- 浏览: 162554 次
- 性别:
- 来自: 杭州
最新评论
-
逆风翔:
<div class="quote_title ...
arcII码为0x01,0x02作为分隔符 -
逆风翔:
怎么分割split()
arcII码为0x01,0x02作为分隔符 -
jj可爱熊:
希望楼主能多多赐教啊~~~
MyEclipse + AXIS2 -
jj可爱熊:
yumitcd 写道选择services.xm文件,这个xml ...
MyEclipse + AXIS2 -
jj可爱熊:
SayHelloTest.java中总是报错:org.exam ...
MyEclipse + AXIS2
本程序是java通过网络访问NTP时间服务器,而获得精准的时间。不是获得本地时间。
//**************************************************************************************************************
结果:
poll: valid NTP request received the local clock offset is 3606.92320227623, responseTime= 265ms
poll: NTP message : Leap indicator: 0 Version: 3 Mode: 4 Stratum: 1 Poll: 0 Precision: -18 (3.8E-6 seconds) Root delay: 0.00 ms Root dispersion: 0.00 ms Reference identifier: ACTS Reference timestamp: 26-三月-2009 20:50:23.508540 Originate timestamp: 26-三月-2009 19:51:10.031000 Receive timestamp: 26-三月-2009 20:51:17.086693 Transmit timestamp: 26-三月-2009 20:51:17.086712
responsetime==265
注意看红色部分,这是本地时间,我故意将本地时间调慢了一小时。
附注1:中国大概能用的NTP时间服务器
server 133.100.11.8 prefer
server 210.72.145.44
server 203.117.180.36 //程序中所用的
server 131.107.1.10
server time.asia.apple.com
server 64.236.96.53
server 130.149.17.21
server 66.92.68.246
server www.freebsd.org
server 18.145.0.30
server clock.via.net
server 137.92.140.80
server 133.100.9.2
server 128.118.46.3
server ntp.nasa.gov
server 129.7.1.66
server ntp-sop.inria.frserver 210.72.145.44(国家授时中心服务器IP地址)
ntpdate 131.107.1.10
ntpdate -s time.asia.apple.com
附注2:NTP概念简介
Network Time Protocol(NTP)是用来使计算机时间同步化的一种协议,它可以使计算机对其服务器或时钟源(如石英钟,GPS等等)做同步化,它可以提供高精准度的时间校正(LAN上与标准间差小于1毫秒,WAN上几十毫秒),且可介由加密确认的方式来防止恶毒的协议攻击。
import java.io.IOException; import java.io.InterruptedIOException; import java.net.ConnectException; import java.net.DatagramPacket; import java.net.DatagramSocket; import java.net.InetAddress; import java.net.NoRouteToHostException; import java.net.UnknownHostException; public class TestNtp{ public static void main(String[] args){ int retry = 2; int port = 123; int timeout = 3000; // get the address and NTP address request // InetAddress ipv4Addr = null; try { ipv4Addr = InetAddress.getByName("203.117.180.36");//更多NTP时间服务器参考附注 } catch (UnknownHostException e1) { e1.printStackTrace(); } int serviceStatus = -1; DatagramSocket socket = null; long responseTime = -1; try { socket = new DatagramSocket(); socket.setSoTimeout(timeout); // will force the // InterruptedIOException for (int attempts = 0; attempts <= retry && serviceStatus != 1; attempts++) { try { // Send NTP request // byte[] data = new NtpMessage().toByteArray(); DatagramPacket outgoing = new DatagramPacket(data, data.length, ipv4Addr, port); long sentTime = System.currentTimeMillis(); socket.send(outgoing); // Get NTP Response // // byte[] buffer = new byte[512]; DatagramPacket incoming = new DatagramPacket(data, data.length); socket.receive(incoming); responseTime = System.currentTimeMillis() - sentTime; double destinationTimestamp = (System.currentTimeMillis() / 1000.0) + 2208988800.0; //这里要加2208988800,是因为获得到的时间是格林尼治时间,所以要变成东八区的时间,否则会与与北京时间有8小时的时差 // Validate NTP Response // IOException thrown if packet does not decode as expected. NtpMessage msg = new NtpMessage(incoming.getData()); double localClockOffset = ((msg.receiveTimestamp - msg.originateTimestamp) + (msg.transmitTimestamp - destinationTimestamp)) / 2; System.out.println("poll: valid NTP request received the local clock offset is " + localClockOffset + ", responseTime= " + responseTime + "ms"); System.out.println("poll: NTP message : " + msg.toString()); serviceStatus = 1; } catch (InterruptedIOException ex) { // Ignore, no response received. } } } catch (NoRouteToHostException e) { System.out.println("No route to host exception for address: " + ipv4Addr); } catch (ConnectException e) { // Connection refused. Continue to retry. e.fillInStackTrace(); System.out.println("Connection exception for address: " + ipv4Addr); } catch (IOException ex) { ex.fillInStackTrace(); System.out.println("IOException while polling address: " + ipv4Addr); } finally { if (socket != null) socket.close(); } // Store response time if available // if (serviceStatus == 1) { System.out.println("responsetime=="+responseTime); } } }
