`
lt1988
  • 浏览: 17665 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

AVLTree

阅读更多

最近小看了下hsqldb的源码,发现它的索引时用AVLTree实现的,为了更深刻理解AVLTree,自己模仿hsqldb的AVLTree写了一个小平衡二叉树。目前不支持并发,好像java的map 里面有个树形结构实现。

public class AVLNode {

	public AVLNode left=null;
	public AVLNode right=null;
	public AVLNode parent=null;
	public Comparable key;
	public Object value;
	public int balance=0;
	
	public AVLNode(Comparable key,Object value)
	{
		this.key=key;
		this.value=value;
	}
	
	public boolean isFromLeft()
	{
		return this.parent.left==this;
	}
	
	public void childAs(boolean isLeft,AVLNode newParent)
	{
		this.parent=newParent;
		if(isLeft)
			newParent.left=this;
		else
			newParent.right=this;
	}
	
	public AVLNode getSmallest()
	{
		AVLNode node=this;
		AVLNode tmpNode=this;
		while(tmpNode!=null)
		{
			node=tmpNode;
			tmpNode=tmpNode.left;
		}
		return node;
	}
	
	public AVLNode getLargest()
	{
		AVLNode node=this;
		AVLNode tmpNode=this;
		while(tmpNode!=null)
		{
			node=tmpNode;
			tmpNode=tmpNode.right;
		}
		return node;
	}
}

 

import java.util.Iterator;


public class AVLTree {

	private AVLNode root=null;

	public AVLNode getRoot() {
		return root;
	}

	public void insert(AVLNode toInsert)
	{
		//whether to check this node's child
		if(toInsert.left!=null||toInsert.right!=null)
			;
		if(root==null)
			root=toInsert;
		//locate this node's position
		AVLNode tmpNode=root;
		AVLNode insertParent=null;<script type="text/javascript"><!--mce:0--></script> 
		while(tmpNode!=null)
		{
			int compare=toInsert.key.compareTo(tmpNode.key);
			if(compare==0)
				return;
			else if(compare==-1)
			{
				insertParent=tmpNode;
				tmpNode=tmpNode.left;
			}
			else 
			{
				insertParent=tmpNode;
				tmpNode=tmpNode.right;
			}
		}
		//get the left or right 
		boolean isLeft=toInsert.key.compareTo(insertParent.key)==-1?true:false;
		toInsert.childAs(isLeft, insertParent);
		AVLNode toBalance=traceBackRefreshBalanceInsert(toInsert);
		if(toBalance!=null)
			balance(toBalance);
	}
	//trace back to refresh the balances and find where need to rotate
	private AVLNode traceBackRefreshBalanceInsert(AVLNode traceNode)
	{
		int childFlag;//from left or right -1 left 1 right
		while(traceNode!=root)
		{
			childFlag=traceNode.isFromLeft()?-1:1;
			traceNode.parent.balance+=childFlag;//refresh
			switch(Math.abs(traceNode.parent.balance))
			{
			case 0://this subTree is balanced
				return null;
			case 1://continue refresh
				break;
			case 2://subTree traceNode.parent.balance is not balance!
				return traceNode.parent;
			}
			traceNode=traceNode.parent;
		}
		return null;
	}
	private AVLNode traceBackRefreshBalanceDelete(AVLNode traceNode)
	{
		AVLNode tmpNode=traceNode;
		int isFromLeft;
		while(tmpNode!=root)
		{
			isFromLeft=tmpNode.isFromLeft()?-1:1;
			tmpNode.parent.balance-=isFromLeft;
			switch(Math.abs(tmpNode.parent.balance))
			{
			case 0:
				break;
			case 1:
				return null;
			case 2:		
				return tmpNode.parent;
			}
		}
		
