`

MySQL数据库优化处理实现千万级快速分页分析,来看下吧。

 
阅读更多

数据表 collect ( id, title ,info ,vtype) 就这4个字段,其中 title 用定长,info 用text, id 是逐渐,vtype是tinyint,vtype是索引。这是一个基本的新闻系统的简单模型。现在往里面填充数据,填充10万篇新闻。

最后collect 为 10万条记录,数据库表占用硬盘1.6G。OK ,看下面这条sql语句:

select id,title from collect limit 1000,10; 很快;基本上0.01秒就OK,再看下面的

select id,title from collect limit 90000,10; 从9万条开始分页,结果?

8-9秒完成,my god 哪出问题了????其实要优化这条数据,网上找得到答案。看下面一条语句:

select id from collect order by id limit 90000,10; 很快,0.04秒就OK。 为什么?因为用了id主键做索引当然快。网上的改法是:

select id,title from collect where id>=(select id from collect order by id limit 90000,1) limit 10;

这就是用了id做索引的结果。可是问题复杂那么一点点,就完了。看下面的语句

select id from collect where vtype=1 order by id limit 90000,10; 很慢,用了8-9秒!

到了这里我相信很多人会和我一样,有崩溃感觉!vtype 做了索引了啊?怎么会慢呢?vtype做了索引是不错,你直接 select id from collect where vtype=1 limit 1000,10; 是很快的,基本上0.05秒,可是提高90倍,从9万开始,那就是0.05*90=4.5秒的速度了。和测试结果8-9秒到了一个数量级。从这里开始有人 提出了分表的思路,这个和discuz 论坛是一样的思路。思路如下:

建一个索引表: t (id,title,vtype) 并设置成定长,然后做分页,分页出结果再到 collect 里面去找info 。 是否可行呢?实验下就知道了。

10万条记录到 t(id,title,vtype) 里,数据表大小20M左右。用

select id from t where vtype=1 order by id limit 90000,10; 很快了。基本上0.1-0.2秒可以跑完。为什么会这样呢?我猜想是因为collect 数据太多,所以分页要跑很长的路。limit 完全和数据表的大小有关的。其实这样做还是全表扫描,只是因为数据量小,只有10万才快。OK, 来个疯狂的实验,加到100万条,测试性能。

加了10倍的数据,马上t表就到了200多M,而且是定长。还是刚才的查询语句,时间是0.1-0.2秒完成!分表性能没问题?错!因为我们的limit还是9万,所以快。给个大的,90万开始

select id from t where vtype=1 order by id limit 900000,10; 看看结果,时间是1-2秒!

why ?? 分表了时间还是这么长,非常之郁闷!有人说定长会提高limit的性能,开始我也以为,因为一条记录的长度是固定的,mysql 应该可以算出90万的位置才对啊? 可是我们高估了mysql 的智能,他不是商务数据库,事实证明定长和非定长对limit影响不大? 怪不得有人说 discuz到了100万条记录就会很慢,我相信这是真的,这个和数据库设计有关!

难道MySQL 无法突破100万的限制吗???到了100万的分页就真的到了极限???

答案是: NO !!!! 为什么突破不了100万是因为不会设计mysql造成的。下面介绍非分表法,来个疯狂的测试!一张表搞定100万记录,并且10G 数据库,如何快速分页!

好了,我们的测试又回到 collect表,开始测试结论是: 30万数据,用分表法可行,超过30万他的速度会慢道你无法忍受!当然如果用分表+我这种方法,那是绝对完美的。但是用了我这种方法后,不用分表也可以完美解决!

答案就是:复合索引! 有一次设计mysql索引的时候,无意中发现索引名字可以任取,可以选择几个字段进来,这有什么用呢?开始的select id from collect order by id limit 90000,10; 这么快就是因为走了索引,可是如果加了where 就不走索引了。抱着试试看的想法加了 search(vtype,id) 这样的索引。然后测试

select id from collect where vtype=1 limit 90000,10; 非常快!0.04秒完成!

再测试: select id ,title from collect where vtype=1 limit 90000,10; 非常遗憾,8-9秒,没走search索引!

再测试:search(id,vtype),还是select id 这个语句,也非常遗憾,0.5秒。

综上:如果对于有where 条件,又想走索引用limit的,必须设计一个索引,将where 放第一位,limit用到的主键放第2位,而且只能select 主键!

