一. 分区表理论知识
Oracle提供了分区技术以支持VLDB(Very Large DataBase)。分区表通过对分区列的判断,把分区列不同的记录,放到不同的分区中。分区完全对应用透明。
Oracle的分区表可以包括多个分区,每个分区都是一个独立的段(SEGMENT),可以存放到不同的表空间中。查询时可以通过查询表来访问各个分区中的数据,也可以通过在查询时直接指定分区的方法来进行查询。
When to Partition a Table什么时候需要分区表,官网的2个建议如下:
(1)Tables greater than 2GB should always be considered for partitioning.
(2)Tables containing historical data, in which new data is added into the newest partition. A typical example is a historical table where only the current month's data is updatable and the other 11 months are read only.
在oracle 10g中最多支持:1024k-1个分区:
Tables can be partitioned into up to 1024K-1 separate partitions
联机文档上有关分区表和索引的说明:
Partitioned Tables and Indexes
http://download.oracle.com/docs/cd/B19306_01/server.102/b14220/partconc.htm#sthref2604
分区提供以下优点:
(1)由于将数据分散到各个分区中,减少了数据损坏的可能性;
(2)可以对单独的分区进行备份和恢复;
(3)可以将分区映射到不同的物理磁盘上,来分散IO;
(4)提高可管理性、可用性和性能。
Oracle 10g提供了以下几种分区类型:
(1)范围分区(range);
(2)哈希分区(hash);
(3)列表分区(list);
(4)范围-哈希复合分区(range-hash);
(5)范围-列表复合分区(range-list)。
Range分区:
Range分区是应用范围比较广的表分区方式,它是以列的值的范围来做为分区的划分条件,将记录存放到列值所在的range分区中。
如按照时间划分,2010年1月的数据放到a分区,2月的数据放到b分区,在创建的时候,需要指定基于的列,以及分区的范围值。
在按时间分区时,如果某些记录暂无法预测范围,可以创建maxvalue分区,所有不在指定范围内的记录都会被存储到maxvalue所在分区中。
如:
create table pdba (id number, time date) partition by range (time)
(
partition p1 values less than (to_date('2010-10-1', 'yyyy-mm-dd')),
partition p2 values less than (to_date('2010-11-1', 'yyyy-mm-dd')),
partition p3 values less than (to_date('2010-12-1', 'yyyy-mm-dd')),
partition p4 values less than (maxvalue)
)
Hash分区:
对于那些无法有效划分范围的表,可以使用hash分区,这样对于提高性能还是会有一定的帮助。hash分区会将表中的数据平均分配到你指定的几个分区中,列所在分区是依据分区列的hash值自动分配,因此你并不能控制也不知道哪条记录会被放到哪个分区中,hash分区也可以支持多个依赖列。
如:
create table test
(
transaction_id number primary key,
item_id number(8) not null
)
partition by hash(transaction_id)
(
partition part_01 tablespace tablespace01,
partition part_02 tablespace tablespace02,
partition part_03 tablespace tablespace03
);
在这里,我们指定了每个分区的表空间。
List分区:
List分区也需要指定列的值,其分区值必须明确指定,该分区列只能有一个,不能像range或者hash分区那样同时指定多个列做为分区依赖列,但它的单个分区对应值可以是多个。
在分区时必须确定分区列可能存在的值,一旦插入的列值不在分区范围内,则插入/更新就会失败,因此通常建议使用list分区时,要创建一个default分区存储那些不在指定范围内的记录,类似range分区中的maxvalue分区。
在根据某字段,如城市代码分区时,可以指定default,把非分区规则的数据,全部放到这个default分区。
如:
create table custaddr
(
id varchar2(15 byte) not null,
areacode varchar2(4 byte)
)
partition by list (areacode)
( partition t_list025 values ('025'),
partition t_list372 values ('372') ,
partition t_list510 values ('510'),
partition p_other values (default)
)
组合分区:
如果某表按照某列分区之后,仍然较大,或者是一些其它的需求,还可以通过分区内再建子分区的方式将分区再分区,即组合分区的方式。
组合分区呢在10g中有两种:range-hash,range-list。注意顺序,根分区只能是range分区,子分区可以是hash分区或list分区。
如:
create table test
(
transaction_id number primary key,
transaction_date date
)
partition by range(transaction_date) subpartition by hash(transaction_id)
subpartitions 3 store in (tablespace01,tablespace02,tablespace03)
(
partition part_01 values less than(to_date(’2009-01-01’,’yyyy-mm-dd’)),
partition part_02 values less than(to_date(’2010-01-01’,’yyyy-mm-dd’)),
partition part_03 values less than(maxvalue)
);
create table emp_sub_template (deptno number, empname varchar(32), grade number)
partition by range(deptno) subpartition by hash(empname)
subpartition template
(subpartition a tablespace ts1,
subpartition b tablespace ts2,
subpartition c tablespace ts3,
subpartition d tablespace ts4
)
(partition p1 values less than (1000),
partition p2 values less than (2000),
partition p3 values less than (maxvalue)
);
create table quarterly_regional_sales
(deptno number, item_no varchar2(20),
txn_date date, txn_amount number, state varchar2(2))
tablespace ts4
partition by range (txn_date)
subpartition by list (state)
(partition q1_1999 values less than (to_date('1-apr-1999','dd-mon-yyyy'))
(subpartition q1_1999_northwest values ('or', 'wa'),
subpartition q1_1999_southwest values ('az', 'ut', 'nm'),
subpartition q1_1999_northeast values ('ny', 'vm', 'nj'),
subpartition q1_1999_southeast values ('fl', 'ga'),
subpartition q1_1999_northcentral values ('sd', 'wi'),
subpartition q1_1999_southcentral values ('ok', 'tx')
),
partition q2_1999 values less than ( to_date('1-jul-1999','dd-mon-yyyy'))
(subpartition q2_1999_northwest values ('or', 'wa'),
subpartition q2_1999_southwest values ('az', 'ut', 'nm'),
subpartition q2_1999_northeast values ('ny', 'vm', 'nj'),
subpartition q2_1999_southeast values ('fl', 'ga'),
subpartition q2_1999_northcentral values ('sd', 'wi'),
subpartition q2_1999_southcentral values ('ok', 'tx')
),
partition q3_1999 values less than (to_date('1-oct-1999','dd-mon-yyyy'))
(subpartition q3_1999_northwest values ('or', 'wa'),
subpartition q3_1999_southwest values ('az', 'ut', 'nm'),
subpartition q3_1999_northeast values ('ny', 'vm', 'nj'),
subpartition q3_1999_southeast values ('fl', 'ga'),
subpartition q3_1999_northcentral values ('sd', 'wi'),
subpartition q3_1999_southcentral values ('ok', 'tx')
),
partition q4_1999 values less than ( to_date('1-jan-2000','dd-mon-yyyy'))
(subpartition q4_1999_northwest values ('or', 'wa'),
subpartition q4_1999_southwest values ('az', 'ut', 'nm'),
subpartition q4_1999_northeast values ('ny', 'vm', 'nj'),
subpartition q4_1999_southeast values ('fl', 'ga'),
subpartition q4_1999_northcentral values ('sd', 'wi'),
subpartition q4_1999_southcentral values ('ok', 'tx')
)
);
在Oracle 11g中,组合分区功能这块有所增强,又增加了range-range,list-range,
list-list,list-hash,并且 11g里面还支持Interval分区和虚拟列分区。
这块可以参考Blog:
Oracle 11g 新特性简介
http://blog.csdn.net/tianlesoftware/archive/2010/01/06/5134819.aspx
分区表 之 Interval分区 和 虚拟列 按星期分区表
