`
- 浏览:
144913 次
- 性别:
- 来自:
江门
-
泛型是什么,为什么要使用泛型,泛型的出现是解决什么问题的?
[size=medium]什么是泛型
我们在编写程序时,经常遇到两个模块的功能非常相似,只是一个是处理int数据,另一个是处理string数据,或者其他自定义的数据类型,但我们没有办法,只能分别写多个方法处理每个数据类型,因为方法的参数类型不同。有没有一种办法,在方法中传入通用的数据类型,这样不就可以合并代码了吗?泛型的出现就是专门解决这个问题的。读完本篇文章,你会对泛型有更深的了解。
为什么要使用泛型
为了了解这个问题,我们先看下面的代码,代码省略了一些内容,但功能是实现一个栈,这个栈只能处理int数据类型:
public class Stack
{
private int[] m_item;
public int Pop(){...}
public void Push(int item){...}
public Stack(int i)
{
this.m_item = new int[i];
}
}
上面代码运行的很好,但是,当我们需要一个栈来保存string类型时,该怎么办呢?很多人都会想到把上面的代码复制一份,把int改成 string不就行了。当然,这样做本身是没有任何问题的,但一个优秀的程序是不会这样做的,因为他想到若以后再需要long、Node类型的栈该怎样做呢?还要再复制吗?优秀的程序员会想到用一个通用的数据类型object来实现这个栈:
public class Stack
{
private object[] m_item;
public object Pop(){...}
public void Push(object item){...}
public Stack(int i)
{
this.m_item = new[i];
}
}
这个栈写的不错,他非常灵活,可以接收任何数据类型,可以说是一劳永逸。但全面地讲,也不是没有缺陷的,主要表现在:
当Stack处理值类型时,会出现装箱、折箱操作,这将在托管堆上分配和回收大量的变量,若数据量大,则性能损失非常严重。
在处理引用类型时,虽然没有装箱和折箱操作,但将用到数据类型的强制转换操作,增加处理器的负担。
在数据类型的强制转换上还有更严重的问题(假设stack是Stack的一个实例):
Node1 x = new Node1();
stack.Push(x);
Node2 y = (Node2)stack.Pop();
上面的代码在编译时是完全没问题的,但由于Push了一个Node1类型的数据,但在Pop时却要求转换为Node2类型,这将出现程序运行时的类型转换异常,但却逃离了编译器的检查。
针对object类型栈的问题,我们引入泛型,他可以优雅地解决这些问题。泛型用用一个通过的数据类型T来代替object,在类实例化时指定T的类型,运行时(Runtime)自动编译为本地代码,运行效率和代码质量都有很大提高,并且保证数据类型安全。
使用泛型
下面是用泛型来重写上面的栈,用一个通用的数据类型T来作为一个占位符,等待在实例化时用一个实际的类型来代替。让我们来看看泛型的威力:
public class Stack<T>
{
private T[] m_item;
public T Pop(){...}
public void Push(T item){...}
public Stack(int i)
{
this.m_item = new T[i];
}
}
类的写法不变,只是引入了通用数据类型T就可以适用于任何数据类型,并且类型安全的。这个类的调用方法:
//实例化只能保存int类型的类
Stack<int> a = new Stack<int>(100);
a.Push(10);
a.Push("8888"); //这一行编译不通过,因为类a只接收int类型的数据
int x = a.Pop();
//实例化只能保存string类型的类
Stack<string> b = new Stack<string>(100);
b.Push(10); //这一行编译不通过,因为类b只接收string类型的数据
b.Push("8888");
string y = b.Pop();
这个类和object实现的类有截然不同的区别:
1. 他是类型安全的。实例化了int类型的栈,就不能处理string类型的数据,其他数据类型也一样。
2. 无需装箱和折箱。这个类在实例化时,按照所传入的数据类型生成本地代码,本地代码数据类型已确定,所以无需装箱和折箱。