		return null;
	}
	
	//balance the tree
	private void balance(AVLNode toBalance)
	{
		if(toBalance.balance<0)
		{
			if(toBalance.left.balance<=0)//LL right rotate
			{
				AVLNode toBalanceLeftChild=toBalance.left;
				AVLNode toBalanceNewLeftChild=toBalance.left.right;
				toBalance.balance=0;
				toBalance.left.balance=0;
				if(toBalance.parent==null)
				{
					root=toBalanceLeftChild;
					toBalanceLeftChild.parent=null;
				}
				else
					toBalanceLeftChild.childAs(toBalance.isFromLeft(), toBalance.parent);
				toBalance.childAs(false, toBalanceLeftChild);
				if(toBalanceNewLeftChild!=null)
					toBalanceNewLeftChild.childAs(true, toBalance);
			}
			else//LR left-right rotate
			{
				AVLNode newLeftChild=toBalance.left;
				AVLNode newRoot=toBalance.left.right;
				AVLNode newLeftChildRight=toBalance.left.right.left;
				AVLNode newRightChildLeft=toBalance.left.right.right;
				newLeftChild.balance=0;
				newRoot.balance=0;
				if(toBalance.parent==null)
				{
					root=newRoot;
					newRoot.parent=null;
				}
				else
					newRoot.childAs(toBalance.isFromLeft(), toBalance.parent);
				newLeftChild.childAs(true, newRoot);
				toBalance.childAs(false, newRoot);
				if(newLeftChildRight!=null)
					newLeftChildRight.childAs(false, newLeftChild);
				if(newRightChildLeft!=null)
				newRightChildLeft.childAs(true, toBalance);
			}
		}
		else
		{
			if(toBalance.right.balance>=0)//RR left rotate
			{
				AVLNode toBalanceRightChild=toBalance.right;
				AVLNode toBalanceNewRightChild=toBalance.right.left;
				toBalance.balance=0;
				toBalance.right.balance=0;
				if(toBalance.parent==null)
				{
					toBalanceRightChild.parent=null;
					root=toBalanceRightChild;
				}
				else
					toBalanceRightChild.childAs(toBalance.isFromLeft(), toBalance.parent);
				toBalance.childAs(true, toBalanceRightChild);
				if(toBalanceNewRightChild!=null)
					toBalanceNewRightChild.childAs(false, toBalance);
			}
			else//RL right-left rotate
			{
				AVLNode newRightChild=toBalance.right;
				AVLNode newRoot=toBalance.right.left;
				AVLNode newLeftChildRight=toBalance.right.left.left;
				AVLNode newRightChildLeft=toBalance.right.left.right;
				newRightChild.balance=0;
				newRoot.balance=0;
				if(toBalance.parent==null)
				{
					root=newRoot;
					newRoot.parent=null;
				}
				else
					newRoot.childAs(toBalance.isFromLeft(), toBalance.parent);
				newRightChild.childAs(false, newRoot);
				toBalance.childAs(true, newRoot);
				if(newLeftChildRight!=null)
					newLeftChildRight.childAs(false, toBalance);
				if(newRightChildLeft!=null)
					newRightChildLeft.childAs(true, newRightChild);
			}
		}
	}
	
	public AVLNode delete(Comparable key)
	{
		AVLNode toDelete=getAVLNodeByKey(key);
		if(toDelete==null)
			return null;
		if(toDelete==root&&toDelete.left==null&&toDelete.right==null)
		{
			root=null;
			return root;
		}
		//begin replace to delete node with a node
		//this node is the deeper subTree's smallest node of the right subTree
		//or the largest node of the left subTree
		AVLNode toReplace;
		AVLNode toBalance;
		int compare=toDelete.balance;
		if(compare<=0)
		{
			toReplace=toDelete.left.getLargest();
			toBalance=traceBackRefreshBalanceDelete(toReplace);
			if(toReplace.left!=null)
				toReplace.left.childAs(false, toReplace.parent);	
		}
		else
		{
			toReplace=toDelete.right.getSmallest();
			toBalance=traceBackRefreshBalanceDelete(toReplace);
			if(toReplace.right!=null)
				toReplace.right.childAs(true, toReplace.parent);	
		}
		if(toDelete.left!=null)
			toDelete.left.childAs(true, toReplace);	
		if(toDelete.right!=null)
			toDelete.right.childAs(false, toReplace);
		toReplace.balance=toDelete.balance;
		//set new root if toDelete is the root
		if(toDelete.parent==null)
		{
			toReplace.parent=null;
			root=toReplace;
		}
		else
		{
			toReplace.childAs(toDelete.isFromLeft(), toDelete.parent);
		}
		//balance
		if(toBalance!=null)
			balance(toBalance);
		//refresh balance again
		AVLNode tmpNode=toBalance;
		while(tmpNode.parent!=null)
		{
			int isFromLeft;
			isFromLeft=tmpNode.isFromLeft()?-1:1;
			tmpNode.parent.balance-=isFromLeft;
			tmpNode=tmpNode.parent;
		}
		//clear this node
		toDelete.left=toDelete.right=toDelete.parent=null;
		return toDelete;
	}
	
	public AVLNode getAVLNodeByKey(Comparable key)
	{
		AVLNode tmpNode=root;
		while(tmpNode!=null)
		{
			switch(key.compareTo(tmpNode.key))
			{
			case 0:
				return tmpNode;
			case -1:
				tmpNode=tmpNode.left;
				break;
			case 1:
				tmpNode=tmpNode.right;
				break;
			}
		}
		return null;
	}
	