http://blog.csdn.net/tianlesoftware/archive/2010/06/10/5662337.aspx
二. 普通表转分区表方法
将普通表转换成分区表有4种方法:
1. Export/import method
2. Insert with a subquery method
3. Partition exchange method
4. DBMS_REDEFINITION
具体参考:
How to Partition a Non-partitioned Table [ID 1070693.6]
http://blog.csdn.net/tianlesoftware/archive/2011/03/02/6218704.aspx
逻辑导出导入这里就不做说明,我们看看其他三种方法。
2.1 插入: Insert with a subquery method
这种方法就是使用insert 来实现。 当然在创建分区表的时候可以一起插入数据,也可以创建好后在insert 进去。 这种方法采用DDL语句,不产生UNDO,只产生少量REDO,建表完成后数据已经在分布到各个分区中。
SQL> select count(*) from dba;
COUNT(*)
----------
2713235
SQL> alter session set nls_date_format='yyyy-mm-dd hh24:mi:ss';
会话已更改。
SQL> select time_fee from dba where rownum<5;
TIME_FEE
-------------------
2011-02-17 19:29:09
2011-02-17 19:29:15
2011-02-17 19:29:18
2011-02-17 19:29:20
SQL>
2.1.1 Oracle 11g的Interval
在11g里的Interval创建,这种方法对没有写全的分区会自动创建。 比如我这里只写了1月日期,如果插入的数据有其他月份的,会自动生成对应的分区。
/* Formatted on 2011/03/02 15:41:09 (QP5 v5.115.810.9015) */
CREATE TABLE intervaldave
PARTITION BY RANGE (time_fee)
INTERVAL ( NUMTOYMINTERVAL (1, 'MONTH') )
(PARTITION part1
VALUES LESS THAN (TO_DATE ('01/12/2010', 'MM/DD/YYYY')))
AS
SELECT ID, TIME_FEE FROM DAVE;
SQL> select table_name,partition_name from user_tab_partitions where table_name='INTERVALDAVE';
TABLE_NAME PARTITION_NAME
------------------------------ ------------------------------
INTERVALDAVE PART1
INTERVALDAVE SYS_P24
INTERVALDAVE SYS_P25
INTERVALDAVE SYS_P26
INTERVALDAVE SYS_P33
INTERVALDAVE SYS_P27
INTERVALDAVE SYS_P28
2.1.2 Oracle 10g 版本
在10g里面,我需要写全所有的分区。
sql> create table pdba (id, time) partition by range (time)
2 (partition p1 values less than (to_date('2010-10-1', 'yyyy-mm-dd')),
3 partition p2 values less than (to_date('2010-11-1', 'yyyy-mm-dd')),
4 partition p3 values less than (to_date('2010-12-1', 'yyyy-mm-dd')),
5 partition p4 values less than (maxvalue))
6 as select id, time_fee from dba;
表已创建。
SQL> select table_name,partition_name from user_tab_partitions where table_name='PDBA';
TABLE_NAME PARTITION_NAME
------------------------------ ------------------------------
PDBA P1
PDBA P2
PDBA P3
PDBA P4
sql> select count(*) from pdba partition (p1);
count(*)
----------
1718285
sql> select count(*) from pdba partition (p2);
count(*)
----------
183667
sql> select count(*) from pdba partition (p3);
count(*)
----------
188701
sql> select count(*) from pdba partition (p4);
count(*)
----------
622582
sql>
现在分区表已经建好了,但是表名不一样,需要用rename对表重命名一下:
SQL> rename dba to dba_old;
表已重命名。
SQL> rename pdba to dba;
表已重命名。
SQL> select table_name,partition_name from user_tab_partitions where table_name='DBA';
TABLE_NAME PARTITION_NAME
------------------------------ ------------------------------
DBA P1
DBA P2
DBA P3
DBA P4
2.2 . 交换分区:Partition exchange method
这种方法只是对数据字典中分区和表的定义进行了修改,没有数据的修改或复制,效率最高。适用于包含大数据量的表转到分区表中的一个分区的操作。尽量在闲时进行操作。
交换分区的操作步骤如下:
1. 创建分区表,假设有2个分区,P1,P2.
2. 创建表A存放P1规则的数据。
3. 创建表B 存放P2规则的数据。
4. 用表A 和P1 分区交换。 把表A的数据放到到P1分区
5. 用表B 和p2 分区交换。 把表B的数据存放到P2分区。
创建分区表:
sql> create table p_dba
2 (id number,time date)
3 partition by range(time)
4 (
5 partition p1 values less than (to_date('2010-09-1', 'yyyy-mm-dd')),
6 partition p2 values less than (to_date('2010-11-1', 'yyyy-mm-dd'))
7 );
表已创建。
注意:我这里只创建了2个分区,没有创建存放其他数据的分区。
创建2个分别对应分区的基表:
SQL> CREATE TABLE dba_p1 as SELECT id,time_fee FROM dba_old WHERE time_fee<TO_DATE('2010-09-1', 'YYYY-MM-DD');
表已创建。
SQL> CREATE TABLE dba_p2 as SELECT id,time_fee FROM dba_old WHERE time_fee<TO_DATE('2010-11-1', 'YYYY-MM-DD') and time_fee>TO_DATE('2010-09-1', 'YYYY-MM-DD');
表已创建。
SQL> select count(*) from dba_p1;
COUNT(*)
----------
1536020
SQL> select count(*) from dba_p2;
COUNT(*)
----------
365932
SQL>
讲2个基表与2个分区进行交换:
SQL> alter table p_dba exchange partition p1 with table dba_p1;
表已更改。
SQL> alter table p_dba exchange partition p2 with table dba_p2;
表已更改。
查询2个分区:
SQL> select count(*) from p_dba partition(p1);
COUNT(*)
----------
1536020
SQL> select count(*) from p_dba partition(p2);
COUNT(*)
----------
365932
注意:数据和之前的基表一致。
查询原来的2个基表:
SQL> select count(*) from dba_p2;
COUNT(*)
----------
0
SQL> select count(*) from dba_p1;
COUNT(*)
----------
0
注意: 2个基表的数据变成成0。
在这里我们看一个问题,一般情况下,我们在创建分区表的时候,都会有一个其他分区,用来存放不匹配分区规则的数据。 在这个例子中,我只创建了2个分区,没有创建maxvalue分区。 现在我来插入一条不满足规则的数据,看结果:
SQL> insert into p_dba values(999999,to_date('2012-12-29','yyyy-mm-dd'));
insert into p_dba values(999999,to_date('2012-12-29','yyyy-mm-dd'))
*
第 1 行出现错误:
ORA-14400: 插入的分区关键字未映射到任何分区
SQL> insert into p_dba values(999999,to_date('2009-12-29','yyyy-mm-dd'));
已创建 1 行。
SQL> select * from p_dba where id=999999;
ID TIME
---------- --------------
999999 29-12月-09
SQL> alter session set nls_date_format='yyyy-mm-dd hh24:mi:ss';
会话已更改。
SQL> select * from p_dba where id=999999;
ID TIME
---------- -------------------
999999 2009-12-29 00:00:00
SQL>
通过这个测试可以清楚,如果插入的数据不满足分区规则,会报ORA-14400错误。
2.3 . 使用在线重定义:DBMS_REDEFINITION
在线重定义能保证数据的一致性,在大部分时间内,表都可以正常进行DML操作。只在切换的瞬间锁表,具有很高的可用性。这种方法具有很强的灵活性,对各种不同的需要都能满足。而且,可以在切换前进行相应的授权并建立各种约束,可以做到切换完成后不再需要任何额外的管理操作。
关于DBMS_REDEFINITION的介绍,参考官方连接:
http://download.oracle.com/docs/cd/B19306_01/appdev.102/b14258/d_redefi.htm#CBBFDJBC
关于用在线重定义创建分区表,参考:
How To Partition Existing Table Using DBMS_Redefinition [ID 472449.1]
http://blog.csdn.net/tianlesoftware/archive/2011/03/02/6218693.aspx
这个功能只在9.2.0.4以后的版本才有,在线重定义表具有以下功能:
(1)修改表的存储参数;
(2)将表转移到其他表空间;
(3)增加并行查询选项;
(4)增加或删除分区;
(5)重建表以减少碎片;
(6)将堆表改为索引组织表或相反的操作;
(7)增加或删除一个列。
使用在线重定义的一些限制条件:
(1) There must be enough space to hold two copies of the table.