完美解决了分页问题了。可以快速返回id就有希望优化limit , 按这样的逻辑,百万级的limit 应该在0.0x秒就可以分完。看来mysql 语句的优化和索引时非常重要的!

好了,回到原题,如何将上面的研究成功快速应用于开发呢?如果用复合查询,我的轻量级框架就没的用了。分页字符串还得自己写,那多麻烦?这里再看一个例子,思路就出来了:

select * from collect where id in (9000,12,50,7000); 竟然 0秒就可以查完!

mygod ,mysql 的索引竟然对于in语句同样有效!看来网上说in无法用索引是错误的!

有了这个结论,就可以很简单的应用于轻量级框架了:

代码如下:

$db=dblink();
$db->pagesize=20;

$sql="select id from collect where vtype=$vtype";

$db->execute($sql);
$strpage=$db->strpage(); //将分页字符串保存在临时变量,方便输出
while($rs=$db->fetch_array()){
$strid.=$rs['id'].',';
}
$strid=substr($strid,0,strlen($strid)-1); //构造出id字符串
$db->pagesize=0; //很关键,在不注销类的情况下,将分页清空,这样只需要用一次数据库连接,不需要再开;
$db->execute("select id,title,url,sTime,gTime,vtype,tag from collect where id in ($strid)");

<?php while($rs=$db->fetch_array()): ?>
<tr>
<td>&nbsp;<?php echo $rs['id'];?></td>
<td>&nbsp;<?php echo $rs['url'];?></td>
<td>&nbsp;<?php echo $rs['sTime'];?></td>
<td>&nbsp;<?php echo $rs['gTime'];?></td>
<td>&nbsp;<?php echo $rs['vtype'];?></td>
<td>&nbsp;<a href="?act=show&id=<?php echo $rs['id'];?>" target="_blank"><?php echo $rs['title'];?></a></td>
<td>&nbsp;<?php echo $rs['tag'];?></td>
</tr>
<?php endwhile; ?>
</table>
<?php
echo $strpage;

通过简单的变换,其实思路很简单:1)通过优化索引,找出id,并拼成 "123,90000,12000" 这样的字符串。2)第2次查询找出结果。

小小的索引+一点点的改动就使mysql 可以支持百万甚至千万级的高效分页!

通过这里的例子,我反思了一点:对于大型系统,PHP千万不能用框架,尤其是那种连sql语句都看不到的框架!因为开始对于我的轻量级框架都差点崩 溃!只适合小型应用的快速开发,对于ERP,OA,大型网站,数据层包括逻辑层的东西都不能用框架。如果程序员失去了对sql语句的把控,那项目的风险将 会成几何级数增加!尤其是用mysql 的时候,mysql 一定需要专业的dba 才可以发挥他的最佳性能。一个索引所造成的性能差别可能是上千倍!

PS: 经过实际测试,到了100万的数据,160万数据,15G表,190M索引,就算走索引,limit都得0.49秒。所以分页最好别让别人看到10万条以后的数据, 要不然会很慢!就算用索引。经过这样的优化,mysql到了百万级分页是个极限!但有这样的成绩已经很不错,如果你是用sqlserver肯定卡死!而 160万的数据用 id in (str) 很快,基本还是0秒。如果这样,千万级的数据,mysql应该也很容易应付。

From: http://blog.csdn.net/miraclestar/archive/2011/05/06/6400660.aspx

分享到:
评论

相关推荐

    MySQL 百万级分页优化(Mysql千万级快速分页)

    ### MySQL 百万级分页优化(Mysql千万级快速分页) #### 背景与挑战 在处理大规模数据集时,例如拥有数百万乃至数千万条记录的数据库表,传统的分页查询方法可能会遇到性能瓶颈。特别是使用`LIMIT`进行分页时,随着...

    mysql数据库实现分页

    在MySQL数据库中,分页是处理大量数据查询时不可或缺的一种技术。它允许用户按需加载数据,而不是一次性获取所有记录,从而提高了用户体验并降低了服务器负载。以下是对分页实现的详细说明: 一、基础概念 分页是将...

    如何优化Mysql千万级快速分页

    MySQL 千万级快速分页优化方案 在实际开发中,我们经常会遇到 MySQL 数据库的性能问题,特别是在处理千万级数据时,分页查询的性能会变得非常慢。在这篇文章中,我们将探讨如何优化 MySQL 千万级快速分页,详细介绍...

