`

(转载)Scikit Learn: 在python中机器学习

阅读更多

Scikit Learn: 在python中机器学习

Warning

警告:有些没能理解的句子,我以自己的理解意译。

翻译自:Scikit Learn:Machine Learning in Python

作者: Fabian Pedregosa, Gael Varoquaux

先决条件

目录

警告:在0.9版中(2011年9月发行),scikit-learn的导入路径从scikits.learn更改为sklearn

载入示例数据

首先我们载入一些用来玩耍的数据。我们将使用的数据是非常简单的著名的花朵数据——安德森鸢尾花卉数据集。

我们有一百五十个鸢尾花的一些尺寸的观测值:萼片长度、宽度,花瓣长度和宽度。还有它们的亚属:山鸢尾(Iris setosa)、变色鸢尾(Iris versicolor)和维吉尼亚鸢尾(Iris virginica)

向python对象载入数据:

In [1]: from sklearn import datasets
In [2]: iris = datasets.load_iris()

数据存储在.data项中,是一个(n_samples, n_features)数组。

In [3]: iris.data.shape
Out[3]: (150, 4)

每个观察对象的种类存贮在数据集的.target属性中。这是一个长度为n_samples的整数一维数组:

In [5]: iris.target.shape
Out[5]: (150,)

In [6]: import numpy as np

In [7]: np.unique(iris.target)
Out[7]: array([0, 1, 2])

一个改变数据集大小的示例:数码数据集(digits datasets)

数码数据集1包括1797个图像,每一个都是个代表手写数字的8x8像素图像

In [8]: digits = datasets.load_digits()

In [9]: digits.images.shape
Out[9]: (1797, 8, 8)

In [10]: import pylab as pl

In [11]: pl.imshow(digits.images[0], cmap=pl.cm.gray_r) 
Out[11]: <matplotlib.image.AxesImage at 0x3285b90>

In [13]: pl.show()

为了在scikit中使用这个数据集,我们把每个8x8图像转换成长度为64的矢量。(译者注:或者直接用digits.data)

In [12]: data = digits.images.reshape((digits.images.shape[0], -1))

学习和预测

现在我们已经获得一些数据,我们想要从中学习和预测一个新的数据。在scikit-learn中,我们通过创建一个估计器(estimator)从已经存在的数据学习,并且调用它的fit(X,Y)方法。

In [14]: from sklearn import svm

In [15]: clf = svm.LinearSVC()

In [16]: clf.fit(iris.data, iris.target) # learn from the data 
Out[16]: 
LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,
     intercept_scaling=1, loss='l2', multi_class='ovr', penalty='l2',
     tol=0.0001, verbose=0)

一旦我们已经从数据学习,我们可以使用我们的模型来预测未观测数据最可能的结果。

In [17]: clf.predict([[ 5.0,  3.6,  1.3,  0.25]])
Out[17]: array([0], dtype=int32)

注意:我们可以通过它以下划线结束的属性存取模型的参数:

In [18]: clf.coef_  
Out[18]: 
array([[ 0.18424352,  0.45122644, -0.8079467 , -0.45071302],
       [ 0.05190619, -0.89423619,  0.40519245, -0.93781587],
       [-0.85087844, -0.98667529,  1.38088883,  1.86538111]])

分类

K最近邻(KNN)分类器

最简单的可能的分类器是最近邻:给定一个新的观测值,将n维空间中最靠近它的训练样本标签给它。其中n是每个样本中特性(features)数。

k最近邻2分类器内部使用基于球树(ball tree)3来代表它训练的样本。

KNN分类示例

In [19]: # Create and fit a nearest-neighbor classifier

In [20]: from sklearn import neighbors

In [21]: knn = neighbors.KNeighborsClassifier()

In [22]: knn.fit(iris.data, iris.target) 
Out[22]: 
KNeighborsClassifier(algorithm='auto', leaf_size=30, n_neighbors=5, p=2,
           warn_on_equidistant=True, weights='uniform')

In [23]: knn.predict([[0.1, 0.2, 0.3, 0.4]])
Out[23]: array([0])

训练集和测试集

当验证学习算法时,不要用一个用来拟合估计器的数据来验证估计器的预测非常重要。确实,通过kNN估计器,我们将总是获得关于训练集完美的预测。

In [24]: perm = np.random.permutation(iris.target.size)

In [25]: iris.data = iris.data[perm]

In [26]: iris.target = iris.target[perm]

In [27]: knn.fit(iris.data[:100], iris.target[:100]) 
Out[27]: 
KNeighborsClassifier(algorithm='auto', leaf_size=30, n_neighbors=5, p=2,
           warn_on_equidistant=True, weights='uniform')

In [28]: knn.score(iris.data[100:], iris.target[100:]) 
/usr/lib/python2.7/site-packages/sklearn/neighbors/classification.py:129: NeighborsWarning: kneighbors: neighbor k+1 and neighbor k have the same distance: results will be dependent on data order.
  neigh_dist, neigh_ind = self.kneighbors(X)
Out[28]: 0.95999999999999996

Bonus的问题:为什么我们使用随机的排列?