(2) Primary key columns cannot be modified.
(3) Tables must have primary keys.
(4) Redefinition must be done within the same schema.
(5) New columns added cannot be made NOT NULL until after the redefinition operation.
(6) Tables cannot contain LONGs, BFILEs or User Defined Types.
(7) Clustered tables cannot be redefined.
(8) Tables in the SYS or SYSTEM schema cannot be redefined.
(9) Tables with materialized view logs or materialized views defined on them cannot be redefined.
(10) Horizontal sub setting of data cannot be performed during the redefinition.
在Oracle 10.2.0.4和11.1.0.7 版本下,在线重定义可能会遇到如下bug:
Bug 7007594 - ORA-600 [12261]
http://blog.csdn.net/tianlesoftware/archive/2011/03/02/6218681.aspx
在线重定义的大致操作流程如下:
(1)创建基础表A,如果存在,就不需要操作。
(2)创建临时的分区表B。
(3)开始重定义,将基表A的数据导入临时分区表B。
(4)结束重定义,此时在DB的 Name Directory里,已经将2个表进行了交换。即此时基表A成了分区表,我们创建的临时分区表B 成了普通表。 此时我们可以删除我们创建的临时表B。它已经是普通表。
下面看一个示例:
1. 创建基本表和索引
sql> conn icd/icd;
已连接。
sql> create table unpar_table (
2 id number(10) primary key,
3 create_date date
4 );
表已创建。
sql> insert into unpar_table select rownum, created from dba_objects;
已创建72288行。
sql> create index create_date_ind on unpar_table(create_date);
索引已创建。
sql> commit;
提交完成。
2. 收集表的统计信息
sql> exec dbms_stats.gather_table_stats('icd', 'unpar_table', cascade => true);
pl/sql 过程已成功完成。
3. 创建临时分区表
sql> create table par_table (id number primary key, time date) partition by range (time)
2 (partition p1 values less than (to_date('2004-7-1', 'yyyy-mm-dd')),
3 partition p2 values less than (to_date('2005-1-1', 'yyyy-mm-dd')),
4 partition p3 values less than (to_date('2005-7-1', 'yyyy-mm-dd')),
5 partition p4 values less than (maxvalue));
表已创建。
4. 进行重定义操作
4.1 检查重定义的合理性
sql> exec dbms_redefinition.can_redef_table('icd', 'unpar_table');
pl/sql 过程已成功完成。
4.2 如果4.1 没有问题,开始重定义,这个过程可能要等一会。
这里要注意:如果分区表和原表列名相同,可以用如下方式进行:
SQL> BEGIN
DBMS_REDEFINITION.start_redef_table(
uname => 'ICD',
orig_table => 'unpar_table',
int_table => 'par_table');
END;
/
如果分区表的列名和原表不一致,那么在开始重定义的时候,需要重新指定映射关系:
SQL> EXEC DBMS_REDEFINITION.START_REDEF_TABLE(
'ICD',
'unpar_table',
'par_table',
'ID ID, create_date TIME', -- 在这里指定新的映射关系
DBMS_REDEFINITION.CONS_USE_PK);
这一步操作结束后,数据就已经同步到这个临时的分区表里来了。
4.3 同步新表,这是可选的操作
SQL> BEGIN
2 dbms_redefinition.sync_interim_table(
3 uname => 'ICD',
4 orig_table => 'unpar_table',
5 int_table => 'par_table');
6 END;
7 /
PL/SQL 过程已成功完成。
4.4 创建索引,在线重定义只重定义数据,索引还需要单独建立。
sql> create index create_date_ind2 on par_table(time);
索引已创建。
4.5 收集新表的统计信息
sql> exec dbms_stats.gather_table_stats('icd', 'par_table', cascade => true);
pl/sql 过程已成功完成。
4.6 结束重定义
SQL> BEGIN
2 dbms_redefinition.finish_redef_table(
3 uname => 'ICD',
4 orig_table => 'unpar_table',
5 int_table => 'par_table');
6 END;
7 /
PL/SQL 过程已成功完成。
结束重定义的意义:
基表unpar_table 和临时分区表par_table 进行了交换。 此时临时分区表par_table成了普通表,我们的基表unpar_table成了分区表。
我们在重定义的时候,基表unpar_table是可以进行DML操作的。 只有在2个表进行切换的时候会有短暂的锁表。
5. 删除临时表
SQL> DROP TABLE par_table;
表已删除。
6. 索引重命名
SQL> ALTER INDEX create_date_ind2 RENAME TO create_date_ind;
索引已更改。
7. 验证
sql> select partitioned from user_tables where table_name = 'UNPAR_TABLE';
par
---
yes
sql> select partition_name from user_tab_partitions where table_name = 'UNPAR_TABLE';
partition_name
------------------------------
p1
p2
p3
p4
sql> select count(*) from unpar_table;
count(*)
----------
72288
sql> select count(*) from unpar_table partition (p4);
count(*)
----------
72288
sql>
三. 分区表的其他操作
3.1 添加新的分区
添加新的分区有2中情况:
(1)原分区里边界是maxvalue或者default。 这种情况下,我们需要把边界分区drop掉,加上新分区后,在添加上新的分区。 或者采用split,对边界分区进行拆分。
(2)没有边界分区的。 这种情况下,直接添加分区就可以了。
以边界分区添加新分区示例:
(1)分区表和索引的信息如下:
SQL> create table custaddr
2 (
3 id varchar2(15 byte) not null,
4 areacode varchar2(4 byte)
5 )
6 partition by list (areacode)
7 (
8 partition t_list556 values ('556') tablespace icd_service,
9 partition p_other values (default)tablespace icd_service
10 );
表已创建。
SQL> create index ix_custaddr_id on custaddr(id)
2 local (
3 partition t_list556 tablespace icd_service,
4 partition p_other tablespace icd_service
5 );
索引已创建。
(2)插入几条测试数据:
SQL> insert into custaddr values('1','556');
已创建 1 行。
SQL> insert into custaddr values('2','551');
已创建 1 行。
SQL> insert into custaddr values('3','555');
已创建 1 行。
SQL> commit;
提交完成。
SQL> select * from custaddr;
ID AREA
--------------- ----
1 556
2 551
3 555
SQL> select * from custaddr partition(t_list556);
ID AREA
--------------- ----