3. 无需类型转换。
泛型类实例化的理论
C#泛型类在编译时,先生成中间代码IL,通用类型T只是一个占位符。在实例化类时,根据用户指定的数据类型代替T并由即时编译器(JIT)生成本地代码,这个本地代码中已经使用了实际的数据类型,等同于用实际类型写的类,所以不同的封闭类的本地代码是不一样的。按照这个原理,我们可以这样认为:
泛型类的不同的封闭类是分别不同的数据类型。
例:Stack<int>和Stack<string>是两个完全没有任何关系的类,你可以把他看成类A和类B,这个解释对泛型类的静态成员的理解有很大帮助。
泛型类中数据类型的约束
程序员在编写泛型类时,总是会对通用数据类型T进行有意或无意地有假想,也就是说这个T一般来说是不能适应所有类型,但怎样限制调用者传入的数据类型呢?这就需要对传入的数据类型进行约束,约束的方式是指定T的祖先,即继承的接口或类。因为C#的单根继承性,所以约束可以有多个接口,但最多只能有一个类,并且类必须在接口之前。这时就用到了C#2.0的新增关键字:
public class Node<T, V> where T : Stack, IComparable
where V: Stack
{...}
以上的泛型类的约束表明,T必须是从Stack和IComparable继承,V必须是Stack或从Stack继承,否则将无法通过编译器的类型检查,编译失败。
通用类型T没有特指,但因为C#中所有的类都是从object继承来,所以他在类Node的编写中只能调用object类的方法,这给程序的编写造成了困难。比如你的类设计只需要支持两种数据类型int和string,并且在类中需要对T类型的变量比较大小,但这些却无法实现,因为object是没有比较大小的方法的。 了解决这个问题,只需对T进行IComparable约束,这时在类Node里就可以对T的实例执行CompareTo方法了。这个问题可以扩展到其他用户自定义的数据类型。
如果在类Node里需要对T重新进行实例化该怎么办呢?因为类Node中不知道类T到底有哪些构造函数。为了解决这个问题,需要用到new约束:
public class Node<T, V> where T : Stack, new()
where V: IComparable
需要注意的是,new约束只能是无参数的,所以也要求相应的类Stack必须有一个无参构造函数,否则编译失败。
C#中数据类型有两大类:引用类型和值类型。引用类型如所有的类,值类型一般是语言的最基本类型,如int, long, struct等,在泛型的约束中,我们也可以大范围地限制类型T必须是引用类型或必须是值类型,分别对应的关键字是class和struct:
public class Node<T, V> where T : class
where V: struct
泛型方法
泛型不仅能作用在类上,也可单独用在类的方法上,他可根据方法参数的类型自动适应各种参数,这样的方法叫泛型方法。看下面的类:
public class Stack2
{
public void Push<T>(Stack<T> s, params T[] p)
{
foreach (T t in p)
{
s.Push(t);
}
}
}
原来的类Stack一次只能Push一个数据,这个类Stack2扩展了Stack的功能(当然也可以直接写在Stack中),他可以一次把多个数据压入Stack中。其中Push是一个泛型方法,这个方法的调用示例如下:
Stack<int> x = new Stack<int>(100);
Stack2 x2 = new Stack2();
x2.Push(x, 1, 2, 3, 4, 6);
string s = "";
for (int i = 0; i < 5; i++)
{
s += x.Pop().ToString();
} //至此,s的值为64321
泛型中的静态成员变量
在C#1.x中,我们知道类的静态成员变量在不同的类实例间是共享的,并且他是通过类名访问的。C#2.0中由于引进了泛型,导致静态成员变量的机制出现了一些变化:静态成员变量在相同封闭类间共享,不同的封闭类间不共享。
这也非常容易理解,因为不同的封闭类虽然有相同的类名称,但由于分别传入了不同的数据类型,他们是完全不同的类,比如:
Stack<int> a = new Stack<int>();
Stack<int> b = new Stack<int>();