}

 

import junit.framework.TestCase;

public class TestAVLTree extends TestCase{

	AVLTree tree=new AVLTree();
	
	public void testInsertRR()
	{
		tree=new AVLTree();
		tree.insert(new AVLNode(1,1));
		assertEquals(1, tree.getRoot().value);
		tree.insert(new AVLNode(2,2));
		assertEquals(1, tree.getRoot().value);
		assertEquals(2, tree.getRoot().right.value);
		assertEquals(1, tree.getRoot().balance);
		assertEquals(0, tree.getRoot().right.balance);
		tree.insert(new AVLNode(3,3));
		assertEquals(2, tree.getRoot().value);
		assertEquals(3, tree.getRoot().right.value);
		assertEquals(1, tree.getRoot().left.value);
		assertEquals(0, tree.getRoot().balance);
		assertEquals(0, tree.getRoot().left.balance);
		assertEquals(0, tree.getRoot().right.balance);
	}
	
	public void testInsertLL()
	{
		tree=new AVLTree();
		tree.insert(new AVLNode(3,3));
		assertEquals(3, tree.getRoot().value);
		tree.insert(new AVLNode(2,2));
		assertEquals(3, tree.getRoot().value);
		assertEquals(2, tree.getRoot().left.value);
		assertEquals(-1, tree.getRoot().balance);
		assertEquals(0, tree.getRoot().left.balance);
		tree.insert(new AVLNode(1,1));
		assertEquals(2, tree.getRoot().value);
		assertEquals(3, tree.getRoot().right.value);
		assertEquals(1, tree.getRoot().left.value);
		assertEquals(0, tree.getRoot().balance);
		assertEquals(0, tree.getRoot().left.balance);
		assertEquals(0, tree.getRoot().right.balance);
	}
	
	public void testInsertRL()
	{
		tree=new AVLTree();
		tree.insert(new AVLNode(2,2));
		assertEquals(2, tree.getRoot().value);
		tree.insert(new AVLNode(3,3));
		assertEquals(2, tree.getRoot().value);
		assertEquals(3, tree.getRoot().right.value);
		assertEquals(1, tree.getRoot().balance);
		assertEquals(0, tree.getRoot().right.balance);
		tree.insert(new AVLNode(1,1));
		assertEquals(2, tree.getRoot().value);
		assertEquals(3, tree.getRoot().right.value);
		assertEquals(1, tree.getRoot().left.value);
		assertEquals(0, tree.getRoot().balance);
		assertEquals(0, tree.getRoot().left.balance);
		assertEquals(0, tree.getRoot().right.balance);
	}
	
	public void testInsertLR()
	{
		tree=new AVLTree();
		tree.insert(new AVLNode(2,2));
		assertEquals(2, tree.getRoot().value);
		tree.insert(new AVLNode(1,1));
		assertEquals(2, tree.getRoot().value);
		assertEquals(1, tree.getRoot().left.value);
		assertEquals(-1, tree.getRoot().balance);
		assertEquals(0, tree.getRoot().left.balance);
		tree.insert(new AVLNode(3,3));
		assertEquals(2, tree.getRoot().value);
		assertEquals(3, tree.getRoot().right.value);
		assertEquals(1, tree.getRoot().left.value);
		assertEquals(0, tree.getRoot().balance);
		assertEquals(0, tree.getRoot().left.balance);
		assertEquals(0, tree.getRoot().right.balance);
	}
	
	public void testGetNode()
	{
		tree=newTree();
		assertEquals(6,tree.getAVLNodeByKey(6).value);
	}
	
	public void testHeadAndTail()
	{
		tree=newTree();
		assertEquals(11,tree.getRoot().getLargest().value);
		assertEquals(1,tree.getRoot().getSmallest().value);
	}
	
	public void testDeleteRL()
	{
		tree=newTree();
		assertEquals(4,tree.getRoot().key);
		assertNull(tree.getRoot().parent);
		assertEquals(5,tree.getRoot().right.getSmallest().key);
		assertEquals(1,tree.getRoot().balance);
		tree.delete(tree.getRoot().key);
		assertEquals(5,tree.getRoot().key);
		assertEquals(0,tree.getRoot().balance);
	}
	
	private AVLTree newTree()
	{
		tree=new AVLTree();
		tree.insert(new AVLNode(2,2));
		tree.insert(new AVLNode(1,1));
		tree.insert(new AVLNode(3,3));
		tree.insert(new AVLNode(4,4));
		tree.insert(new AVLNode(5,5));
		tree.insert(new AVLNode(6,6));
		tree.insert(new AVLNode(7,7));
		tree.insert(new AVLNode(11,11));
		return tree;
	}
}

