,可能选择全表扫描而不是利用索引来提高...
### 百万级数据库记录下的MySQL快速分页优化实例 #### 概述 在处理大量数据时,如何高效地进行分页查询是一项重要的技术挑战。本文档将详细探讨当面对百万乃至千万级别数据记录时,如何优化MySQL的分页查询性能。...
本次测试的重点是分析在千万级数据下数据库的查询速度,首先得插入数据,采用 java 程序批量插入 1000 万条数据,分别插入 SQL Server 2008 和 Mysql 5.5 中。批量插入的方法就在 insert values 之后不断添加(…,…....
Oracle导Mysql适用于百、千万级别数据迁移,速度是kettle的10倍以上数据库迁移 数据迁移 千万级 亿万级数据,MySQL oracle关系型 现需要开发一套程序用来快速迁移数据库,要求如下: 1.使用人员可以指定迁移数据库...
MySQL千万级大数据SQL查询优化技巧详解 在处理大数据量的MySQL数据库时,高效的SQL查询显得尤为重要。以下是一些关键的优化技巧,可以帮助你提升查询性能,避免全表扫描,充分利用索引,以及优化查询逻辑: 1. **...
总结,处理千万级别的数据表,需要综合运用数据库设计、索引优化、分区策略、SQL优化等方法,以确保系统的高效稳定运行。"t_order.sql"文件提供了一个实践场景,通过学习和应用上述知识,可以提升您的数据库管理能力...
对于拥有千万级乃至亿级记录的大型数据库,高效的查询和分页策略能够显著提升系统的响应速度和用户体验。以下将详细介绍如何针对大规模数据库进行查询优化和实现高效分页。 首先,查询优化主要涉及以下几个方面: ...
### MySQL数据库详讲 #### 一、MySQL简介 MySQL是一个非常流行的关系型数据库管理系统(RDBMS),最初由瑞典MySQL AB公司开发,后被Sun Microsystems收购,最终成为Oracle公司的产品之一。MySQL因其开源特性、高性能...
MySQL数据库在处理千万级数据大表时,优化是至关重要的,因为这直接影响到系统的性能和响应速度。以下是一些关键的优化策略: 1. **数据容量规划**:预测未来1-3年内数据增长情况,计算每条数据的平均大小,以此来...
在C#中与MySQL数据库进行大规模数据交互时,性能优化是关键,特别是在处理千万级别的数据。本文将探讨如何高效地读取和写入大量数据,主要分为三个步骤:解决读取问题、数据处理和数据插入。 ### 第一步:解决读取...
MySQL数据库是一种广泛使用的开源关系型数据库管理系统,以其高效、稳定和易于管理的特性深受开发者喜爱。以下是关于MySQL数据库的一些核心知识点: 1. **多用户、多线程**:MySQL支持多个用户同时访问,且采用多...
java快速插入千万级数据,亲测91秒插入1700万数据!!!
【基于Sphinx+MySQL的千万级数据全文检索】的架构设计着重解决大数据量下的高效全文检索问题。Sphinx是一款源自俄罗斯的开源全文搜索引擎,它在处理海量数据时表现出极高的性能和可扩展性。在DELL PowerEdge 6850...
通过这些策略的组合应用,我们可以有效应对千万级数据的分页挑战,确保MySQL数据库在处理大规模数据时仍能保持良好的性能。对于更复杂的场景,可能还需要考虑其他的优化手段,如查询重构、数据归档或使用更高级的...
在MySQL数据库中,面对亿级数据的快速清理是一项挑战性的任务。当数据库占用空间过大,导致磁盘告警时,需要高效地清理无用或过期的数据以释放存储空间。以下是一些关键知识点和策略: 1. **空间占用分析**: 在...
MySQL提供了批量插入的能力,允许一次性插入多条记录,减少与数据库的交互次数。在Java中,可以使用PreparedStatement的addBatch()方法来收集多条SQL语句,然后调用executeBatch()执行所有插入操作。这种方式比单独...
在处理千万级用户场景下的运营系统SQL调优时,我们面对的挑战是如何快速且准确地定位和解决SQL执行计划中导致性能低下的问题。根据提供的文件内容,以下是对千万级用户场景下SQL调优的详细分析。 首先,通过执行SQL...