Stack<long> c = new Stack<long>();
类实例a和b是同一类型,他们之间共享静态成员变量,但类实例c却是和a、b完全不同的类型,所以不能和a、b共享静态成员变量。
泛型中的静态构造函数
静态构造函数的规则:只能有一个,且不能有参数,他只能被.NET运行时自动调用,而不能人工调用。
泛型中的静态构造函数的原理和非泛型类是一样的,只需把泛型中的不同的封闭类理解为不同的类即可。以下两种情况可激发静态的构造函数:
1. 特定的封闭类第一次被实例化。
2. 特定封闭类中任一静态成员变量被调用。
泛型类中的方法重载
方法的重载在.Net Framework中被大量应用,他要求重载具有不同的签名。在泛型类中,由于通用类型T在类编写时并不确定,所以在重载时有些注意事项,这些事项我们通过以下的例子说明:
public class Node<T, V>
{
public T add(T a, V b) //第一个add
{
return a;
}
public T add(V a, T b) //第二个add
{
return b;
}
public int add(int a, int b) //第三个add
{
return a + b;
}
}
上面的类很明显,如果T和V都传入int的话,三个add方法将具有同样的签名,但这个类仍然能通过编译,是否会引起调用混淆将在这个类实例化和调用add方法时判断。请看下面调用代码:
Node<int, int> node = new Node<int, int>();
object x = node.add(2, 11);
这个Node的实例化引起了三个add具有同样的签名,但却能调用成功,因为他优先匹配了第三个add。但如果删除了第三个add,上面的调用代码则无法编译通过,提示方法产生的混淆,因为运行时无法在第一个add和第二个add之间选择。
Node<string, int> node = new Node<string, int>();
object x = node.add(2, "11");
这两行调用代码可正确编译,因为传入的string和int,使三个add具有不同的签名,当然能找到唯一匹配的add方法。
由以上示例可知,C#的泛型是在实例的方法被调用时检查重载是否产生混淆,而不是在泛型类本身编译时检查。同时还得出一个重要原则:
当一般方法与泛型方法具有相同的签名时,会覆盖泛型方法。
泛型类的方法重写
方法重写(override)的主要问题是方法签名的识别规则,在这一点上他与方法重载一样,请参考泛型类的方法重载。
泛型的使用范围
本文主要是在类中讲述泛型,实际上,泛型还可以用在类方法、接口、结构(struct)、委托等上面使用,使用方法大致相同,就不再讲述。
小结
C# 泛型是开发工具库中的一个无价之宝。它们可以提高性能、类型安全和质量,减少重复性的编程任务,简化总体编程模型,而这一切都是通过优雅的、可读性强的语法完成的。尽管 C# 泛型的根基是 C++ 模板,但 C# 通过提供编译时安全和支持将泛型提高到了一个新水平。C# 利用了两阶段编译、元数据以及诸如约束和一般方法之类的创新性的概念。毫无疑问,C# 的将来版本将继续发展泛型,以便添加新的功能,并且将泛型扩展到诸如数据访问或本地化之类的其他 .NET Framework 领域。[/size]
分享到:
Global site tag (gtag.js) - Google Analytics
相关推荐
本文将深入探讨泛型类、泛型方法、泛型接口和泛型委托,并通过实例来阐述它们的应用。 首先,我们来看泛型类。泛型类是具有一个或多个类型参数的类。类型参数是在定义类时使用的占位符,实际的类型在创建类的实例时...
Java泛型是Java语言的一个重要特性,它允许在类、接口和方法中声明类型参数,从而提高了代码的复用性...在实际编程中,应充分利用泛型来提升代码的类型安全性和可读性,减少不必要的类型转换,并确保数据操作的正确性。
泛型允许我们在类、接口和方法中使用类型参数,这样在编译时期就能检查类型匹配,减少运行时类型转换异常。 1. **泛型的基本概念** - 泛型的本质是在类、接口或方法中使用类型参数,让它们能够处理多种数据类型。...
首先,我们需要理解什么是泛型。泛型允许我们在定义类、接口、委托和方法时,不指定具体的类型参数,而是使用一个占位符,如`T`、`K`等。这样,当我们实例化这些泛型类型时,可以传入任何类型的参数,从而实现泛型...
