`

用弱引用堵住内存泄漏

阅读更多

要让垃圾收集(GC)回收程序不再使用的对象,对象的逻辑 生命周期(应用程序使用它的时间)和对该对象拥有的引用的实际 生命周期必须是相同的。在大多数时候,好的软件工程技术保证这是自动实现的,不用我们对对象生命周期问题花费过多心思。但是偶尔我们会创建一个引用,它在内存中包含对象的时间比我们预期的要长得多,这种情况称为无意识的对象保留(unintentional object retention)。

全局 Map 造成的内存泄漏

无意识对象保留最常见的原因是使用 Map 将元数据与临时对象(transient object)相关联。假定一个对象具有中等生命周期,比分配它的那个方法调用的生命周期长,但是比应用程序的生命周期短,如客户机的套接字连接。需要将一些元数据与这个套接字关联,如生成连接的用户的标识。在创建 Socket 时是不知道这些信息的,并且不能将数据添加到 Socket 对象上,因为不能控制 Socket 类或者它的子类。这时,典型的方法就是在一个全局 Map 中存储这些信息,如清单 1 中的 SocketManager 类所示:

清单 1. 使用一个全局 Map 将元数据关联到一个对象

public class SocketManager {
    private Map<Socket,User> m = new HashMap<Socket,User>();
   
    public void setUser(Socket s, User u) {
        m.put(s, u);
    }
    public User getUser(Socket s) {
        return m.get(s);
    }
    public void removeUser(Socket s) {
        m.remove(s);
    }
}
SocketManager socketManager;
...
socketManager.setUser(socket, user);


这种方法的问题是元数据的生命周期需要与套接字的生命周期挂钩,但是除非准确地知道什么时候程序不再需要这个套接字,并记住从 Map 中删除相应的映射,否则,Socket 和 User 对象将会永远留在 Map 中,远远超过响应了请求和关闭套接字的时间。这会阻止 Socket 和 User 对象被垃圾收集,即使应用程序不会再使用它们。这些对象留下来不受控制,很容易造成程序在长时间运行后内存爆满。除了最简单的情况,在几乎所有情况下找出什么时候 Socket 不再被程序使用是一件很烦人和容易出错的任务,需要人工对内存进行管理。



找出内存泄漏

程序有内存泄漏的第一个迹象通常是它抛出一个 OutOfMemoryError,或者因为频繁的垃圾收集而表现出糟糕的性能。幸运的是,垃圾收集可以提供能够用来诊断内存泄漏的大量信息。如果以 -verbose:gc 或者 -Xloggc 选项调用 JVM,那么每次 GC 运行时在控制台上或者日志文件中会打印出一个诊断信息,包括它所花费的时间、当前堆使用情况以及恢复了多少内存。记录 GC 使用情况并不具有干扰性,因此如果需要分析内存问题或者调优垃圾收集器,在生产环境中默认启用 GC 日志是值得的。

有工具可以利用 GC 日志输出并以图形方式将它显示出来,JTune 就是这样的一种工具(请参阅 参考资料)。观察 GC 之后堆大小的图,可以看到程序内存使用的趋势。对于大多数程序来说,可以将内存使用分为两部分:baseline 使用和 current load 使用。对于服务器应用程序,baseline 使用就是应用程序在没有任何负荷、但是已经准备好接受请求时的内存使用,current load 使用是在处理请求过程中使用的、但是在请求处理完成后会释放的内存。只要负荷大体上是恒定的,应用程序通常会很快达到一个稳定的内存使用水平。如果在应用程序已经完成了其初始化并且负荷没有增加的情况下,内存使用持续增加,那么程序就可能在处理前面的请求时保留了生成的对象。

清单 2 展示了一个有内存泄漏的程序。MapLeaker 在线程池中处理任务,并在一个 Map 中记录每一项任务的状态。不幸的是,在任务完成后它不会删除那一项,因此状态项和任务对象(以及它们的内部状态)会不断地积累。