//**************************************************************************************************************
import java.text.DecimalFormat; import java.text.SimpleDateFormat; import java.util.Date; public class NtpMessage { /** *//** * This is a two-bit code warning of an impending leap second to be * inserted/deleted in the last minute of the current day. It''s values may * be as follows: * * Value Meaning ----- ------- 0 no warning 1 last minute has 61 seconds 2 * last minute has 59 seconds) 3 alarm condition (clock not synchronized) */ public byte leapIndicator = 0; /** *//** * This value indicates the NTP/SNTP version number. The version number is 3 * for Version 3 (IPv4 only) and 4 for Version 4 (IPv4, IPv6 and OSI). If * necessary to distinguish between IPv4, IPv6 and OSI, the encapsulating * context must be inspected. */ public byte version = 3; /** *//** * This value indicates the mode, with values defined as follows: * * Mode Meaning ---- ------- 0 reserved 1 symmetric active 2 symmetric * passive 3 client 4 server 5 broadcast 6 reserved for NTP control message * 7 reserved for private use * * In unicast and anycast modes, the client sets this field to 3 (client) in * the request and the server sets it to 4 (server) in the reply. In * multicast mode, the server sets this field to 5 (broadcast). */ public byte mode = 0; /** *//** * This value indicates the stratum level of the local clock, with values * defined as follows: * * Stratum Meaning ---------------------------------------------- 0 * unspecified or unavailable 1 primary reference (e.g., radio clock) 2-15 * secondary reference (via NTP or SNTP) 16-255 reserved */ public short stratum = 0; /** *//** * This value indicates the maximum interval between successive messages, in * seconds to the nearest power of two. The values that can appear in this * field presently range from 4 (16 s) to 14 (16284 s); however, most * applications use only the sub-range 6 (64 s) to 10 (1024 s). */ public byte pollInterval = 0; /** *//** * This value indicates the precision of the local clock, in seconds to the * nearest power of two. The values that normally appear in this field * range from -6 for mains-frequency clocks to -20 for microsecond clocks * found in some workstations. */ public byte precision = 0; /** *//** * This value indicates the total roundtrip delay to the primary reference * source, in seconds. Note that this variable can take on both positive and * negative values, depending on the relative time and frequency offsets. * The values that normally appear in this field range from negative values * of a few milliseconds to positive values of several hundred milliseconds. */ public double rootDelay = 0; /** *//** * This value indicates the nominal error relative to the primary reference * source, in seconds. The values that normally appear in this field range * from 0 to several hundred milliseconds. */ public double rootDispersion = 0; /** *//** * This is a 4-byte array identifying the particular reference source. In * the case of NTP Version 3 or Version 4 stratum-0 (unspecified) or * stratum-1 (primary) servers, this is a four-character ASCII string, left * justified and zero padded to 32 bits. In NTP Version 3 secondary servers, * this is the 32-bit IPv4 address of the reference source. In NTP Version 4 * secondary servers, this is the low order 32 bits of the latest transmit * timestamp of the reference source. NTP primary (stratum 1) servers should * set this field to a code identifying the external reference source * according to the following list. If the external reference is one of * those listed, the associated code should be used. Codes for sources not * listed can be contrived as appropriate. * * Code External Reference Source ---- ------------------------- LOCL * uncalibrated local clock used as a primary reference for a subnet without * external means of synchronization PPS atomic clock or other * pulse-per-second source individually calibrated to national standards * ACTS NIST dialup modem service USNO USNO modem service PTB PTB (Germany) * modem service TDF Allouis (France) Radio 164 kHz DCF Mainflingen * (Germany) Radio 77.5 kHz MSF Rugby (UK) Radio 60 kHz WWV Ft. Collins (US) * Radio 2.5, 5, 10, 15, 20 MHz WWVB Boulder (US) Radio 60 kHz WWVH Kaui * Hawaii (US) Radio 2.5, 5, 10, 15 MHz CHU Ottawa (Canada) Radio 3330, * 7335, 14670 kHz LORC LORAN-C radionavigation system OMEG OMEGA * radionavigation system GPS Global Positioning Service GOES Geostationary * Orbit Environment Satellite */ public byte[] referenceIdentifier = { 0, 0, 0, 0 }; /** *//** * This is the time at which the local clock was last set or corrected, in * seconds since 00:00 1-Jan-1900. */ public double referenceTimestamp = 0; /** *//** * This is the time at which the request departed the client for the server, * in seconds since 00:00 1-Jan-1900. */ public double originateTimestamp = 0; /** *//** * This is the time at which the request arrived at the server, in seconds * since 00:00 1-Jan-1900. */ public double receiveTimestamp = 0; /** *//** * This is the time at which the reply departed the server for the client, * in seconds since 00:00 1-Jan-1900. */ public double transmitTimestamp = 0; /** *//** * Constructs a new NtpMessage from an array of bytes. */ public NtpMessage(byte[] array) { // See the packet format diagram in RFC 2030 for details leapIndicator = (byte) ((array[0] >> 6) & 0x3); version = (byte) ((array[0] >> 3) & 0x7); mode = (byte) (array[0] & 0x7); stratum = unsignedByteToShort(array[1]); pollInterval = array[2]; precision = array[3]; rootDelay = (array[4] * 256.0) + unsignedByteToShort(array[5]) + (unsignedByteToShort(array[6]) / 256.0) + (unsignedByteToShort(array[7]) / 65536.0); rootDispersion = (unsignedByteToShort(array[8]) * 256.0) + unsignedByteToShort(array[9]) + (unsignedByteToShort(array[10]) / 256.0) + (unsignedByteToShort(array[11]) / 65536.0); referenceIdentifier[0] = array[12]; referenceIdentifier[1] = array[13]; referenceIdentifier[2] = array[14]; referenceIdentifier[3] = array[15]; referenceTimestamp = decodeTimestamp(array, 16); originateTimestamp = decodeTimestamp(array, 24); receiveTimestamp = decodeTimestamp(array, 32); transmitTimestamp = decodeTimestamp(array, 40); } /** *//** * Constructs a new NtpMessage */ public NtpMessage(byte leapIndicator, byte version, byte mode, short stratum, byte pollInterval, byte precision, double rootDelay, double rootDispersion, byte[] referenceIdentifier, double referenceTimestamp, double originateTimestamp, double receiveTimestamp, double transmitTimestamp) { // ToDo: Validity checking this.leapIndicator = leapIndicator; this.version = version; this.mode = mode; this.stratum = stratum; this.pollInterval = pollInterval; this.precision = precision; this.rootDelay = rootDelay; this.rootDispersion = rootDispersion; this.referenceIdentifier = referenceIdentifier; this.referenceTimestamp = referenceTimestamp; this.originateTimestamp = originateTimestamp; this.receiveTimestamp = receiveTimestamp; this.transmitTimestamp = transmitTimestamp; } /** *//** * Constructs a new NtpMessage in client -> server mode, and sets the * transmit timestamp to the current