1 556
SQL>
(3)删除default分区
sql> alter table custaddr drop partition p_other;
表已更改。
sql> select table_name,partition_name from user_tab_partitions where table_name='CUSTADDR';
table_name partition_name
------------------------------ ------------------------------
custaddr t_list556
(4)添加新分区
SQL> alter table custaddr add partition t_list551 values('551') tablespace icd_service;
表已更改。
SQL> select table_name,partition_name from user_tab_partitions where table_name='CUSTADDR';
TABLE_NAME PARTITION_NAME
------------------------------ ------------------------------
CUSTADDR T_LIST556
CUSTADDR T_LIST551
(5)添加default 分区
SQL> alter table custaddr add partition p_other values (default) tablespace icd_service;
表已更改。
SQL> select table_name,partition_name from user_tab_partitions where table_name='CUSTADDR';
TABLE_NAME PARTITION_NAME
------------------------------ ------------------------------
CUSTADDR T_LIST556
CUSTADDR T_LIST551
CUSTADDR P_OTHER
(6)对于局部索引,oracle会自动增加一个局部分区索引。验证一下:
sql> select owner,index_name,table_name,partitioning_type from dba_part_indexes where index_name='ix_custaddr_id';
owner index_name table_name
---------------------- ------------------------------ ------------------
icd ix_custaddr_id custaddr
sql> select index_owner,index_name,partition_name from dba_ind_partitions where index_name='ix_custaddr_id';
index_owner index_name partition_name
------------------------------ ------------------------------ ------------------
icd ix_custaddr_id p_other
icd ix_custaddr_id t_list551
icd ix_custaddr_id t_list556
分区索引自动创建了。
3.2 split 分区拆分
在3.1 中,我们说明了可以使用split的方式来添加分区。 这里我们用split方法继续上面的实验。
sql> alter table custaddr split partition p_other values('552') into (partition t_list552 tablespace icd_service, partition p_other tablespace icd_service);
表已更改。
--注意这里红色的地方,如果是Range类型的,使用at,List使用Values。
SQL> select table_name,partition_name from user_tab_partitions where table_name='CUSTADDR';
TABLE_NAME PARTITION_NAME
------------------------------ ------------------------------
CUSTADDR T_LIST556
CUSTADDR T_LIST551
CUSTADDR T_LIST552
CUSTADDR P_OTHER
SQL> select index_owner,index_name,partition_name from dba_ind_partitions where index_name='IX_CUSTADDR_ID';
index_owner index_name partition_name
------------------------------ ------------------------------ ------------------
icd ix_custaddr_id p_other
icd ix_custaddr_id t_list551
icd ix_custaddr_id t_list552
icd ix_custaddr_id t_list556
注意:分区表会自动维护局部分区索引。全局索引会失效,需要进行rebuild。
3.3 合并分区Merge
相邻的分区可以merge为一个分区,新分区的下边界为原来边界值较低的分区,上边界为原来边界值较高的分区,原先的局部索引相应也会合并,全局索引会失效,需要rebuild。
SQL> alter table custaddr merge partitions t_list552,p_other into partition p_other;
表已更改。
SQL> select index_owner,index_name,partition_name from dba_ind_partitions where index_name='IX_CUSTADDR_ID';
index_owner index_name partition_name
-------------------- ------------------------------ ------------------
icd ix_custaddr_id p_other
icd ix_custaddr_id t_list551
icd ix_custaddr_id t_list556
SQL> select table_name,partition_name from user_tab_partitions where table_name='CUSTADDR';
table_name partition_name
------------------------------ ------------------------------
custaddr t_list556
custaddr t_list551
custaddr p_other
3.4 . 移动分区
SQL> alter table custaddr move partition P_OTHER tablespace system;
表已更改。
SQL> alter table custaddr move partition P_OTHER tablespace icd_service;
表已更改。
注意:分区移动会自动维护局部分区索引,oracle不会自动维护全局索引,所以需要我们重新rebuild分区索引,具体需要rebuild哪些索引,可以通过dba_part_indexes,dba_ind_partitions去判断。
SQL> Select index_name,status From user_indexes Where table_name='CUSTADDR';
INDEX_NAME STATUS
------------------------------ --------
IX_CUSTADDR_ID N/A
3.5. Truncate分区
SQL> select * from custaddr partition(T_LIST556);
ID AREA
--------------- ----
1 556
SQL> alter table custaddr truncate partition(T_LIST556);
表被截断。
SQL> select * from custaddr partition(T_LIST556);
未选定行
说明:
Truncate相对delete操作很快,数据仓库中的大量数据的批量数据加载可能会有用到;截断分区同样会自动维护局部分区索引,同时会使全局索引unusable,需要重建
3.6. Drop分区
SQL> alter table custaddr drop partition T_LIST551;
表已更改。
SQL> select table_name,partition_name from user_tab_partitions where table_name='CUSTADDR';
TABLE_NAME PARTITION_NAME
------------------------------ ------------------------------
CUSTADDR T_LIST556
CUSTADDR P_OTHER
同样会自动维护局部分区索引,同时会使全局索引unusable,需要重建
四. 分区表的索引
分区索引分为本地(local index)索引和全局索引(global index)。局部索引比全局索引容易管理, 而全局索引比较快。