清单 2. 具有基于 Map 的内存泄漏的程序

public class MapLeaker {
    public ExecutorService exec = Executors.newFixedThreadPool(5);
    public Map<Task, TaskStatus> taskStatus
        = Collections.synchronizedMap(new HashMap<Task, TaskStatus>());
    private Random random = new Random();
    private enum TaskStatus { NOT_STARTED, STARTED, FINISHED };
    private class Task implements Runnable {
        private int[] numbers = new int[random.nextInt(200)];
        public void run() {
            int[] temp = new int[random.nextInt(10000)];
            taskStatus.put(this, TaskStatus.STARTED);
            doSomeWork();
            taskStatus.put(this, TaskStatus.FINISHED);
        }
    }
    public Task newTask() {
        Task t = new Task();
        taskStatus.put(t, TaskStatus.NOT_STARTED);
        exec.execute(t);
        return t;
    }
}


图 1 显示 MapLeaker GC 之后应用程序堆大小随着时间的变化图。上升趋势是存在内存泄漏的警示信号。(在真实的应用程序中,坡度不会这么大,但是在收集了足够长时间的 GC 数据后,上升趋势通常会表现得很明显。)


图 1. 持续上升的内存使用趋势


确信有了内存泄漏后,下一步就是找出哪种对象造成了这个问题。所有内存分析器都可以生成按照对象类进行分解的堆快照。有一些很好的商业堆分析工具,但是找出内存泄漏不一定要花钱买这些工具 —— 内置的 hprof 工具也可完成这项工作。要使用 hprof 并让它跟踪内存使用,需要以 -Xrunhprof:heap=sites 选项调用 JVM。

 

清单 3 显示分解了应用程序内存使用的 hprof 输出的相关部分。(hprof 工具在应用程序退出时,或者用 kill -3 或在 Windows 中按 Ctrl+Break 时生成使用分解。)注意两次快照相比,Map.Entry、Task 和 int[] 对象有了显著增加。

清单 3. HPROF 输出,显示 Map.Entry 和 Task 对象的增加

				
SITES BEGIN (ordered by live bytes) Fri Oct 28 16:30:48 2005
          percent          live          alloc'ed  stack class
 rank   self  accum     bytes objs     bytes  objs trace name
    1 70.13% 70.13%   5694888 13909   5694888 13909 300305 int[]
    2 18.27% 88.40%   1483976   68 278273632 13908 300321 int[]
    3  4.11% 92.51%    333816 13909    333816 13909 300310 java.util.HashMap$Entry
    4  2.74% 95.25%    222544 13909    222544 13909 300304 com.quiotix.dummy.MapLeaker$Task
    5  2.42% 97.67%    196640    2    262192    11 300325 java.util.HashMap$Entry[]
    6  0.66% 98.33%     53680 3355    222464 13904 300324 java.util.concurrent.LinkedBlockingQueue$Node
SITES END
SITES BEGIN (ordered by live bytes) Fri Oct 28 16:31:32 2005
          percent          live          alloc'ed  stack class
 rank   self  accum     bytes objs     bytes  objs trace name
    1 77.07% 77.07%  41176024 100020  41176024 100020 301069 int[]
    2 12.98% 90.05%   6933768  359 2001885688 100020 301093 int[]
    3  4.49% 94.55%   2400480 100020   2400480 100020 301082 java.util.HashMap$Entry
    4  3.00% 97.54%   1600320 100020   1600320 100020 301068 com.quiotix.dummy.MapLeaker$Task
    5  1.96% 99.50%   1048592    1   2097248    14 301104 java.util.HashMap$Entry[]
    6  0.05% 99.55%     25936 1621   1600240 100015 301101 java.util.concurrent.LinkedBlockingQueue$Node
SITES END



清单 4 展示了 hprof 输出的另一部分,给出了 Map.Entry 对象的分配点的调用堆栈信息。这个输出告诉我们哪些调用链生成了 Map.Entry 对象,并带有一些程序分析,找出内存泄漏来源一般来说是相当容易的。