分类支持向量机(SVMs)

线性支持向量机

SVMs4尝试构建一个两个类别的最大间隔超平面。它选择输入的子集,调用支持向量即离分离的超平面最近的样本点。

In [60]: from sklearn import svm

In [61]: svc = svm.SVC(kernel='linear')

In [62]: svc.fit(iris.data, iris.target)
Out[62]: 
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', probability=False, shrinking=True, tol=0.001,
  verbose=False)

scikit-learn中有好几种支持向量机实现。最普遍使用的是svm.SVC,svm.NuSVC和svm.LinearSVC;“SVC”代表支持向量分类器(Support Vector Classifier)(也存在回归SVMs,在scikit-learn中叫作“SVR”)。

练习

训练一个数字数据集的svm.SVC。省略最后10%并且检验观测值的预测表现。

使用核

类别不总是可以用超平面分离,所以人们指望有些可能是多项式或指数实例的非线性决策函数:

  • 线性核

    svc = svm.SVC(kernel=’linear’)

  • 多项式核

    svc = svm.SVC(kernel=’poly’, … degree=3) # degree: polynomial degree

  • RBF核(径向基函数)5

    svc = svm.SVC(kernel=’rbf’) # gamma: inverse of size of # radial kernel

练习

以上提到的哪些核对数字数据集有更好的预测性能?(译者:前两个)

聚类:将观测值聚合

给定鸢尾花数据集,如果我们知道这有三种鸢尾花,但是无法得到它们的标签,我们可以尝试非监督学习:我们可以通过某些标准聚类观测值到几个组别里。

k均值聚类

最简答的聚类算法是k均值算法。这将一个数据分成k个集群,以最小化观测值(n维空间中)到聚类中心的均值来分配每个观测点到集群;然后均值重新被计算。这个操作递归运行直到聚类收敛,在max_iter回合内到最大值。6

(一个替代的k均值算法实现在scipy中的cluster包中。这个scikit-learn实现与之不同,通过提供对象API和几个额外的特性,包括智能初始化。)

In [82]: from sklearn import cluster, datasets

In [83]: iris = datasets.load_iris()

In [84]: k_means = cluster.KMeans(k=3)

In [85]: k_means.fit(iris.data) 
Out[85]: 
KMeans(copy_x=True, init='k-means++', k=3, max_iter=300, n_init=10, n_jobs=1,
    precompute_distances=True,
    random_state=<mtrand.RandomState object at 0x7f4d860642d0>, tol=0.0001,
    verbose=0)

In [86]: print k_means.labels_[::10]
[1 1 1 1 1 2 2 2 2 2 0 0 0 0 0]

In [87]: print iris.target[::10]
[0 0 0 0 0 1 1 1 1 1 2 2 2 2 2]

应用到图像压缩

译者注:Lena是经典的图像处理实例图像, 8位灰度色深, 尺寸512 x 512

聚类可以被看作是一种从信息中选择一小部分观测值。例如,这个可以被用来海报化一个图像(将连续变化的色调转换成更少几个色调):

In [95]: from scipy import misc

In [96]: lena = misc.lena().astype(np.float32)

In [97]: X = lena.reshape((-1, 1)) # We need an (n_sample, n_feature) array

In [98]: k_means = cluster.KMeans(5)

In [99]: k_means.fit(X)
Out[99]: 
KMeans(copy_x=True, init='k-means++', k=5, max_iter=300, n_init=10, n_jobs=1,
    precompute_distances=True,
    random_state=<mtrand.RandomState object at 0x7f4d860642d0>, tol=0.0001,
    verbose=0)

In [100]: values = k_means.cluster_centers_.squeeze()

In [101]: labels = k_means.labels_

In [102]: lena_compressed = np.choose(labels, values)

In [103]: lena_compressed.shape = lena.shape

译者注:想看效果?