与索引有关的表:
dba_part_indexes 分区索引的概要统计信息,可以得知每个表上有哪些分区索引,分区索引的类型(local/global)
dba_ind_partitions 每个分区索引的分区级统计信息
dba_indexes/dba_part_indexes 可以得到每个表上有哪些非分区索引
Local索引肯定是分区索引,Global索引可以选择是否分区,如果分区,只能是有前缀的分区索引。
分区索引分2类:有前缀(prefix)的分区索引和无前缀(nonprefix)的分区索引:
(1)有前缀的分区索引指包含了分区键,并且将其作为引导列的索引。
如:
create index i_id_global on PDBA(id) global --引导列
2 partition by range(id) --分区键
3 (partition p1 values less than (200),
4 partition p2 values less than (maxvalue)
5 );
这里的ID 就是分区键,并且分区键id 也是索引的引导列。
(2)无前缀的分区索引的列不是以分区键开头,或者不包含分区键列。
如:
create index ix_custaddr_local_id_p on custaddr(id)
local (
partition t_list556 tablespace icd_service,
partition p_other tablespace icd_service
)
这个分区是按照areacode来的。但是索引的引导列是ID。 所以它就是非前缀分区索引。
全局分区索引不支持非前缀的分区索引,如果创建,报错如下:
SQL> create index i_time_global on PDBA(id) global --索引引导列
2 partition by range(time) --分区建
3 (partition p1 values less than (TO_DATE('2010-12-1', 'YYYY-MM-DD')),
4 partition p2 values less than (maxvalue)
5 );
partition by range(time)
*
第 2 行出现错误:
ORA-14038: GLOBAL 分区索引必须加上前缀
4.1 Local 本地索引
对于local索引,当表的分区发生变化时,索引的维护由Oracle自动进行。
注意事项:
(1) 局部索引一定是分区索引,分区键等同于表的分区键。
(2) 前缀和非前缀索引都可以支持索引分区消除,前提是查询的条件中包含索引分区键。
(3) 局部索引只支持分区内的唯一性,无法支持表上的唯一性,因此如果要用局部索引去给表做唯一性约束,则约束中必须要包括分区键列。
(4) 局部分区索引是对单个分区的,每个分区索引只指向一个表分区;全局索引则不然,一个分区索引能指向n个表分区,同时,一个表分区,也可能指向n个索引分区,对分区表中的某个分区做truncate或者move,shrink等,可能会影响到n个全局索引分区,正因为这点,局部分区索引具有更高的可用性。
(5) 位图索引必须是局部分区索引。
(6) 局部索引多应用于数据仓库环境中。
(7) B树索引和位图索引都可以分区,但是HASH索引不可以被分区。
示例:
sql> create index ix_custaddr_local_id on custaddr(id) local;
索引已创建。
和下面SQL 效果相同,因为local索引就是分区索引:
create index ix_custaddr_local_id_p on custaddr(id)
local (
partition t_list556 tablespace icd_service,
partition p_other tablespace icd_service
)
SQL> create index ix_custaddr_local_areacode on custaddr(areacode) local;
索引已创建。
验证2个索引的类型:
SQL> select index_name,table_name,partitioning_type,locality,ALIGNMENT from user_part_indexes where table_name='CUSTADDR';
index_name table_name partition locali alignment
------------------------------ ---------- --------- ------ ------------
ix_custaddr_local_areacode custaddr list local prefixed
ix_custaddr_local_id custaddr list local non_prefixed
因为我们的custaddr表是按areacode进行分区的,所以索引ix_custaddr_local_areacode是有前缀的索引(prefixed)。而ix_custaddr_local_id是非前缀索引。
4.2 Global索引
对于global索引,可以选择是否分区,而且索引的分区可以不与表分区相对应。全局分区索引只能是B树索引,到目前为止(10gR2),oracle只支持有前缀的全局索引。
另外oracle不会自动的维护全局分区索引,当我们在对表的分区做修改之后,如果对分区进行维护操作时不加上update global indexes的话,通常会导致全局索引的INVALDED,必须在执行完操作后 REBUILD。
注意事项:
(1)全局索引可以分区,也可以是不分区索引,全局索引必须是前缀索引,即全局索引的索引列必须是以索引分区键作为其前几列。
(2)全局索引可以依附于分区表;也可以依附于非分区表。
(3)全局分区索引的索引条目可能指向若干个分区,因此,对于全局分区索引,即使只截断一个分区中的数据,都需要rebulid若干个分区甚至是整个索引。
(4)全局索引多应用于oltp系统中。
(5)全局分区索引只按范围或者散列分区,hash分区是10g以后才支持。
(6) oracle9i以后对分区表做move或者truncate的时可以用update global indexes语句来同步更新全局分区索引,用消耗一定资源来换取高度的可用性。
(7) 表用a列作分区,索引用b做局部分区索引,若where条件中用b来查询,那么oracle会扫描所有的表和索引的分区,成本会比分区更高,此时可以考虑用b做全局分区索引。
注意:Oracle只支持2中类型的全局分区索引:
range partitioned 和 Hash Partitioned.
官网的说明如下:
Global Partitioned Indexes
Oracle offers two types of global partitioned index: range partitioned and hash partitioned.
(1)Global Range Partitioned Indexes
Global range partitioned indexes are flexible in that the degree of partitioning and the partitioning key are independent from the table's partitioning method. They are commonly used for OLTP environments and offer efficient access to any individual record.
The highest partition of a global index must have a partition bound, all of whose values are MAXVALUE. This ensures that all rows in the underlying table can be represented in the index. Global prefixed indexes can be unique or nonunique.
You cannot add a partition to a global index because the highest partition always has a partition bound of MAXVALUE. If you wish to add a new highest partition, use the ALTER INDEX SPLIT PARTITION statement. If a global index partition is empty, you can explicitly drop it by issuing the ALTER INDEX DROP PARTITION statement. If a global index partition contains data, dropping the partition causes the next highest partition to be marked unusable. You cannot drop the highest partition in a global index.
(2)Global Hash Partitioned Indexes
Global hash partitioned indexes improve performance by spreading out contention when the index is monotonically growing. In other words, most of the index insertions occur only on the right edge of an index.