time. */ public NtpMessage() { // Note that all the other member variables are already set with // appropriate default values. this.mode = 3; this.transmitTimestamp = (System.currentTimeMillis() / 1000.0) + 2208988800.0; } /** *//** * This method constructs the data bytes of a raw NTP packet. */ public byte[] toByteArray() { // All bytes are automatically set to 0 byte[] p = new byte[48]; p[0] = (byte) (leapIndicator << 6 | version << 3 | mode); p[1] = (byte) stratum; p[2] = (byte) pollInterval; p[3] = (byte) precision; // root delay is a signed 16.16-bit FP, in Java an int is 32-bits int l = (int) (rootDelay * 65536.0); p[4] = (byte) ((l >> 24) & 0xFF); p[5] = (byte) ((l >> 16) & 0xFF); p[6] = (byte) ((l >> 8) & 0xFF); p[7] = (byte) (l & 0xFF); // root dispersion is an unsigned 16.16-bit FP, in Java there are no // unsigned primitive types, so we use a long which is 64-bits long ul = (long) (rootDispersion * 65536.0); p[8] = (byte) ((ul >> 24) & 0xFF); p[9] = (byte) ((ul >> 16) & 0xFF); p[10] = (byte) ((ul >> 8) & 0xFF); p[11] = (byte) (ul & 0xFF); p[12] = referenceIdentifier[0]; p[13] = referenceIdentifier[1]; p[14] = referenceIdentifier[2]; p[15] = referenceIdentifier[3]; encodeTimestamp(p, 16, referenceTimestamp); encodeTimestamp(p, 24, originateTimestamp); encodeTimestamp(p, 32, receiveTimestamp); encodeTimestamp(p, 40, transmitTimestamp); return p; } /** *//** * Returns a string representation of a NtpMessage */ public String toString() { String precisionStr = new DecimalFormat("0.#E0").format(Math.pow(2, precision)); return "Leap indicator: " + leapIndicator + " " + "Version: " + version + " " + "Mode: " + mode + " " + "Stratum: " + stratum + " " + "Poll: " + pollInterval + " " + "Precision: " + precision + " (" + precisionStr + " seconds) " + "Root delay: " + new DecimalFormat("0.00").format(rootDelay * 1000) + " ms " + "Root dispersion: " + new DecimalFormat("0.00").format(rootDispersion * 1000) + " ms " + "Reference identifier: " + referenceIdentifierToString(referenceIdentifier, stratum, version) + " " + "Reference timestamp: " + timestampToString(referenceTimestamp) + " " + "Originate timestamp: " + timestampToString(originateTimestamp) + " " + "Receive timestamp: " + timestampToString(receiveTimestamp) + " " + "Transmit timestamp: " + timestampToString(transmitTimestamp); } /** *//** * Converts an unsigned byte to a short. By default, Java assumes that a * byte is signed. */ public static short unsignedByteToShort(byte b) { if ((b & 0x80) == 0x80) return (short) (128 + (b & 0x7f)); else return (short) b; } /** *//** * Will read 8 bytes of a message beginning at <code>pointer</code> and * return it as a double, according to the NTP 64-bit timestamp format. */ public static double decodeTimestamp(byte[] array, int pointer) { double r = 0.0; for (int i = 0; i < 8; i++) { r += unsignedByteToShort(array[pointer + i]) * Math.pow(2, (3 - i) * 8); } return r; } /** *//** * Encodes a timestamp in the specified position in the message */ public static void encodeTimestamp(byte[] array, int pointer, double timestamp) { // Converts a double into a 64-bit fixed point for (int i = 0; i < 8; i++) { // 2^24, 2^16, 2^8, .. 2^-32 double base = Math.pow(2, (3 - i) * 8); // Capture byte value array[pointer + i] = (byte) (timestamp / base); // Subtract captured value from remaining total timestamp = timestamp - (double) (unsignedByteToShort(array[pointer + i]) * base); } // From RFC 2030: It is advisable to fill the non-significant // low order bits of the timestamp with a random, unbiased // bitstring, both to avoid systematic roundoff errors and as // a means of loop detection and replay detection. array[7] = (byte) (Math.random() * 255.0); } /** *//** * Returns a timestamp (number of seconds since 00:00 1-Jan-1900) as a * formatted