清单 4. HPROF 输出,显示 Map.Entry 对象的分配点

TRACE 300446:
    java.util.HashMap$Entry.<init>(<Unknown Source>:Unknown line)
    java.util.HashMap.addEntry(<Unknown Source>:Unknown line)
    java.util.HashMap.put(<Unknown Source>:Unknown line)
    java.util.Collections$SynchronizedMap.put(<Unknown Source>:Unknown line)
    com.quiotix.dummy.MapLeaker.newTask(MapLeaker.java:48)
    com.quiotix.dummy.MapLeaker.main(MapLeaker.java:64)




弱引用来救援了

SocketManager 的问题是 Socket-User 映射的生命周期应当与 Socket 的生命周期相匹配,但是语言没有提供任何容易的方法实施这项规则。这使得程序不得不使用人工内存管理的老技术。幸运的是,从 JDK 1.2 开始,垃圾收集器提供了一种声明这种对象生命周期依赖性的方法,这样垃圾收集器就可以帮助我们防止这种内存泄漏 —— 利用弱引用。

弱引用是对一个对象(称为 referent)的引用的持有者。使用弱引用后,可以维持对 referent 的引用,而不会阻止它被垃圾收集。当垃圾收集器跟踪堆的时候,如果对一个对象的引用只有弱引用,那么这个 referent 就会成为垃圾收集的候选对象,就像没有任何剩余的引用一样,而且所有剩余的弱引用都被清除。(只有弱引用的对象称为弱可及(weakly reachable)。)

WeakReference 的 referent 是在构造时设置的,在没有被清除之前,可以用 get() 获取它的值。如果弱引用被清除了(不管是 referent 已经被垃圾收集了,还是有人调用了 WeakReference.clear()),get() 会返回 null。相应地,在使用其结果之前,应当总是检查 get() 是否返回一个非 null 值,因为 referent 最终总是会被垃圾收集的。

用一个普通的(强)引用拷贝一个对象引用时,限制 referent 的生命周期至少与被拷贝的引用的生命周期一样长。如果不小心,那么它可能就与程序的生命周期一样 —— 如果将一个对象放入一个全局集合中的话。另一方面,在创建对一个对象的弱引用时,完全没有扩展 referent 的生命周期,只是在对象仍然存活的时候,保持另一种到达它的方法。

弱引用对于构造弱集合最有用,如那些在应用程序的其余部分使用对象期间存储关于这些对象的元数据的集合 —— 这就是 SocketManager 类所要做的工作。因为这是弱引用最常见的用法,WeakHashMap 也被添加到 JDK 1.2 的类库中,它对键(而不是对值)使用弱引用。如果在一个普通 HashMap 中用一个对象作为键,那么这个对象在映射从 Map 中删除之前不能被回收,WeakHashMap 使您可以用一个对象作为 Map 键,同时不会阻止这个对象被垃圾收集。清单 5 给出了 WeakHashMap 的 get() 方法的一种可能实现,它展示了弱引用的使用:

清单 5. WeakReference.get() 的一种可能实现

public class WeakHashMap<K,V> implements Map<K,V> {
    private static class Entry<K,V> extends WeakReference<K>
      implements Map.Entry<K,V> {
        private V value;
        private final int hash;
        private Entry<K,V> next;
        ...
    }
    public V get(Object key) {
        int hash = getHash(key);
        Entry<K,V> e = getChain(hash);
        while (e != null) {
            K eKey= e.get();
            if (e.hash == hash && (key == eKey || key.equals(eKey)))
                return e.value;
            e = e.next;
        }
        return null;
    }


调用 WeakReference.get() 时,它返回一个对 referent 的强引用(如果它仍然存活的话),因此不需要担心映射在 while 循环体中消失,因为强引用会防止它被垃圾收集。WeakHashMap 的实现展示了弱引用的一种常见用法 —— 一些内部对象扩展 WeakReference。其原因在下面一节讨论引用队列时会得到解释。

在向 WeakHashMap 中添加映射时,请记住映射可能会在以后“脱离”,因为键被垃圾收集了。在这种情况下,get() 返回 null,这使得测试 get() 的返回值是否为 null 变得比平时更重要了。