In [31]: import matplotlib.pyplot as plt

In [32]: plt.gray()

In [33]: plt.imshow(lena_compressed)
Out[33]: <matplotlib.image.AxesImage at 0x4b2c510>

In [34]: plt.show()

原图类似。

![Image]

用主成分分析降维

以上根据观测值标记的点云在一个方向非常平坦,所以一个特性几乎可以用其它两个确切地计算。PCA发现哪个方向的数据不是平的并且它可以通过在一个子空间投影来降维。

警告:PCA将在模块decomposition或pca中,这取决于你scikit-learn的版本。

In [75]: from sklearn import decomposition

In [76]: pca = decomposition.PCA(n_components=2)

In [77]: pca.fit(iris.data)
Out[77]: PCA(copy=True, n_components=2, whiten=False)

In [78]: X = pca.transform(iris.data)

现在我们可以可视化(降维过的)鸢尾花数据集:

In [79]: import pylab as pl

In [80]: pl.scatter(X[:, 0], X[:, 1], c=iris.target)
Out[80]: <matplotlib.collections.PathCollection at 0x4104310>

PCA不仅在可视化高维数据集时非常有用。它可以用来作为帮助加速对高维数据不那么有效率的监督方法7的预处理步骤。

将一切放在一起:人脸识别

一个实例使用主成分分析来降维和支持向量机来分类进行人脸识别。

译者注:让程序自动下载(确保联网,文件较大,要等待很久)或者手动下载数据并放到./scikit_learn_data/lfw_home/下。

"""
Stripped-down version of the face recognition example by Olivier Grisel

http://scikit-learn.org/dev/auto_examples/applications/face_recognition.html

## original shape of images: 50, 37
"""
import numpy as np
import pylab as pl
from sklearn import cross_val, datasets, decomposition, svm

# ..
# .. load data ..
lfw_people = datasets.fetch_lfw_people(min_faces_per_person=70, resize=0.4)
perm = np.random.permutation(lfw_people.target.size)
lfw_people.data = lfw_people.data[perm]
lfw_people.target = lfw_people.target[perm]
faces = np.reshape(lfw_people.data, (lfw_people.target.shape[0], -1))
train, test = iter(cross_val.StratifiedKFold(lfw_people.target, k=4)).next()
X_train, X_test = faces[train], faces[test]
y_train, y_test = lfw_people.target[train], lfw_people.target[test]

# ..
# .. dimension reduction ..
pca = decomposition.RandomizedPCA(n_components=150, whiten=True)
pca.fit(X_train)
X_train_pca = pca.transform(X_train)
X_test_pca = pca.transform(X_test)

# ..
# .. classification ..
clf = svm.SVC(C=5., gamma=0.001)
clf.fit(X_train_pca, y_train)

# ..
# .. predict on new images ..
for i in range(10):
    print lfw_people.target_names[clf.predict(X_test_pca[i])[0]]
    _ = pl.imshow(X_test[i].reshape(50, 37), cmap=pl.cm.gray)
    _ = raw_input()

全部代码:face.py

线性模型:从回归到稀疏

糖尿病数据集

糖尿病数据集包含442个病人的测量而得的10项生理指标(年龄,性别,体重,血压),和一年后疾病进展的指示:

In [104]: diabetes = datasets.load_diabetes()

In [105]: diabetes_X_train = diabetes.data[:-20]

In [106]: diabetes_X_test  = diabetes.data[-20:]

In [107]: diabetes_y_train = diabetes.target[:-20]

In [108]: diabetes_y_test  = diabetes.target[-20:]

这个手头的任务是用来从生理指标预测疾病。

稀疏模型

为了改善问题的条件(无信息变量,减少维度的不利影响,作为一个特性(feature)选择的预处理,等等),我们只关注有信息的特性将没有信息的特性设置为0.这个罚则函数法8,叫作套索(Lasso)9,可以将一些系数设置为0.这些方法叫作稀疏方法(sparse method),稀疏化可以被视作奥卡姆剃刀:相对于复杂模型更倾向于简单的。

In [109]: from sklearn import linear_model

In [110]: regr = linear_model.Lasso(alpha=.3)

In [111]: regr.fit(diabetes_X_train, diabetes_y_train)
Out[111]: 
Lasso(alpha=0.3, copy_X=True, fit_intercept=True, max_iter=1000,
   normalize=False, positive=False, precompute='auto', tol=0.0001,
   warm_start=False)

In [112]: regr.coef_ # very sparse coefficients
Out[112]: 
array([   0.        ,   -0.        ,  497.34075682,  199.17441034,
         -0.        ,   -0.        , -118.89291545,    0.        ,
        430.9379595 ,    0.        ])

In [113]: regr.score(diabetes_X_test, diabetes_y_test) 
Out[113]: 0.55108354530029791

这个分数和线性回归(最小二乘法)非常相似:

In [114]: lin = linear_model.LinearRegression()

In [115]: lin.fit(diabetes_X_train, diabetes_y_train) 
Out[115]: LinearRegression(copy_X=True, fit_intercept=True, normalize=False)

In [116]: lin.score(diabetes_X_test, diabetes_y_test) 
Out[116]: 0.58507530226905713

同一问题的不同算法

同一数学问题可以用不同算法解决。例如,sklearn中的Lasso对象使用坐标下降(coordinate descent)方法10解决套索回归,这在大数据集时非常有效率。然而,sklearn也提供了LassoLARS对象,使用LARS这种在解决权重向量估计非常稀疏,观测值很少的问题很有效率的方法。

模型选择:选择估计器和它们的参数

格点搜索和交叉验证估计器

格点搜索

scikit-learn提供了一个对象,该对象给定数据,在拟合一个参数网格的估计器时计算分数,并且选择参数最大化交叉验证分数。这个对象在构建时采用一个估计器并且暴露一个估计器API:

In [117]: from sklearn import svm, grid_search

In [118]: gammas = np.logspace(-6, -1, 10)

In [119]: svc = svm.SVC()

In [120]: clf = grid_search.GridSearchCV(estimator=svc, param_grid=dict(gamma=gammas),n_jobs=-1)

In [121]: clf.fit(digits.data[:1000], digits.target[:1000]) 
Out[121]: 
GridSearchCV(cv=None,
       estimator=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='rbf', probability=False, shrinking=True, tol=0.001,
  verbose=False),
       fit_params={}, iid=True, loss_func=None, n_jobs=-1,
       param_grid={'gamma': array([  1.00000e-06,   3.59381e-06,   1.29155e-05,   4.64159e-05,
         1.66810e-04,   5.99484e-04,   2.15443e-03,   7.74264e-03,
         2.78256e-02,   1.00000e-01])},
       pre_dispatch='2*n_jobs', refit=True, score_func=None, verbose=0)

In [122]: clf.best_score
/usr/lib/python2.7/site-packages/sklearn/utils/__init__.py:79: DeprecationWarning: Function best_score is deprecated; GridSearchCV.best_score is deprecated and will be removed in version 0.12. Please use ``GridSearchCV.best_score_`` instead.
  warnings.warn(msg, category=DeprecationWarning)
Out[122]: 0.98600097103091122

In [123]: clf.best_estimator.gamma
/usr/lib/python2.7/site-packages/sklearn/utils/__init__.py:79: DeprecationWarning: Function best_estimator is deprecated; GridSearchCV.best_estimator is deprecated and will be removed in version 0.12. Please use ``GridSearchCV.best_estimator_`` instead.
  warnings.warn(msg, category=DeprecationWarning)
Out[123]: 0.0021544346900318843

默认GridSearchCV使用三次(3-fold)交叉验证。然而,如果它探测到一个分类器被传递,而不是一个回归量,它使用分层的3次。

交叉验证估计器

交叉验证在一个algorithm by algorithm基础上可以更有效地设定参数。这就是为何,对给定的估计器,scikit-learn使用“CV”估计器,通过交叉验证自动设定参数。

In [125]: from sklearn import linear_model, datasets

In [126]: lasso = linear_model.LassoCV()

In [127]: diabetes = datasets.load_diabetes()

In [128]: X_diabetes = diabetes.data

In [129]: y_diabetes = diabetes.target

In [130]: lasso.fit(X_diabetes, y_diabetes)
Out[130]: 
LassoCV(alphas=array([ 2.14804,  2.00327, ...,  0.0023 ,  0.00215]),
    copy_X=True, cv=None, eps=0.001, fit_intercept=True, max_iter=1000,
    n_alphas=100, normalize=False, precompute='auto', tol=0.0001,
    verbose=False)

In [131]: # The estimator chose automatically its lambda:

In [132]: lasso.alpha 
Out[132]: 0.013180196198701137

 

这些估计器是相似的,以‘CV’为它们名字的后缀。

分享到:
评论

相关推荐

    Scikit Learn_ 在python中机器学习 - yyliu1

    Scikit Learn是Python中最受欢迎的机器学习库之一,它提供了丰富的算法和工具,方便开发者进行数据预处理、建模和评估。在这个博客中,作者介绍了如何使用Scikit Learn进行基本的机器学习操作,如加载数据、分类和...