date/time string. */ public static String timestampToString(double timestamp) { if (timestamp == 0) return "0"; // timestamp is relative to 1900, utc is used by Java and is relative // to 1970 double utc = timestamp - (2208988800.0); // milliseconds long ms = (long) (utc * 1000.0); // date/time String date = new SimpleDateFormat("dd-MMM-yyyy HH:mm:ss").format(new Date(ms)); // fraction double fraction = timestamp - ((long) timestamp); String fractionSting = new DecimalFormat(".000000").format(fraction); return date + fractionSting; } /** *//** * Returns a string representation of a reference identifier according to * the rules set out in RFC 2030. */ public static String referenceIdentifierToString(byte[] ref, short stratum, byte version) { // From the RFC 2030: // In the case of NTP Version 3 or Version 4 stratum-0 (unspecified) // or stratum-1 (primary) servers, this is a four-character ASCII // string, left justified and zero padded to 32 bits. if (stratum == 0 || stratum == 1) { return new String(ref); } // In NTP Version 3 secondary servers, this is the 32-bit IPv4 // address of the reference source. else if (version == 3) { return unsignedByteToShort(ref[0]) + "." + unsignedByteToShort(ref[1]) + "." + unsignedByteToShort(ref[2]) + "." + unsignedByteToShort(ref[3]); } // In NTP Version 4 secondary servers, this is the low order 32 bits // of the latest transmit timestamp of the reference source. else if (version == 4) { return "" + ((unsignedByteToShort(ref[0]) / 256.0) + (unsignedByteToShort(ref[1]) / 65536.0) + (unsignedByteToShort(ref[2]) / 16777216.0) + (unsignedByteToShort(ref[3]) / 4294967296.0)); } return ""; } }
结果:
poll: valid NTP request received the local clock offset is 3606.92320227623, responseTime= 265ms
poll: NTP message : Leap indicator: 0 Version: 3 Mode: 4 Stratum: 1 Poll: 0 Precision: -18 (3.8E-6 seconds) Root delay: 0.00 ms Root dispersion: 0.00 ms Reference identifier: ACTS Reference timestamp: 26-三月-2009 20:50:23.508540 Originate timestamp: 26-三月-2009 19:51:10.031000 Receive timestamp: 26-三月-2009 20:51:17.086693 Transmit timestamp: 26-三月-2009 20:51:17.086712
responsetime==265
注意看红色部分,这是本地时间,我故意将本地时间调慢了一小时。
附注1:中国大概能用的NTP时间服务器
server 133.100.11.8 prefer
server 210.72.145.44
server 203.117.180.36 //程序中所用的
server 131.107.1.10
server time.asia.apple.com
server 64.236.96.53
server 130.149.17.21
server 66.92.68.246
server www.freebsd.org
server 18.145.0.30
server clock.via.net
server 137.92.140.80
server 133.100.9.2
server 128.118.46.3
server ntp.nasa.gov
server 129.7.1.66
server ntp-sop.inria.frserver 210.72.145.44(国家授时中心服务器IP地址)
ntpdate 131.107.1.10
ntpdate -s time.asia.apple.com
附注2:NTP概念简介
Network Time Protocol(NTP)是用来使计算机时间同步化的一种协议,它可以使计算机对其服务器或时钟源(如石英钟,GPS等等)做同步化,它可以提供高精准度的时间校正(LAN上与标准间差小于1毫秒,WAN上几十毫秒),且可介由加密确认的方式来防止恶毒的协议攻击。
发表评论
-
excel设置打印区域
2011-05-27 10:12 1790很多情况下我们并不需要打印工作表的全部,而只需要打印某一内容, ... -
利用java反射机制执行类的方法
2009-07-03 11:13 5515Reflection 是 Java 程序开发语言的特征之一,它 ... -
名字相同的合并单元格
2009-05-01 11:03 1543遍历list,有属性name,filmdate,将名字和日期相 ... -
java 日期计算(几天前后)
2009-04-14 09:58 8329public class DateTest { p ... -
Java6的@override注解与Java5不同之处
2009-02-24 10:27 2642首先看一下下面的示例代码 : Parent.java p ... -
联创笔试题解答
2009-02-19 23:42 1366题目:把数组String str[] ={"11&q ... -
java多线程经典例子
2009-02-17 16:22 5900相信研究多线程的人都会首先从这个经典事例开始: Stack类: ... -
break和continue的区别
2008-12-13 09:34 1007写程序中用到了break,感觉熟悉而陌生,可能以前没怎么注意或 ...
相关推荐
从NTP服务器获取准确的时间,常常被用于校准本地时间。
此步骤是必要的,以便能够从服务器获取时间信息。 ```csharp client.Connect(); ``` 3. **接收时间戳**:通过调用`ReceiveTimestamp`属性可以获取到从NTP服务器接收到的时间戳。这个时间戳是一个`DateTime`类型...
当安卓设备无法直接访问互联网时,可以通过设置内网中的NTP服务器来实现时间校准。 NTP是一种协议,设计用于在计算机网络中同步系统时钟,确保所有设备都有相同的时间。这对于分布式系统和跨设备的事件追踪是必不可...
1. **理解NTP工作原理**:NTP通过向NTP服务器发送请求来获取精确的时间戳。这个时间戳代表的是自1900年1月1日以来经过的秒数。服务器返回的时间戳包含了服务器的UTC时间。 2. **构建NTP请求**:在Android应用中,...