用 WeakHashMap 堵住泄漏


在 SocketManager 中防止泄漏很容易,只要用 WeakHashMap 代替 HashMap 就行了,如清单 6 所示。(如果 SocketManager 需要线程安全,那么可以用 Collections.synchronizedMap() 包装 WeakHashMap)。当映射的生命周期必须与键的生命周期联系在一起时,可以使用这种方法。不过,应当小心不滥用这种技术,大多数时候还是应当使用普通的 HashMap 作为 Map 的实现。

清单 6. 用 WeakHashMap 修复 SocketManager

public class SocketManager {
    private Map<Socket,User> m = new WeakHashMap<Socket,User>();
   
    public void setUser(Socket s, User u) {
        m.put(s, u);
    }
    public User getUser(Socket s) {
        return m.get(s);
    }
}


引用队列

WeakHashMap 用弱引用承载映射键,这使得应用程序不再使用键对象时它们可以被垃圾收集,get() 实现可以根据 WeakReference.get() 是否返回 null 来区分死的映射和活的映射。但是这只是防止 Map 的内存消耗在应用程序的生命周期中不断增加所需要做的工作的一半,还需要做一些工作以便在键对象被收集后从 Map 中删除死项。否则,Map 会充满对应于死键的项。虽然这对于应用程序是不可见的,但是它仍然会造成应用程序耗尽内存,因为即使键被收集了,Map.Entry 和值对象也不会被收集。

可以通过周期性地扫描 Map,对每一个弱引用调用 get(),并在 get() 返回 null 时删除那个映射而消除死映射。但是如果 Map 有许多活的项,那么这种方法的效率很低。如果有一种方法可以在弱引用的 referent 被垃圾收集时发出通知就好了,这就是引用队列 的作用。

引用队列是垃圾收集器向应用程序返回关于对象生命周期的信息的主要方法。弱引用有两个构造函数:一个只取 referent 作为参数,另一个还取引用队列作为参数。如果用关联的引用队列创建弱引用,在 referent 成为 GC 候选对象时,这个引用对象(不是 referent)就在引用清除后加入 到引用队列中。之后,应用程序从引用队列提取引用并了解到它的 referent 已被收集,因此可以进行相应的清理活动,如去掉已不在弱集合中的对象的项。(引用队列提供了与 BlockingQueue 同样的出列模式 —— polled、timed blocking 和 untimed blocking。)

WeakHashMap 有一个名为 expungeStaleEntries() 的私有方法,大多数 Map 操作中会调用它,它去掉引用队列中所有失效的引用,并删除关联的映射。清单 7 展示了 expungeStaleEntries() 的一种可能实现。用于存储键-值映射的 Entry 类型扩展了 WeakReference,因此当 expungeStaleEntries() 要求下一个失效的弱引用时,它得到一个 Entry。用引用队列代替定期扫描内容的方法来清理 Map 更有效,因为清理过程不会触及活的项,只有在有实际加入队列的引用时它才工作。

清单 7. WeakHashMap.expungeStaleEntries() 的可能实现

    private void expungeStaleEntries() {
    Entry<K,V> e;
        while ( (e = (Entry<K,V>) queue.poll()) != null) {
            int hash = e.hash;
            Entry<K,V> prev = getChain(hash);
            Entry<K,V> cur = prev;
            while (cur != null) {
                Entry<K,V> next = cur.next;
                if (cur == e) {
                    if (prev == e)
                        setChain(hash, next);
                    else
                        prev.next = next;
                    break;
                }
                prev = cur;
                cur = next;
            }
        }
    }






结束语

弱引用和弱集合是对堆进行管理的强大工具,使得应用程序可以使用更复杂的可及性方案,而不只是由普通(强)引用所提供的“要么全部要么没有”可及性。下个月,我们将分析与弱引用有关的软引用,将分析在使用弱引用和软引用时,垃圾收集器的行为。

 

 

 

 

 

 

 

转自http://www.ibm.com/developerworks/cn/java/j-jtp11225/

 

分享到:
评论

相关推荐

    Java 理论与实践:用弱引用堵住内存泄漏

    本月,负责保障应用程序健康的工程师 Brian Goetz 探讨了无意识的对象保留的常见原因,并展示了如何用弱引用堵住泄漏。  要让垃圾收集(GC)回收程序不再使用的对象,对象的逻辑 生命周期(应用程序使用它的时间...