    易语言MYSQL数据库分页查询

    总结来说,易语言结合MySQL数据库的分页查询是通过建立连接、构建分页SQL、执行查询、处理结果和关闭连接等一系列步骤来实现的。理解这些步骤,并结合数据库优化技巧,可以帮助开发者构建出高效、友好的数据展示系统...

    数据库迁移 数据迁移 千万级 亿万级数据MySQL oracle关系型

    现需要开发一套程序用来快速迁移数据库,要求如下: 1.使用人员可以指定迁移数据库类型 如:(orcal,sqlServer,csv 迁移至mysql) 2.在迁移数据库时,可以只迁移指定字段. 3.开发多任务的平台,按权重去执行任务,如:...

    servlet连接mysql数据库,实现分页加载

    总结,使用Servlet连接MySQL数据库并实现分页加载功能,主要涉及以下几个步骤:配置JDBC驱动、建立数据库连接、执行SQL查询(含分页条件)、处理结果集、实现分页逻辑以及正确关闭资源。在实际开发中,还要考虑错误...

    mysql_海量数据库的查询优化及分页算法方案.doc

    MySQL 海量数据库的查询优化及分页算法方案 在大规模数据库中,查询优化和分页算法是两个非常重要的方面。本文将详细介绍 MySQL 海量数据库的查询优化和分页算法方案。 一、查询优化 查询优化是指通过调整查询...

    MYSQL数据库优化秘籍

    MYSQL数据库优化秘籍,大牛出的,值得你反复研读 MySQL在Linux环境下的安装 文件引擎MyISAM与InnoDB比较 LOAD DATA INFILE/mysqldump DBA的分析命令 MySQL的系统配置参数、诊断操作系统的状态 MySQL的分库分表,分区...

    百万级数据库记录下的Mysql快速分页优化实例

    ### 百万级数据库记录下的MySQL快速分页优化实例 #### 概述 在处理大量数据时,如何高效地进行分页查询是一项重要的技术挑战。本文档将详细探讨当面对百万乃至千万级别数据记录时,如何优化MySQL的分页查询性能。...

    C++实现MySQL分页查询

    总结来说,C++通过MFC和MySQL Connector/C++库可以方便地实现与MySQL数据库的交互,进行分页查询。这个过程涉及到数据库连接、SQL语句构造、结果集处理以及用户界面的交互。理解并熟练运用这些概念和技术,将有助于...

    用JSTL实现JSP分页显示数据代码(MySQL数据库)

    JSTL 实现 JSP 分页显示数据代码(MySQL 数据库) 本文将详细讲解如何使用 JSTL 实现 JSP 分页显示数据代码,并使用 MySQL 作为数据库。该代码不仅提供了分页显示数据的功能,还提供了数据库和表的创建代码。 标题...

    PHP结合数据库实现分页

    PHP结合数据库,实现分页功能

    nodejs mysql 实现分页的方法

    Node.js结合MySQL实现分页查询是一种常见的数据处理方式,在Web应用中尤为常见...通过这篇文章的学习,我们可以了解到在Node.js应用中如何结合MySQL数据库来实现分页功能,这对于Web开发人员来说是一个非常实用的技能。

    易语言连接mysql数据库来实现读取写入修改实例

    总结,本实例通过易语言实现了对MySQL数据库的连接,展示了读取、写入和修改数据的基本步骤。在实际开发中,这些操作会结合界面交互,形成用户友好的应用程序。理解并掌握这些基础操作,将有助于你构建更复杂的...

    超简单实用的PHP操作MYSQL数据库类 与分页思路

    在实际应用中,还需要考虑一些额外的因素,比如错误处理(确保数据库连接成功,查询无误),安全防护(防止SQL注入),以及性能优化(合理设置索引,避免全表扫描)。此外,考虑到MySQL已逐渐被更现代的数据库系统如...

    易语言源码MYSQL数据库分页查询.rar

    易语言源码MYSQL数据库分页查询.rar 易语言源码MYSQL数据库分页查询.rar 易语言源码MYSQL数据库分页查询.rar 易语言源码MYSQL数据库分页查询.rar 易语言源码MYSQL数据库分页查询.rar 易语言源码MYSQL数据库分页...

    JDBC连接MySql数据库+增删改查+分页+DWR增删改查 分页

    总结起来,这个项目结合了JDBC进行数据库操作,MySQL作为数据存储,利用分页技术优化数据展示,以及DWR实现无刷新交互。这些技术的综合运用,不仅展示了数据库操作的基本流程,也体现了现代Web应用开发中前后端交互...

Global site tag (gtag.js) - Google Analytics