大数据全套视频,需要的话联系我。
QQ:2583606117
1、MongoDB——最受欢迎的,跨平台的,面向文档的数据库。
mongodb是一个基于分布式文件存储的数据库,使用C++语言编写。旨在为Web应用提供可扩展的高性能数据存储解决方案。应用性能高低依赖于数据库性能,MongoDB则是非关系数据库中功能最丰富,最像关系数据库的,随着MongDB 3.4版本发布,其应用场景适用能力得到了进一步拓展。
MongoDB的核心优势就是灵活的文档模型、高可用复制集、可扩展分片集群。你可以试着从几大方面了解MongoDB,如实时监控MongoDB工具、内存使用量和页面错误、连接数、数据库操作、复制集等。
2、Elasticsearch ——为云构建的分布式RESTful搜索引擎。
ElasticSearch是基于Lucene的搜索服务器。它提供了分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是比较流行的企业级搜索引擎。
ElasticSearch不仅是一个全文本搜索引擎,还是一个分布式实时文档存储,其中每个field均是被索引的数据且可被搜索;也是一个带实时分析功能的分布式搜索引擎,并且能够扩展至数以百计的服务器存储及处理PB级的数据。ElasticSearch在底层利用Lucene完成其索引功能,因此其许多基本概念源于Lucene。
3、Cassandra——开源分布式数据库管理系统
最初是由Facebook开发的,旨在处理许多商品服务器上的大量数据,提供高可用性,没有单点故障。
Apache Cassandra是一套开源分布式NoSQL数据库系统。集Google BigTable的数据模型与Amazon Dynamo的完全分布式架构于一身。于2008开源,此后,由于Cassandra良好的可扩展性,被Digg、Twitter等Web 2.0网站所采纳,成为了一种流行的分布式结构化数据存储方案。
因Cassandra是用Java编写的,所以理论上在具有JDK6及以上版本的机器中都可以运行,官方测试的JDK还有OpenJDK 及Sun的JDK。 Cassandra的操作命令,类似于我们平时操作的关系数据库,对于熟悉MySQL的朋友来说,操作会很容易上手。
4、Redis ——开源(BSD许可)内存数据结构存储,用作数据库,缓存和消息代理。
redis是一个开源的使用ANSI C语言编写的、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。Redis 有三个主要使其有别于其它很多竞争对手的特点:Redis是完全在内存中保存数据的数据库,使用磁盘只是为了持久性目的; Redis相比许多键值数据存储系统有相对丰富的数据类型; Redis可以将数据复制到任意数量的从服务器中。
5、Hazelcast ——基于Java的开源内存数据网格。
Hazelcast 是一种内存数据网格 in-memory data grid,提供Java程序员关键任务交易和万亿级内存应用。虽然Hazelcast没有所谓的“Master”,但是仍然有一个Leader节点(the oldest member),这个概念与ZooKeeper中的Leader类似,但是实现原理却完全不同。同时,Hazelcast中的数据是分布式的,每一个member持有部分数据和相应的backup数据,这点也与ZooKeeper不同。
Hazelcast的应用便捷性深受开发者喜欢,但如果要投入使用,还需要慎重考虑。
6、EHCache——广泛使用的开源Java分布式缓存。
主要面向通用缓存、Java EE和轻量级容器。
EhCache 是一个纯Java的进程内缓存框架,具有快速、精干等特点,是hibernate中默认的CacheProvider。主要特性有:快速简单,具有多种缓存策略;缓存数据有两级,内存和磁盘,因此无需担心容量问题;缓存数据会在虚拟机重启的过程中写入磁盘;可以通过RMI、可插入API等方式进行分布式缓存;具有缓存和缓存管理器的侦听接口;支持多缓存管理器实例,以及一个实例的多个缓存区域;提供Hibernate的缓存实现。
7、Hadoop ——用Java编写的开源软件框架,用于分布式存储,并对非常大的数据集进行分布式处理。
用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群进行高速运算和存储。hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,MapReduce则为海量的数据提供了计算。
8、Solr ——开源企业搜索平台,用Java编写,来自Apache Lucene项目。
Solr是一个独立的企业级搜索应用服务器,它对外提供类似于Web-service的API接口。用户可以通过http请求,向搜索引擎服务器提交一定格式的XML文件,生成索引;也可以通过Http Get操作提出查找请求,并得到XML格式的返回结果。
与ElasticSearch一样,同样是基于Lucene,但它对其进行了扩展,提供了比Lucene更为丰富的查询语言,同时实现了可配置、可扩展并对查询性能进行了优化。
9、Spark ——Apache Software Foundation中最活跃的项目,是一个开源集群计算框架。
Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。
Spark 是在 Scala 语言中实现的,它将 scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集。