(3)Maintenance of Global Partitioned Indexes
By default, the following operations on partitions on a heap-organized table mark all global indexes as unusable:
ADD (HASH)
COALESCE (HASH)
DROP
EXCHANGE
MERGE
MOVE
SPLIT
TRUNCATE
示例1 全局索引,全局索引对所有分区类型都支持:
sql> create index ix_custaddr_ global_id on custaddr(id) global;
索引已创建。
示例2:全局分区索引,只支持Range 分区和Hash 分区:
(1)创建2个测试分区表:
sql> create table pdba (id number, time date) partition by range (time)
2 (
3 partition p1 values less than (to_date('2010-10-1', 'yyyy-mm-dd')),
4 partition p2 values less than (to_date('2010-11-1', 'yyyy-mm-dd')),
5 partition p3 values less than (to_date('2010-12-1', 'yyyy-mm-dd')),
6 partition p4 values less than (maxvalue)
7 );
表已创建。
SQL> create table Thash
2 (
3 id number primary key,
4 item_id number(8) not null
5 )
6 partition by hash(id)
7 (
8 partition part_01,
9 partition part_02,
10 partition part_03
11 );
表已创建。
(2)创建分区索引
示例2:全局分区索引
SQL> create index i_id_global on PDBA(id) global
2 partition by range(id)
3 (partition p1 values less than (200),
4 partition p2 values less than (maxvalue)
5 );
索引已创建。
--这个是有前缀的分区索引。
SQL> create index i_time_global on PDBA(id) global
2 partition by range(time)
3 (partition p1 values less than (TO_DATE('2010-12-1', 'YYYY-MM-DD')),
4 partition p2 values less than (maxvalue)
5 );
partition by range(time)
*
第 2 行出现错误:
ORA-14038: GLOBAL 分区索引必须加上前缀
SQL> create index i_time_global on PDBA(time) global
2 partition by range(time)
3 (partition p1 values less than (TO_DATE('2010-12-1', 'YYYY-MM-DD')),
4 partition p2 values less than (maxvalue)
5 );
索引已创建。
--有前缀的分区索引
SQL> select index_name,table_name,partitioning_type,locality,ALIGNMENT from user_part_indexes where table_name='PDBA';
index_name table_name partition locali alignment
------------------------------ ---------- --------- ------ ------------
i_id_global pdba range global prefixed
i_time_global pdba range global prefixed
SQL> CREATE INDEX ix_hash ON PDBA (id,time) GLOBAL
2 PARTITION BY HASH (id)
3 (PARTITION p1,
4 PARTITION p2,
5 PARTITION p3,
6 PARTITION p4);
索引已创建。
只要索引的引导列包含分区键,就是有前缀的分区索引。
4.3 索引重建问题
(1)分区索引
对于分区索引,不能整体进行重建,只能对单个分区进行重建。语法如下:
Alter index idx_name rebuild partition index_partition_name [online nologging]
说明:
online:表示重建的时候不会锁表。
nologging:表示建立索引的时候不生成日志,加快速度。
如果要重建分区索引,只能drop表原索引,在重新创建:
SQL>create index loc_xxxx_col on xxxx(col) local tablespace SYSTEM;
这个操作要求较大的临时表空间和排序区。
示例:
SQL> select index_name,partition_name from user_ind_partitions where index_name='I_TIME_GLOBAL';
INDEX_NAME PARTITION_NAME
------------------------------ ------------------------------
I_TIME_GLOBAL P1
I_TIME_GLOBAL P2
SQL> alter index I_TIME_GLOBAL rebuild partition p1 online nologging;
索引已更改。
SQL> alter index I_TIME_GLOBAL rebuild partition p2 online nologging;
索引已更改。
(2)全局索引
Oracle 会自动维护分区索引,对于全局索引,如果在对分区表操作时,没有指定update index,则会导致全局索引失效,需要重建。
SQL> select owner,index_name,table_name,status from dba_indexes where INDEX_NAME='IX_PDBA_GLOBAL';
owner index_name table_name status
------------------------------ ------------------------------ ---------- -------
sys ix_pdba_global pdba valid
删除一个分区:
SQL> alter table pdba drop partition p2;
表已更改。
SQL> select owner,index_name,table_name,status from dba_indexes where INDEX_NAME='IX_PDBA_GLOBAL';
owner index_name table_name status
------------------------------ ------------------------------ ---------- -------
sys ix_pdba_global pdba valid
split 分区:
SQL> alter table pdba split partition P4 at(TO_DATE('2010-12-21 00:00:00','YYYY-MM-DD HH24:MI:SS')) into (partition P4, partition P5);
表已更改。
SQL> select owner,index_name,table_name,status from dba_indexes where INDEX_NAME='IX_PDBA_GLOBAL';
owner index_name table_name status
------------------------------ ------------------------------ ---------- -------
sys ix_pdba_global pdba valid
drop 分区时使用update indexes
SQL> alter table pdba drop partition P4 UPDATE INDEXES;
表已更改。
SQL> select owner,index_name,table_name,status from dba_indexes where INDEX_NAME='IX_PDBA_GLOBAL';
owner index_name table_name status
---------------------- ------------------------------ ---------- -------
sys ix_pdba_global pdba valid
做了几个drop分区操作,全局索引没有失效,有点奇怪。 不过如果在生产环境中,还是小心点。
重建全局索引命令如下:
Alter index idx_name rebuild [online nologging]
示例:
SQL> Alter index ix_pdba_global rebuild online nologging;
索引已更改。
补充一点,分区表存储空间的问题:
SQL> select table_name,partition_name,tablespace_name from user_tab_partitions where table_name='DBA';
TABLE_NAME PARTITION_NAME TABLESPACE_NAME
---------- ------------------------------ ------------------------------
DBA P1 SYSTEM
DBA P2 SYSTEM
DBA P3 SYSTEM
DBA P4 SYSTEM
通过user_tab_partitions 表可以查看到每个分区对应的tablesapce_name. 但是,如果通过all_tables 表,却查不到分区表对应表空间的信息。
分区表:
SQL> select owner,table_name,tablespace_name,cluster_name from all_tables where table_name='DBA';
OWNER TABLE_NAME TABLESPACE_NAME CLUSTER_NAME
----- ---------- ------------------------------ -----------------------------------------------------
SYS DBA
普通表:
SQL> select owner,table_name,tablespace_name,cluster_name from all_tables where table_name='DAVE';
OWNER TABLE_NAME TABLESPACE_NAME CLUSTER_NAME
----- ---------- ------------------------------ ---------------------------------------------------
SYS DAVE SYSTEM
PS:
在google的时候,发现斯坦福大学(http://stanford.edu/)的文档库上有很多Oracle资料。
国内这块其他大学没有留意过,中国科学技术大学(http://www.ustc.edu.cn/)也是有资料库的。
相关推荐
- 分区(Partitioning):大表可以按特定规则分区,提高查询速度和维护效率。 - 重做日志和归档模式:合理配置日志,平衡性能与安全性。 5. **备份与恢复**: - RMAN(Recovery Manager):Oracle提供的备份和...
18 章,分区表及分区索引 Chapter 19, Content Management 第 19 章,内容管理 Chapter 20, Database Security 第 20 章,数据库安全 Chapter 21, Data Integrity 第 21 章,数据完整性 Chapter 22,...