    Java理论与实践:用弱引用堵住内存泄漏

    【Java理论与实践:用弱引用堵住内存泄漏】这篇文章除了介绍弱引用的概念,还探讨了如何使用弱引用来防止内存泄漏的问题。在Java编程中,内存泄漏并非像C++那样由忘记释放内存引起,而是由于对象生命周期与引用生命...

    Java弱引用与WeakHashMap

     《Java 理论与实践: 用弱引用堵住内存泄漏》一文也指出了使用全局的Map作为缓存容器时发生的内存泄露问题,介绍了如何使用hprof工具来找出内存泄露,并分析了如何使用弱引用来防止内存泄露,还分析了

    基于Simulink的风火水储联合调频系统中储能SOC对ACE影响的技术分析

    内容概要:本文详细探讨了在Simulink环境中构建的风火水储联合调频系统中,储能系统的荷电状态(SOC)对区域控制偏差(ACE)的影响。文中通过具体案例和MATLAB代码展示了储能系统在不同SOC水平下的表现及其对系统稳定性的作用。同时,文章比较了储能单独调频与风火水储联合调频的效果,强调了储能系统在应对风电波动性和提高系统响应速度方面的重要作用。此外,作者提出了针对SOC变化率的参数整定方法以及多电源协同工作的优化策略,旨在减少ACE波动并确保系统稳定运行。 适合人群:从事电力系统调频研究的专业人士,尤其是熟悉Simulink仿真工具的研究人员和技术人员。 使用场景及目标:适用于希望深入了解储能系统在电力系统调频中作用的研究者和技术人员,目标是通过合理的SOC管理和多电源协同工作,优化调频效果,提高系统稳定性。 其他说明:文章提供了详细的MATLAB代码片段,帮助读者更好地理解和应用所讨论的概念。同时,文中提到的实际案例和仿真结果为理论分析提供了有力支持。

    欧姆龙PLC NJ中大型程序案例:结构化与面向对象编程的深度融合及应用

    内容概要:本文深入探讨了欧姆龙PLC NJ系列中大型程序中结构化编程与面向对象编程的结合及其应用。首先介绍了结构化编程作为程序框架的基础,通过功能块(FB)实现清晰的程序结构和流程控制。接着阐述了面向对象编程的理念,将现实世界的对象映射到程序中,利用类的概念实现模块化和可扩展性。两者结合提高了程序的容错率,增强了程序的稳定性和可维护性。文中通过多个实际案例展示了如何在工业自动化领域中应用这两种编程方法,如电机控制、设备类的创建、异常处理机制、接口实现多态性、配方管理和报警处理等。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些希望提升PLC编程技能的人群。 使用场景及目标:适用于需要优化PLC程序结构、提高程序可靠性和可维护性的场合。目标是帮助工程师掌握结构化编程和面向对象编程的技巧,从而写出更加高效、稳定的PLC程序。 其他说明:文章强调了在实际项目中灵活运用两种编程方法的重要性,并提醒读者注意实时性要求高的动作控制应采用结构化编程,而工艺逻辑和HMI交互则更适合面向对象编程。