NTP通过在网络中寻找准确的时间源(通常为公共NTP服务器或内部GPS接收器),然后调整本地系统时钟,以使所有系统保持一致的时间。NTP服务器根据“层”或“级别”(stratum)进行分级,层次越低,时钟越准确。理想...
总之,Java中的时间同步主要依赖于网络通信和第三方库,如JNA来实现与NTP服务器的交互。通过这种方式,开发者可以确保本地系统时间与网络标准保持一致,这对于许多需要精确时间戳的应用场景,如金融交易、日志记录等...
纯Java NTP服务器。 在没有cmd参数的情况下以root / admin身份在cmd-mode中运行,例如:java -jar pj-ntp-server.jar(服务器在标准UDP / 123-port上启动)或在root-admin中以UDP-以cmd-mode运行port cmd参数,例如...
这涉及到网络同步技术,如NTP(Network Time Protocol),它允许设备通过网络从时间服务器获取精确的时间。 3. **淘宝网**:淘宝是中国最大的电商平台之一,其服务器时间对交易、库存更新和各种促销活动至关重要。...
在Java程序中,通过发送请求到NTP服务器,获取当前的标准时间,然后调用nircmd执行时间设置命令,将系统时间更新为获取到的准确时间。 项目中包含的主要文件如下: 1. `点我校准时间.bat`:这是一个批处理文件,...
- **效率与安全性**:频繁地从网络获取时间可能会影响性能,同时也可能存在安全风险。建议在实际应用中考虑使用缓存机制或者更安全的方法来获取时间。 #### 扩展知识点 1. **`URLConnection`类详解**: - `...
NTP的工作原理是通过向NTP服务器发送请求,然后接收包含精确时间戳的响应,从而获取到准确的世界协调时间(UTC)。Java中的`java.net.Socket`和`java.io`库可以用来建立与NTP服务器的连接并交换数据。 要实现NTP校...
2.2 NTPClient类:在项目中,开发者可能自定义了`NTPClient`类,该类负责与NTP服务器通信,发送请求并解析响应,获取时间信息。 三、Swing界面设计 3.1 Swing简介:Swing是Java的GUI库,提供了丰富的组件和布局...
这个类提供了获取远程NTP服务器时间的功能。开发者需要指定一个NTP服务器地址,然后发送请求并接收响应,解析返回的数据,最后调整设备时间。 3. **NTP服务器选择** NTP服务器的选择是关键,因为它们的时间准确性...
标题中的“自动获取国家授时中心服务器时间,并修改系统时间。自动同步时间!”表明这是一个程序,其功能是连接到国家授时中心的服务器,获取最准确的时间信息,并将用户的计算机系统时间同步到这个标准时间。这样的...
`netTime`源码可能包含了上述步骤的实现,通过阅读源码,我们可以深入理解网络时间同步的具体细节,包括错误处理、重试机制以及可能的优化策略,例如选择多个NTP服务器进行查询以提高准确性。 为了确保程序的正确...
管理员可以配置服务器从外部NTP服务器获取时间,并让局域网内的其他Linux机器同步到这台服务器。 5. **数据库时间戳** 在数据库中,时间戳字段记录了数据插入或更新的具体时间,这对于审计追踪、数据分析和故障...
5. **NTP服务器配置为主时间服务器.reg**:这是一个Windows注册表文件,用于将特定的NTP服务器设置为主时间服务器。注册表是Windows操作系统中存储系统设置和配置信息的地方。导入此文件可以修改本地系统的注册表...
在"分布式系统从服务器获取时间"的案例中,服务器端会实现一个包含当前时间的方法,例如`getCurrentTime()`。这个方法会返回服务器的系统时间,通常是`java.util.Date`或`java.time.LocalDateTime`等表示时间的对象...
次级时钟(Stratum 2及以上)服务器,通过连接到上级服务器获取时间。 在编程实现网络对时功能时,我们可以选择不同的编程语言。例如,在Python中,可以使用`pyNTP`库,或者手动实现NTP请求和响应的处理。以下是一...
通过NTP协议,程序可以从远程NTP服务器获取时间戳,并校正本地系统时钟。Java中的NTP客户端通常依赖于如`com.sun.jna`这样的库,该库允许Java代码调用本机操作系统API,包括NTP协议的相关接口。 NTP的工作原理主要...