 目前只做了简单的测试。。。

分享到:
评论

相关推荐

    the rotation of AVL tree

    avl tree 中的各种旋转

    AVLTree自平衡二叉树C++模板类实现

    使用C++实现的AVLTree自平衡二叉树,支持动态插入与删除操作,供C++数据结构课程学习与交流使用。

    AVLTree的实现与分析

    本设计实现了AVLTree的所有的实现功能,也包括BinSTree与AVLTree的转换

    avltree的简单实现

    一个avltree的简单实现,便于了解avltree的结构及应用

    C语言实现平衡二叉树(AVL tree)例子

    这是一个用C实现的AVL tree,带MFC的测试程序。 在我的机器上(P4 T2050 Duo, 1G memory)列C盘所有文件并组织成AVL tree,一共是70000多个文件和目录,耗时大约是5-7秒

    AVL Tree source code

    AVL Tree source code

    AVltree_avltree_

    4. `avltree_test`:这个可能是编译后的可执行文件,当运行这个文件时,它会执行`avltree_test.c`中的测试代码,展示AVL树的运作情况。 关于AVL树的实现,主要涉及以下几个核心概念: - **节点定义**:每个节点...

    陈越、何钦铭-数据结构作业13:Root of AVL Tree平衡二叉树的根节点

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is...

    AVLtree.zip_avl_avl java_avl tree_avltree_class A

    AVL tree using node from data structure and algorithm java class, create a minimum AVL tree with minimum number of nodes at given high

    AVL Tree 代码实例

    `AVL_tree.ncb`、`AVL_tree.sln`、`AVL_tree.suo`和`AVL_tree`可能是Visual Studio项目文件,包含了实现AVL树数据结构的源代码。`ncb`文件是Visual Studio的非编译缓存,`sln`是解决方案文件,`suo`存储用户特定的...

    avltree算法.rar_avl_avl tree

    在"www.pudn.com.txt"和"AVLTree"这两个文件中,可能包含了关于AVL树的更多详细信息,如实现代码、示例或进一步的解释。学习AVL树不仅能够理解其基本概念和操作,还能深入理解数据结构的设计和优化,这对于理解和...

    AVLTree.rar_avl_java avltree_tree

    AVLTree.java文件应该包含了AVL树的实现,包括节点类的定义、插入、删除、旋转等核心功能。通过阅读和理解这个源代码,你可以深入学习AVL树的原理和操作,这对于理解和使用自平衡二叉查找树是非常有价值的。在实际...

    AVLtree_c_avl_平衡二叉树_avltree_

    综上所述,"AVLtree_c_avl_平衡二叉树_avltree_"这个项目可能是用C语言实现了一个AVL树的数据结构,并提供了对树的增删改查操作,同时具备用户友好的交互界面。这个项目对于理解和实践AVL树的概念、操作和性能优化...

    实现AVL tree 的基本操作

    自己写的平衡树的构建及相关操作

    PAT 1066 Root of AVL Tree_avltree_

    4. **代码实现**:`PAT 1066 Root of AVL Tree.cpp` 文件可能包含了实现AVL树的基本数据结构、插入、删除和平衡调整的函数。在实际编程中,通常会定义一个AVL树节点结构体,包含键值、子节点指针、以及平衡因子。...

    03平衡二叉树_AVLTree.rar_03平衡二叉树_AVLTree_大话数据结构_平衡二叉树

    在"03平衡二叉树_AVLTree.c"这个文件中,应该包含了C语言实现AVL树的代码,包括节点结构定义、插入、删除和查找等基本操作,以及相应的旋转函数。通过阅读和理解这段代码,可以深入学习AVL树的内部工作原理和操作...

    AVLTree.zip

    AVL树是一种自平衡的二叉搜索树,由G. M. Adelson-Velsky和E. M. Landis在1962年提出,因此得名AVL树。它的主要特点是任何节点的两个子树的高度差不超过1,这使得AVL树具有较高的查找效率。在AVL树中,平均查找长度...

    AVL-Tree.zip_avl tree_tree

    AVL树是一种自平衡二叉查找树(Binary Search Tree, BST),由Georgy Adelson-Velsky和Emanuel Landis于1962年提出,因此得名AVL树,其中A、V、L分别是他们姓氏的首字母。在AVL树中,每个节点的两个子树的高度差最多...

    BinaryTree_BinarySearchTree_AVLTree

    在二叉树的基础上,二叉查找树(Binary Search Tree,BST)是一种特殊的二叉树,其每个节点的值都大于其左子树中的任何节点的值,并小于其右子树中的任何节点的值。这种性质使得二叉查找树在查找特定值时具有较高的...

    AVL tree实现源码

    AVL tree的源码实现。该AVL tree为模板容器,可以在其中放入任何东西。被放入的对象需要实现拷贝构造函数与赋值构造函数。该程序能够在linux下面顺利通过编译。平时随意开发,如有不足之处,还请见谅!!!

Global site tag (gtag.js) - Google Analytics