    matlab与聚类分析

    matlab与聚类分析。根据我国历年职工人数(单位:万人),使用有序样品的fisher法聚类。

    卡尔曼滤波生成航迹测量程序

    卡尔曼滤波生成航迹测量程序

    基于格子玻尔兹曼方法(LBM)的多孔电极浸润特性研究及其Python实现

    内容概要:本文详细介绍了利用格子玻尔兹曼方法(LBM)对多孔电极浸润特性的模拟研究。首先阐述了LBM的基本原理,包括碰撞和迁移两个关键步骤,并提供了相应的Python伪代码。接着讨论了如何处理多孔介质中的固体边界,特别是通过随机算法生成孔隙结构以及结合CT扫描数据进行三维重构的方法。文中还探讨了表面张力、接触角等因素对浸润过程的影响,并给出了具体的数学表达式。此外,文章提到了并行计算的应用,如使用CUDA加速大规模网格计算,以提高模拟效率。最后,作者分享了一些实用技巧,如通过调整松弛时间和润湿性参数来优化模拟效果,并强调了LBM在处理复杂几何结构方面的优势。 适合人群:从事电池研发、材料科学领域的研究人员和技术人员,尤其是关注多孔电极浸润性和电解液扩散机制的人群。 使用场景及目标:适用于希望深入了解多孔电极内部流体动力学行为的研究者,旨在帮助他们更好地理解和预测电极材料的浸润特性,从而改进电池设计和性能。 其他说明:尽管LBM在处理多孔介质方面表现出色,但在某些极端条件下仍需引入额外的修正项。同时,参数的选择和边界条件的设定对最终结果有着重要影响,因此需要谨慎对待。

    基于FPGA和W5500的TCP网络通信:Zynq扩展口开发测试平台(使用Vivado 2019.2纯Verilog实现)

    内容概要:本文详细介绍了在Zynq扩展口上使用FPGA和W5500实现TCP网络通信的过程。作者通过一系列实验和技术手段,解决了多个实际问题,最终实现了稳定的数据传输。主要内容包括:硬件搭建(SPI接口配置)、数据回环处理、压力测试及优化、多路复用扩展以及上位机测试脚本的编写。文中提供了大量Verilog代码片段,展示了如何通过状态机控制SPI通信、优化数据缓存管理、处理中断等问题。 适合人群:对FPGA开发和网络通信感兴趣的工程师,尤其是有一定Verilog编程基础的研发人员。 使用场景及目标:适用于需要在嵌入式系统中实现高效、稳定的TCP通信的应用场景。目标是帮助读者掌握FPGA与W5500结合进行网络通信的具体实现方法和技术细节。 其他说明:文章不仅提供了详细的代码实现,还分享了许多实践经验,如硬件连接注意事项、信号完整性问题的解决方案等。此外,作者还提到了未来的工作方向,如UDP组播和QoS优先级控制的实现。

    python3.10以上 可安装pyside6(类似pyqt),具体安装操作步骤

    python3.10以上 可安装pyside6(类似pyqt),具体安装操作步骤

    基于FDTD仿真的可调谐石墨烯超材料吸收体设计与实现

    内容概要:本文详细介绍了利用有限差分时域法(FDTD)进行可调谐石墨烯超材料吸收体的设计与仿真。文中解释了石墨烯超材料的基本结构(三层“三明治”结构)、关键参数(如化学势、周期、厚度等)及其对吸收性能的影响。同时展示了如何通过调整石墨烯的化学势来实现吸收峰的位置和强度的变化,以及如何优化结构参数以获得最佳的吸收效果。此外,还提供了具体的代码示例,帮助读者理解和重现相关实验结果。 适合人群:从事纳米光子学、超材料研究的专业人士,尤其是对石墨烯基超材料感兴趣的科研工作者和技术开发者。 使用场景及目标:适用于希望深入了解石墨烯超材料的工作原理及其潜在应用场景的研究人员;旨在探索新型可调谐光学器件的设计思路和发展方向。 其他说明:文中不仅分享了理论知识,还包括了许多实践经验,如避免常见错误、提高仿真相关效率的小技巧等。对于想要将研究成果应用于实际产品的团队来说,这些细节非常有价值。