中国全国AI人工智能产业链关系2018-2024集中度指标按地区分销售财务情况产业话语权指标等 数据来源:基于国内各部委公布数据及各地统计数据整理,或相关省、市数据 数据范围:全国、或各省份地市的统计数据 数据期间:(参见其文件名的标识表达了数据年度、或月度日度期间) 主要指标: 包含的数据文件有: 中国全国AI人工智能产业链产业基本情况2020-2024.zip 中国全国AI人工智能产业链产业上市公司按地区分销售情况统计表2020-2024.zip 中国全国AI人工智能产业链产业上市公司财务情况统计表2020-2024.zip 中国全国AI人工智能产业链产业上市公司销售情况统计表2020-2024.zip 中国全国AI人工智能产业链产业政策信息表2020-2024.zip 中国全国AI人工智能产业链关系表2024.zip 中国全国AI人工智能产业链集中度指标表2020-2024.zip 中国全国AI人工智能产业链名单2024.zip 中国全国AI人工智能产业链企业基本信息表2018-202501.zip 中国全国AI人工智能产业链企业名单2024.zip 中国全国AI人工智能产业链上市公司产业话语权指标表2020-2024.zip (近百MB数据的网盘链接)
注意事项: 1、运行游戏方法 :双击 “侠客英雄传3.bat” 运行。 2、更换光碟提示: 使用 CTRL+F4 组合键后 按空格即可跳过。
内容概要:本文详细介绍了两相交错并联Buck/Boost变换器的建模与仿真,重点探讨了三种不同的控制方式及其性能表现。首先,文章描述了模型的基本架构,包括两个桥臂共用直流母线,MOSFET采用理想的双向开关,电流传感器安装在电感支路上。接着,分别讨论了开环控制、电压单环控制和电压电流双闭环控制的具体实现方法和优缺点。开环模式适用于观察硬件参数的影响,电压单环控制虽然稳定但在负载突变时响应较慢,而双闭环控制能够显著提高系统的动态响应和电流均流效果。此外,文章还分享了一些实用的仿真技巧,如正确设置死区时间和仿真步长,确保仿真的准确性和效率。 适合人群:电力电子工程师、科研人员、高校师生等对DC-DC变换器设计和仿真感兴趣的读者。 使用场景及目标:①研究两相交错并联Buck/Boost变换器的工作原理和控制策略;②优化变换器的设计参数,提高系统的稳定性和效率;③掌握Matlab/Simulink进行复杂电力电子系统仿真的方法和技术。 其他说明:文中提供了详细的代码片段和仿真波形,帮助读者更好地理解和应用相关理论和技术。
ffmpeg7.0 + sdl3.0 播放音频
内容概要:本文深入探讨了基于龙贝格观测器的永磁同步电机(PMSM)无传感器控制技术。首先介绍了龙贝格观测器相较于传统滑模观测器(SMO)的优势,特别是在减少系统抖振方面表现突出。接着详细解释了龙贝格观测器的工作原理,包括状态预测、误差补偿以及角度解算三大核心步骤,并提供了具体的代码实现。文中还讨论了实际工程应用中的挑战,如参数选择、噪声处理等问题,并给出了相应的解决方案。此外,文章通过实验数据展示了龙贝格观测器在不同工况下的性能优势,尤其是在高速和低速情况下的稳定性和响应速度。 适合人群:从事电机控制系统研究与开发的技术人员,尤其是关注无传感器控制领域的工程师。 使用场景及目标:适用于希望提升PMSM无传感器控制系统的稳定性、精确度的研发团队。主要目标是在保持高性能的同时降低系统复杂度,提高产品竞争力。 其他说明:文中不仅分享了理论知识和技术细节,还提供了大量实用的经验技巧,帮助读者更好地理解和应用龙贝格观测器进行实际项目开发。
内容概要:本文深入探讨了永磁同步电机(PMSM)伺服系统的转动惯量和阻尼系数的在线辨识方法。文中介绍了两种主要的辨识方程:一种用于空载工况,另一种用于负载工况。通过详细的数学推导和Python、C、MATLAB代码示例,展示了如何在不同工况下精准辨识这些参数。此外,还讨论了1.5拍延时补偿、全电压前馈补偿和相电压重构等关键技术,以提高辨识精度和系统稳定性。仿真结果显示,在空载和负载突变情况下,辨识误差分别低于0.8%和2.3%。 适合人群:从事电机控制、自动化控制领域的研究人员和技术人员,尤其是对PMSM伺服系统感兴趣的工程师。 使用场景及目标:适用于需要在线辨识PMSM伺服系统转动惯量和阻尼系数的应用场合,如工业机器人、数控机床等。目标是在不影响正常生产的情况下,实时监测和调整电机参数,提升系统性能。 其他说明:本文不仅提供了理论推导和算法实现,还给出了具体的代码示例和仿真结果,便于读者理解和应用。同时,文中提到的技术可以作为其他类似算法验证的良好参考。
# 基于Arduino的精确计时与PWM控制系统 ## 项目简介 本项目基于Arduino的TimerOne库,该库是Arduino平台上用于精确计时和PWM控制的开源库。主要面向Arduino板上的ATmega系列微控制器,可实现设置定时器、产生PWM信号、定时中断等功能,用于精确控制时间和电机速度。 ## 项目的主要特性和功能 1. 初始化定时器,设置初始参数。 2. 根据用户指定微秒数设置定时器周期。 3. 设定PWM输出的占空比,控制PWM输出大小。 4. 启动和停止PWM输出。 5. 设定和停止中断服务例行程序。 6. 重新启动和重置定时器。 7. 停止定时器计数。 8. 读取当前定时器的计数值并转换为微秒数。 ## 安装使用步骤 ### 安装 用户已下载项目源码文件后,可通过Arduino IDE的库管理器搜索并安装TimerOne库。 ### 使用 在代码中引入#include <TimerOne.h>,即可使用上述功能。
weixin242基于微信小程序的外卖点餐系统设计与实现ssm(文档+源码)_kaic
# 基于Arduino的Wemos Mqtt Alarm Panel项目 ## 项目简介 本项目是一个基于Arduino平台的开源智能报警面板项目,命名为“Wemos Mqtt Alarm Panel”。该项目允许用户通过简单的MQTT操作来触发和控制报警系统。主要面向需要低成本、易于部署的智能家居或小型商业场所报警系统。项目仍在开发阶段,但已经具备基本功能并可供使用。 ## 项目的主要特性和功能 1. 低成本硬件需求主要使用Wemos D1 Mini或其他兼容的微控制器,以及Lolin 2.4英寸TFT显示屏。整体硬件成本较低,易于获取和部署。 2. 基于MQTT通信协议允许报警系统与MQTT服务器进行通信,实现远程控制和状态报告功能。 3. 界面友好采用直观的图形界面,支持触摸操作,方便用户进行交互。 4. 校准功能提供校准界面,确保触摸操作的准确性。 5. 可扩展性支持自定义报警事件和动作,允许用户根据需求进行个性化设置。 ## 安装使用步骤
内容概要:本文详细介绍了一个基于MATLAB的SSA-ESN(奇异谱分析-回声状态网络)多输出回归代码。该代码适用于处理复杂的非线性回归问题,具有多输出支持、友好的数据格式、丰富的可视化效果以及全面的评价指标等特点。文中不仅提供了详细的代码解析,还给出了具体的操作步骤和注意事项,帮助初学者快速理解和应用这一先进的回归方法。主要内容分为数据预处理、模型训练与预测、结果分析与可视化三个部分,涵盖了从数据准备到最终结果呈现的完整流程。 适合人群:对机器学习感兴趣特别是想学习和应用SSA-ESN进行多输出回归的新手程序员和研究人员。 使用场景及目标:①用于解决多输出的非线性回归问题;②提供一个完整的项目案例,帮助用户理解SSA-ESN的工作机制及其优势;③通过实际操作加深对机器学习理论的理解。 其他说明:代码已调试完毕,可以直接运行,附有详细的中文注释,便于学习和修改。此外,文中还提到了一些常见的错误及解决方案,如数据格式不匹配等问题。