    3.6. scikit-learn:Python中的机器学习.ipynb

    3.6. scikit-learn:Python中的机器学习

    scikit-learn:scikit-learn:Python中的机器学习

    scikit-learn:scikit-learn:Python中的机器学习

    learning scikit-learn machine learning in python word版介绍

    Scikit-learn 是一个在 Python 编程语言中广泛使用的开源机器学习库。该库提供了丰富的工具集,用于实现各种机器学习算法,包括但不限于分类、回归、聚类、降维、模型选择以及数据预处理等。 #### 安装与配置 为了...

    Python中的scikit-learn:机器学习实战指南

    在众多Python机器学习库中,scikit-learn以其简单易用、功能丰富、文档齐全等特点脱颖而出。本文将详细介绍如何在Python中使用scikit-learn进行机器学习,包括数据预处理、模型选择、训练与评估等关键步骤。 通过...

    Scikit Learn 在python中机器学习1

    Scikit Learn是Python中最受欢迎的机器学习库之一,它提供了丰富的算法和工具,方便用户进行数据预处理、建模和评估。在这个场景中,我们主要关注如何使用Scikit Learn进行机器学习的基本操作。 首先,从描述中的...

    探索机器学习:Scikit-learn在Python中的应用

    通过本文的介绍,你应该能够理解如何在Python中使用Scikit-learn,并开始自己的机器学习项目。 本文通过详细的步骤和少量的代码示例,为读者提供了一个关于如何在Python中使用Scikit-learn的全面指南。通过实践这些...

    Python中Scikit-learn库的机器学习实战:从入门到精通

    本文将详细介绍如何在Python中使用Scikit-learn进行机器学习,包括基础概念、常用算法和实际应用案例。 Scikit-learn是Python中进行机器学习的强大工具,它提供了从数据预处理到模型训练、评估和解释的全套解决方案...

    Python:Python机器学习基础:Scikit-Learn

    ### Python机器学习基础:Scikit-Learn #### 一、Python环境搭建与配置 Python作为一门强大且易学的编程语言,在数据科学和机器学习领域备受推崇。在开始使用Python进行机器学习之前,首要任务是确保正确安装了...

    Scikit-Learn_教學:Python_與機器學習_(Article).pdf

    1. Python与机器学习:文档标题明确指出,其内容与Python编程语言及其在机器学习领域的应用相关。Python因其简洁的语法、强大的库支持以及在数据科学、机器学习领域的广泛应用而受到开发者青睐。Scikit-learn是...

    python3.6及scikit-learn包

    Scikit-learn(也称为sklearn)是Python中最受欢迎的机器学习库之一,它基于NumPy、SciPy和matplotlib构建。Scikit-learn提供了广泛的监督和无监督学习算法,包括分类、回归、聚类、降维和模型选择。该库易于使用,...

    Python-一个scikitlearn兼容的Python工具箱用于学习时间序列面板数据

    标题中的“Python-一个scikitlearn兼容的Python工具箱用于学习时间序列面板数据”指出,这个工具箱是为Python编程语言设计的,且与流行的机器学习库scikit-learn相兼容,专门针对时间序列和面板数据的学习。...

    Scikit-Learn:Python中的SKLearn库

    Scikit学习Scikit-learn:是用于Python编程语言的免费软件机器学习库。 它具有各种分类,回归和聚类算法,包括支持向量机,随机森林,梯度提升,k均值和DBSCAN,并且旨在与Python数值和科学库NumPy和SciPy互操作。...

    scikit-learn:Python中的机器学习-开源

    Scikit-learn是Python编程语言中的一个核心机器学习库,其设计目的是为了简化数据科学工作流程,特别是机器学习任务。这个库是建立在其他几个重要的Python库之上,如NumPy,SciPy和matplotlib,这些库为数值计算和...

    Learning scikit-learn_ Machine Learning in Python

    这本书主要教授如何使用Python语言和开源的scikit-learn库来解决现实世界中的机器学习问题,并从中获益。本书由Packt Publishing出版,并在英国伯明翰设有办公室。 书中涉及的关键知识点包括: 1. **机器学习...

    Scikit-learn学习资料荟萃

    从入门到精通,学习备查两相宜,资料目录: Mastering Machine Learning with scikit-learn(中文版).pdf;...python_scikit-learn学习笔记.pdf; Scikit-learn 使用手册中文版.pdf; scikit-learn-docs.pdf;

    Breast-Cancer-Scikitlearn:使用Scikitlearn进行机器学习的简单教程

    在这个名为“Breast-Cancer-Scikitlearn”的教程中,我们将深入探讨如何利用Python的Scikit-Learn库进行机器学习,特别是针对乳腺癌数据集(Breast Cancer Wisconsin dataset)的应用。Scikit-Learn是Python中最受...

Global site tag (gtag.js) - Google Analytics