    随机生成2字到10字的中文词组

    随机生成2字,3字,4字,5字,6字,7字,8字,9字,10字的中文词组20个

    【汽车电子电气架构】智能座舱域控平台设计:基于双片龍鷹一号SoC芯片的高性能硬件架构与多模态交互系统构建

    内容概要:本文详细探讨了智能座舱域控设计的发展历程和技术趋势。首先介绍了智能座舱从被动式交互到主动式交互的技术演变,包括硬件和交互方式的进步。随后,文章重点讨论了智能座舱功能发展趋势,涵盖车载显示技术的多屏化、大屏化和高端化,以及SoC芯片的多核异构架构和算力融合,强调了其在智能座舱中的核心作用。此外,还阐述了电子电气架构从分布式向集成化的转型,分析了其面临的挑战和未来趋势。最后,基于当前智能座舱的发展需求,提出了一种基于双片龍鷹一号芯片的新域控平台设计方案,详细描述了其硬件设计实现方案,旨在提供高性能、高可靠性的智能座舱解决方案。 适合人群:汽车电子工程师、智能座舱研发人员及相关领域的技术人员。 使用场景及目标:①帮助读者理解智能座舱的技术发展历程及其未来发展方向;②为智能座舱域控平台的设计和开发提供参考和技术支持;③探讨电子电气架构的转型对汽车行业的影响及应对策略。 其他说明:文章结合实际案例和技术数据,深入浅出地解释了智能座舱的各项技术细节,不仅提供了理论指导,还具有较强的实践意义。通过对智能座舱域控平台的全面剖析,有助于推动智能座舱技术的创新发展,提升用户体验。

    多智能体协同编队控制:无人机编队背后的Python实现与关键技术解析

    内容概要:本文详细介绍了多智能体协同编队控制的技术原理及其应用实例。首先通过生动形象的例子解释了编队控制的核心概念,如一致性算法、虚拟结构法和Leader-Follower模式。接着深入探讨了如何用Python实现基础的一致性控制,以及如何通过调整参数(如Kp、Ka)来优化编队效果。文中还讨论了实际工程中常见的问题,如通信延迟、避障策略和动态拓扑变化,并给出了相应的解决方案。最后,强调了参数调试的重要性,并分享了一些实用技巧,如预测补偿、力场融合算法和分布式控制策略。 适合人群:对多智能体系统、无人机编队控制感兴趣的科研人员、工程师和技术爱好者。 使用场景及目标:适用于希望深入了解多智能体协同编队控制理论并能够将其应用于实际项目的研究人员和开发者。目标是帮助读者掌握编队控制的关键技术和实现方法,提高系统的稳定性和可靠性。 其他说明:文章不仅提供了详细的理论讲解,还附有具体的代码示例,便于读者理解和实践。同时,作者结合自身经验分享了许多宝贵的调试技巧和注意事项,有助于读者在实际应用中少走弯路。

    评估管线钢环焊缝质量及其对氢脆的敏感性.pptx

    评估管线钢环焊缝质量及其对氢脆的敏感性.pptx

    C盘清理bat脚本自动清理C盘垃圾文件

    C盘清理bat脚本自动清理C盘垃圾文件

    GBT21266-2007 辣椒及辣椒制品中辣椒素类物质测定及辣度表示方法

    GBT21266-2007 辣椒及辣椒制品中辣椒素类物质测定及辣度表示方法

    弹跳球 XNA 游戏项目 演示如何使用 C# 在 Visual Studio XNA 中构建类似 arkanoiddx-ball 的游戏

    弹跳球 XNA 游戏项目。演示如何使用 C# 在 Visual Studio XNA 中构建类似 arkanoiddx-ball 的游戏。

    【人形机器人领域】宇树科技人形机器人:技术实力、市场炒作与应用前景分析

    内容概要:文章全面解析了宇树科技人形机器人的发展现状、技术实力、市场炒作现象及其应用前景和面临的挑战。宇树科技成立于2016年,凭借春晚舞台的惊艳亮相和社交媒体的热议迅速走红,其人形机器人具备先进的运动控制算法、传感器技术和仿生结构设计。然而,市场炒作现象如高价租赁、二手市场炒作和虚假宣传等影响了市场秩序。尽管存在炒作,人形机器人在工业、服务和家庭领域仍具广阔前景,但也面临技术升级、成本控制、安全性和政策监管等挑战。 适合人群:对机器人技术、人工智能以及科技发展趋势感兴趣的读者,包括科技爱好者、投资者和相关行业的从业者。 使用场景及目标:①帮助读者了解宇树科技人形机器人的技术特点和发展历程;②揭示市场炒作现象及其影响;③探讨人形机器人的应用前景和面临的挑战。 其他说明:文章强调了宇树科技人形机器人在技术上的突破和市场上的表现,同时也提醒读者关注市场炒作现象带来的风险,呼吁各方共同努力推动人形机器人产业健康发展。

    msvcp140.dll

    msvcp140.dll丢失怎样修复

Global site tag (gtag.js) - Google Analytics