内容概要:本文详细介绍了一个基于Matlab的模拟射击自动报靶系统的实现方法。该系统利用图像处理技术和计算机视觉技术,通过一系列步骤如图像滤波、图像减影、二值化、噪声滤除、目标矫正、弹孔识别和环值判定,实现了对射击靶纸的自动化处理。此外,文中还介绍了如何使用Matlab的GUIDE工具创建友好的GUI界面,使系统更易于操作。系统不仅提高了报靶的速度和准确性,还在军事训练和民用射击活动中展现出广阔的应用前景。 适合人群:对图像处理、计算机视觉感兴趣的研发人员和技术爱好者,尤其是有一定Matlab基础的用户。 使用场景及目标:适用于射击训练和比赛中,用于快速准确地报靶,提高训练效率和比赛公平性。目标是通过自动化手段减少人工干预,确保报靶结果的客观性和实时性。 其他说明:文中提供了详细的代码示例和优化技巧,帮助读者更好地理解和实现该系统。此外,作者还分享了一些常见问题的解决方案,如光照突变、靶纸反光等问题的应对措施。
内容概要:本文深入探讨了 Docker Compose 的高级应用,旨在帮助用户从基础用户成长为能够驾驭复杂系统编排的专家。文章首先介绍了 Docker Compose 的核心高级特性,如 profiles、extends、depends_on、healthcheck、自定义网络、卷管理和环境变量管理。接着,通过 30 多个实战模板,覆盖了 Web 全栈、AI/ML、IoT、监控、CI/CD 等多个领域的复杂场景,展示了如何利用这些特性构建高效、可靠的应用环境。每个模板不仅提供了详细的代码示例,还附有解释要点,帮助读者理解其工作原理和应用场景。 适用人群:具备一定 Docker 基础,希望提升 Docker Compose 使用技能的开发者和运维人员,特别是那些需要管理复杂多服务应用的 DevOps 工程师。 使用场景及目标: 1. **Web 开发**:构建 LEMP、MERN 等全栈应用,简化开发和部署流程。 2. **数据处理**:实现 ETL 流程,结合消息队列和数据库进行高效数据处理。 3. **微服务架构**:使用 API 网关简化微服务入口管理,提升服务发现和路由配置的灵活性。 4. **监控与日志**:搭建 PLG 或 ELK 日志系统,实现日志的收集、存储和可视化。 5. **物联网**:构建 MQTT Broker 和时序数据库,支持 IoT 设备的数据接收和处理。 6. **机器学习**:部署 TensorFlow Serving 或 TorchServe,提供模型服务接口。 7. **CI/CD**:快速搭建 GitLab/Gitea 平台,支持代码托管和持续集成。 8. **安全测试**:使用 OWASP ZAP 对 Web 应用进行自动化或手动的安全扫描。 9. **教育与学习**:部署 Moodle,在线学习管理系统,支持课程创建和
内容概要:本文详细探讨了利用COMSOL软件对注浆技术进行仿真的方法和技术细节。主要内容包括浆液扩散的数学建模、仿真模型的构建(如几何模型、边界条件、初始条件和控制方程)、关键参数(注浆压力、孔间距、地质条件)对浆液扩散的影响分析,以及实际工程应用案例。文中通过具体实例展示了如何通过仿真优化注浆施工参数,提高注浆效率并降低成本。此外,还讨论了倾斜裂隙、孔隙率和渗透率等因素对浆液扩散的具体影响及其应对措施。 适合人群:从事地下工程施工的技术人员、科研人员及高校相关专业师生。 使用场景及目标:①用于优化注浆施工方案,提高注浆效果;②为地下工程建设提供技术支持;③帮助研究人员深入理解浆液扩散机制。 其他说明:文章不仅提供了理论分析,还包括大量具体的代码示例和实践经验分享,有助于读者更好地理解和应用COMSOL仿真技术。
内容概要:本文列举了多个信息安全领域的实战项目示例,涵盖网络渗透测试、Web应用安全加固、企业安全策略制定与实施、恶意软件分析、数据泄露应急响应、物联网设备安全检测、区块链安全审计和云安全防护八大方面。每个项目均明确了具体的目标与步骤,如网络渗透测试通过模拟攻击发现并修复系统漏洞;Web应用安全加固则从代码审查、输入验证、身份验证、数据加密等方面确保应用安全;企业安全策略制定旨在构建全面的信息安全体系;恶意软件分析深入探究其功能与传播机制;数据泄露应急响应项目则聚焦于快速遏制影响、调查原因、恢复系统;物联网设备安全检测保障设备的安全性;区块链安全审计确保系统稳定可靠;云安全防护构建云环境下的安全体系。; 适合人群:信息安全从业人员、网络安全工程师、企业IT管理人员、安全研究人员。; 使用场景及目标:适用于希望深入了解信息安全各细分领域实战操作的专业人士,目标是掌握不同类型安全项目的实施流程与技术要点,提升实际工作中应对安全挑战的能力。; 其他说明:文中提供的项目示例不仅有助于理论学习,更为实际工作提供了具体的指导和参考,帮助相关人员在不同场景下有效开展信息安全工作,确保信息系统的安全性、稳定性和可靠性。
基于matlab实现的博弈方法的电动汽车充电调度策略研究+源码,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用 基于matlab实现的博弈方法的电动汽车充电调度策略研究+源码,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用~ 基于matlab实现的博弈方法的电动汽车充电调度策略研究+源码,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用 基于matlab实现的博弈方法的电动汽车充电调度策略研究+源码,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用 基于matlab实现的博弈方法的电动汽车充电调度策略研究+源码,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用 基于matlab实现的博弈方法的电动汽车充电调度策略研究+源码,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用
内容概要:本文详细介绍了基于Matlab的违规限号车牌识别管理系统的开发过程和技术细节。系统主要分为多个步骤,包括车牌粗定位、灰度化、倾斜矫正、二值化、形态学处理、反色处理、精准定位、字符分割与识别、限号判断、语音播报和违规车牌信息导出。通过这些步骤,系统能够高效地识别并处理违规限号车辆,提升交通管理水平。 适用人群:适用于具有一定编程基础的技术人员,特别是对计算机视觉和数字图像处理感兴趣的开发者。 使用场景及目标:本系统主要用于城市交通管理部门,帮助执法人员快速识别和处理违反限号规定的车辆,提高交通管理的智能化水平。具体应用场景包括但不限于道路监控、停车场管理和临时检查点等。 其他说明:文中提供了大量Matlab代码示例,详细解释了各个步骤的具体实现方法。此外,作者还分享了许多实际开发过程中遇到的问题及其解决方案,有助于读者更好地理解和应用这些技术。
2000-2017年各省国有经济煤气生产和供应业固定资产投资数据 1、时间:2000-2017年 2、来源:国家统计j、能源nj 3、指标:行政区划代码、城市、年份、国有经济煤气生产和供应业固定资产投资 4、范围:31省
HDRI大全三维环境切图