10、Memcached ——通用分布式内存缓存系统。
Memcached是一套分布式快取系统,当初是Danga Interactive为了LiveJournal所发展的,但被许多软件(如MediaWiki)所使用。Memcached作为高速运行的分布式缓存服务器,具有以下的特点:协议简单,基于libevent的事件处理,内置内存存储方式。
11、Apache Hive ——在Hadoop之上提供类似SQL的层。
hive是一个基于Hadoop的数据仓库平台。通过hive,可以方便地进行ETL工作。hive定义了一个类似于SQL的查询语言,能够将用户编写的SQL转化为相应的Mapreduce程序基于Hadoop执行。目前,已经发布了Apache Hive 2.1.1 版本。
12、Apache Kafka ——最初是由LinkedIn开发的高吞吐量,分布式订阅消息系统。
Apache Kafka是一个开源消息系统项目,由Scala写成。该项目的目标是为处理实时数据提供一个统一、高通量、低等待的平台。Kafka维护按类区分的消息,称为主题(topic)。生产者(producer)向kafka的主题发布消息,消费者(consumer)向主题注册,并且接收发布到这些主题的消息。kafka以一个拥有一台或多台服务器的集群运行着,每一台服务器称为broker。
13、Akka ——用于在JVM上构建高并发,分布式和弹性消息驱动应用程序的工具包。
Akka 是一个用 Scala 编写的库,用于简化编写容错的、高可伸缩性的 Java 和 Scala 的 Actor 模型应用。它已经成功运用在电信行业,系统几乎不会宕机。
14、Hbase ——开放源代码,非关系型,分布式数据库,采用Google的BigTable建模,用Java编写,并在HDFS上运行。
与FUJITSU Cliq等商用大数据产品不同,hbase是Google Bigtable的开源实现,类似Google Bigtable利用GFS作为其文件存储系统,HBase利用Hadoop HDFS作为其文件存储系统;Google运行MapReduce来处理Bigtable中的海量数据,HBase同样利用Hadoop MapReduce来处理HBase中的海量数据;Google Bigtable利用 Chubby作为协同服务,HBase利用Zookeeper作为对应。
15、Neo4j ——在Java中实现的开源图形数据库。
Neo4j是一个高性能的NOSQL图形数据库,它将结构化数据存储在网络上而不是表中。它是一个嵌入式的、基于磁盘的、具备完全事务特性的Java持久化引擎。
16、CouchBase ——开源分布式的NoSQL面向文档数据库,针对交互式应用程序进行了优化。
如果以前没有NoSQL的使用经验,那么理解couchbase的时候关键有两点:延后写入和松散存储。该产品基于Apache CouchDB,并整合了GeoCouch(一个基于Erlang、紧密集成的地理空间索引系统,可支持LBS应用)。
17、Apache Storm——开源分布式实时计算系统。
Apache Storm 是一个能近实时地在数据之上运行用户代码片段的流式数据处理框架。它实际上是一系列连在一起的管道。通常用于简单的分析任务 ,诸如计算,以及清洗,使其常规化,并且准备摄入用于长期存储的数据。
18、CouchDB——开源的面向文档的NoSQL数据库,使用JSON存储数据。
CouchDB 是一个开源的面向文档的数据库管理系统,可以通过 RESTful JavaScript Object Notation (JSON) API 访问。CouchDB落实到最底层的数据结构就是两类B+Tree 。
19、Oracle Coherence——内存数据网格解决方案,通过提供对常用数据的快速访问,使企业能够可预测地扩展关键任务应用程序。
简单来说,Coherence仅支持Java,.NET和C++ API三个版本,这三个都是面向对象的语言,这也说明Coherence和应用开发的亲和性。
20、Titan——可扩展的图形数据库,优化用于存储和查询包含分布在多机集群上的数百亿个顶点和边的图形。
支持不同的分布式存储层:Cassandra 1.1和HBase 0.92。原生实现 Blueprints graph API,Gremlin graph traversal language,Frames graph-to-object mapper,Rexster graph server。
21、Amazon DynamoDB——快速,灵活的全面管理NoSQL的数据库服务,适用于任何规模的要求一致性,单位毫秒延迟的应用程序。
Amazon DynamoDB 是一种完全托管的 NoSQL 数据库服务,提供快速而可预测的性能,能够实现无缝扩展。
22、Amazon Kinesis——AWS上的实时流式传输数据平台。
Web 应用程序、移动设备、可穿戴设备、行业传感器和许多软件应用程序和服务都可能生成大量的流数据(有时达到每小时数 TB),需要对其进行连续地收集、存储和处理。Amazon Kinesis 就是针对这种需求产生的。
23、Datomic——完全事务,云就绪,分布式数据库,用Clojure编写。
Datomic 是一个灵活的、基于时间因子的数据库,支持联合查询,具有弹性的可扩展性以及支持ACID事务性。Datomic 提供高可用的、分布式存储服务
相关推荐
BI商业智能与大数据介绍 BI商业智能是指通过数据分析和报表工具,以获取有价值的商业信息,支持企业的商业决策。随着大数据的出现,商业智能也逐渐从传统的报表工具,演变为基于大数据的商业智能系统。大数据是指...