Struts2、Hibernate、Spring整合的泛型DAO (本人评价: 代码开发效率提高30% 代码出错率减少70%) 对于大多数开发人员,系统中的每个 DAO 编写几乎相同的代码到目前为止已经成为一种习惯。虽然所有人都将这种重复...
1. 为什么要使用泛型? 在 Java 中,如果我们想要将一个字符串类型的值放入到集合中,这个时候,这个值放到集合之后,失去本身的类型,只能是 object 类型。如果想要对这个值进行类型转换,很容易出现类型转换错误...
它的引入主要是为了解决在集合操作中类型安全性的问题,并通过引入参数化类型的概念,提高了代码的复用性与可读性。 ### 泛型概念 泛型,即参数化类型(Parameterized Types),是允许在定义类、接口和方法时使用...
泛型使得我们可以指定容器存储的数据类型,从而避免了不必要的类型转换和可能的ClassCastException。 8. 野指针异常 在泛型中,如果尝试向泛型容器添加不匹配的类型,编译器会报错。然而,通过反射或构造旧版本API...
泛型在编程中的应用广泛,特别是在集合框架中,使得我们可以在编译时就检查类型,避免了不必要的类型转换,并且提高了代码的重用性。下面将详细解释Java泛型的基本概念、使用方式以及相关的知识点。 1. 泛型的基本...
下面我们将深入探讨Java泛型方法的概念、语法以及使用示例。 **一、泛型方法概念** 泛型方法是一种具有类型参数的方法,这些类型参数可以在方法声明时指定,并在方法体内部使用。与类的泛型类似,它们提供了编译时...
例如,可以使用`where T : class`约束确保`T`必须为引用类型,或者`where T : struct`约束确保`T`为值类型。此外,还可以使用`where T : IComparable<T>`这样的接口约束,确保`T`实现了特定接口。 3. **泛型列表...
本文将深入探讨如何使用Gson处理泛型,并将其转换为JSON字符串。 首先,理解泛型在Java中的作用是至关重要的。泛型允许我们在类、接口和方法中使用类型参数,从而提高了代码的类型安全性和重用性。当我们使用Gson与...
这意味着所有的泛型类型信息在编译时被擦除,使用它们的代码被替换为使用它们的边界或 `Object` 类型。这种现象被称为“类型擦除”。 #### 四、边界 泛型可以通过边界来限制类型参数必须是特定类或接口的子类型。...
这种方式会导致类型安全问题,例如在运行时可能出现`ClassCastException`异常。 **1.3 泛型的优势** - **类型安全**:编译时检查类型,避免了运行时的类型转换错误。 - **代码复用**:通过泛型可以编写一次代码,...
泛型是Java语言的一个重要特性,它主要解决了在集合框架中频繁出现的类型转换问题,同时也增强了类型安全性。泛型的概念最早出现在Java 5.0版本中,它允许开发者创建能够以类型参数化的类、接口和方法。 #### 泛型...
### 为什么要使用泛型集合? 在C# 2.0之前的版本,创建集合主要有两种方式: 1. **ArrayList**:允许直接存储各种类型的对象,但由于集合内的元素都是Object类型,每次访问都需要进行类型转换,这不仅增加了代码的...
而泛型的引入解决了这个问题,提供了类型安全的集合。 在VS2008中,我们可以使用泛型集合,如System.Collections.Generic命名空间下的List。以下是如何使用泛型列表List的示例: ```csharp List<int> aList = new ...
但是需要注意,由于类型擦除,泛型信息在运行时并不直接存在,因此在使用反射处理泛型时,必须格外小心,防止类型安全问题。 在实际开发中,泛型和反射的应用非常广泛。例如,Spring框架就大量使用了这两种技术。...
在Java SE 1.5之前,没有泛型的情况的下,通过对类型Object的引用来实现参数的“任意化”,“任意化”带来的缺点是要做显式的强制类型转换,而这种转换是要求开发者对实际参数类型可以预知的情况下进行的。...