【大数据介绍】 大数据,顾名思义,是指数据量巨大、类型多样、处理速度快、价值密度低的数据集合。随着互联网的飞速发展和各种智能设备的普及,全球数据量正以惊人的速度增长,从2011年的1.8ZB到预计2020年的35ZB...
大数据介绍及公司大数据规划
【大数据介绍】 大数据,顾名思义,是指规模极其庞大的数据集合,其核心特征概括为4V:体积(Volume)、多样性(Variety)、价值(Value)和速度(Velocity)。这些特征共同定义了大数据的复杂性和挑战性,同时也...
【大数据介绍】 大数据,顾名思义,是指在传统数据处理技术难以应对的海量、多样性和高速度的数据集合。这一概念最早在2010年《经济学人》杂志的一篇文章中被广泛讨论,文章中提到的"数据洪流"形象地描绘了大数据的...
【大数据介绍及公司大数据规划】 大数据,作为21世纪信息技术的核心概念之一,正在深刻地改变着我们的生活和工作方式。大数据不仅仅是数据的简单积累,它代表着一种全新的数据处理和分析模式,强调的是数据的量...
物联网与大数据介绍
星环大数据介绍.pptx
"大数据介绍ppt.ppt" 大数据是指在日常运营中生成和积累的用户行为数据,以至于难以使用现有的数据库管理工具来驾驭。这些数据量是如此之大,以至于已经不是以我们所熟悉的 G 或 T 为单位来衡量,而是以 PP、EE 或 ...
"工业大数据介绍" 工业大数据定义:工业大数据是指在工业领域,主要通过传感器等物联网技术进行数据采集、传输得来的数据,由于数据量巨大,传统的信息技术已无法对相应的数据进行处理、分析、展示,而在传统工业...
本资料“大数据介绍及应用”将深入探讨大数据的基本概念、技术架构、以及在各行业的实际应用。 一、大数据基本概念 大数据不仅仅是数据量的问题,更是关于数据的复杂性和价值挖掘。其特征通常概括为4V:Volume...
"大数据介绍" 大数据概念的产生和发展 大数据概念在2012年的IT行业中成为了关注度不断提高的关键词之一。它是一个起源于欧美的词汇,但是关于这个词的起源并不是十分清楚。到了2010年2月出版的«经济学家»杂志中...
【大数据介绍】 大数据,顾名思义,是指数据量巨大、增长快速的数据集合,它具有四个显著特性,即4V:Volume(体积,指数据的海量性),Variety(多样性,涉及不同类型的数据),Value(价值,尽管数据量大,但其中...
星环大数据介绍.pdf
智慧方案
【大数据介绍和应用】 大数据,这个概念随着信息技术的飞速发展而备受关注,是指由大量多元化数据源收集的海量信息,这些数据具有实时性,并且往往来自非传统的数据集,如社交媒体、电子商务、客户交互记录等。...
总的来说,这份“大数据介绍PPT”将带领读者深入理解大数据的概念、技术、应用和挑战,为专业人员或初学者提供了一个全面了解大数据的平台。无论是用于汇报还是教学,都能有效地传达大数据的关键信息。
大数据安全与大数据介绍及应用方案.ppt