`

用弱引用堵住内存泄漏

阅读更多

要让垃圾收集(GC)回收程序不再使用的对象,对象的逻辑 生命周期(应用程序使用它的时间)和对该对象拥有的引用的实际 生命周期必须是相同的。在大多数时候,好的软件工程技术保证这是自动实现的,不用我们对对象生命周期问题花费过多心思。但是偶尔我们会创建一个引用,它在内存中包含对象的时间比我们预期的要长得多,这种情况称为无意识的对象保留(unintentional object retention)。

全局 Map 造成的内存泄漏

无意识对象保留最常见的原因是使用 Map 将元数据与临时对象(transient object)相关联。假定一个对象具有中等生命周期,比分配它的那个方法调用的生命周期长,但是比应用程序的生命周期短,如客户机的套接字连接。需要将一些元数据与这个套接字关联,如生成连接的用户的标识。在创建 Socket 时是不知道这些信息的,并且不能将数据添加到 Socket 对象上,因为不能控制 Socket 类或者它的子类。这时,典型的方法就是在一个全局 Map 中存储这些信息,如清单 1 中的 SocketManager 类所示:

清单 1. 使用一个全局 Map 将元数据关联到一个对象

public class SocketManager {
    private Map<Socket,User> m = new HashMap<Socket,User>();
   
    public void setUser(Socket s, User u) {
        m.put(s, u);
    }
    public User getUser(Socket s) {
        return m.get(s);
    }
    public void removeUser(Socket s) {
        m.remove(s);
    }
}
SocketManager socketManager;
...
socketManager.setUser(socket, user);


这种方法的问题是元数据的生命周期需要与套接字的生命周期挂钩,但是除非准确地知道什么时候程序不再需要这个套接字,并记住从 Map 中删除相应的映射,否则,Socket 和 User 对象将会永远留在 Map 中,远远超过响应了请求和关闭套接字的时间。这会阻止 Socket 和 User 对象被垃圾收集,即使应用程序不会再使用它们。这些对象留下来不受控制,很容易造成程序在长时间运行后内存爆满。除了最简单的情况,在几乎所有情况下找出什么时候 Socket 不再被程序使用是一件很烦人和容易出错的任务,需要人工对内存进行管理。



找出内存泄漏

程序有内存泄漏的第一个迹象通常是它抛出一个 OutOfMemoryError,或者因为频繁的垃圾收集而表现出糟糕的性能。幸运的是,垃圾收集可以提供能够用来诊断内存泄漏的大量信息。如果以 -verbose:gc 或者 -Xloggc 选项调用 JVM,那么每次 GC 运行时在控制台上或者日志文件中会打印出一个诊断信息,包括它所花费的时间、当前堆使用情况以及恢复了多少内存。记录 GC 使用情况并不具有干扰性,因此如果需要分析内存问题或者调优垃圾收集器,在生产环境中默认启用 GC 日志是值得的。

有工具可以利用 GC 日志输出并以图形方式将它显示出来,JTune 就是这样的一种工具(请参阅 参考资料)。观察 GC 之后堆大小的图,可以看到程序内存使用的趋势。对于大多数程序来说,可以将内存使用分为两部分:baseline 使用和 current load 使用。对于服务器应用程序,baseline 使用就是应用程序在没有任何负荷、但是已经准备好接受请求时的内存使用,current load 使用是在处理请求过程中使用的、但是在请求处理完成后会释放的内存。只要负荷大体上是恒定的,应用程序通常会很快达到一个稳定的内存使用水平。如果在应用程序已经完成了其初始化并且负荷没有增加的情况下,内存使用持续增加,那么程序就可能在处理前面的请求时保留了生成的对象。

清单 2 展示了一个有内存泄漏的程序。MapLeaker 在线程池中处理任务,并在一个 Map 中记录每一项任务的状态。不幸的是,在任务完成后它不会删除那一项,因此状态项和任务对象(以及它们的内部状态)会不断地积累。

清单 2. 具有基于 Map 的内存泄漏的程序

public class MapLeaker {
    public ExecutorService exec = Executors.newFixedThreadPool(5);
    public Map<Task, TaskStatus> taskStatus
        = Collections.synchronizedMap(new HashMap<Task, TaskStatus>());
    private Random random = new Random();
    private enum TaskStatus { NOT_STARTED, STARTED, FINISHED };
    private class Task implements Runnable {
        private int[] numbers = new int[random.nextInt(200)];
        public void run() {
            int[] temp = new int[random.nextInt(10000)];
            taskStatus.put(this, TaskStatus.STARTED);
            doSomeWork();
            taskStatus.put(this, TaskStatus.FINISHED);
        }
    }
    public Task newTask() {
        Task t = new Task();
        taskStatus.put(t, TaskStatus.NOT_STARTED);
        exec.execute(t);
        return t;
    }
}


图 1 显示 MapLeaker GC 之后应用程序堆大小随着时间的变化图。上升趋势是存在内存泄漏的警示信号。(在真实的应用程序中,坡度不会这么大,但是在收集了足够长时间的 GC 数据后,上升趋势通常会表现得很明显。)


图 1. 持续上升的内存使用趋势


确信有了内存泄漏后,下一步就是找出哪种对象造成了这个问题。所有内存分析器都可以生成按照对象类进行分解的堆快照。有一些很好的商业堆分析工具,但是找出内存泄漏不一定要花钱买这些工具 —— 内置的 hprof 工具也可完成这项工作。要使用 hprof 并让它跟踪内存使用,需要以 -Xrunhprof:heap=sites 选项调用 JVM。

 

清单 3 显示分解了应用程序内存使用的 hprof 输出的相关部分。(hprof 工具在应用程序退出时,或者用 kill -3 或在 Windows 中按 Ctrl+Break 时生成使用分解。)注意两次快照相比,Map.Entry、Task 和 int[] 对象有了显著增加。

清单 3. HPROF 输出,显示 Map.Entry 和 Task 对象的增加

				
SITES BEGIN (ordered by live bytes) Fri Oct 28 16:30:48 2005
          percent          live          alloc'ed  stack class
 rank   self  accum     bytes objs     bytes  objs trace name
    1 70.13% 70.13%   5694888 13909   5694888 13909 300305 int[]
    2 18.27% 88.40%   1483976   68 278273632 13908 300321 int[]
    3  4.11% 92.51%    333816 13909    333816 13909 300310 java.util.HashMap$Entry
    4  2.74% 95.25%    222544 13909    222544 13909 300304 com.quiotix.dummy.MapLeaker$Task
    5  2.42% 97.67%    196640    2    262192    11 300325 java.util.HashMap$Entry[]
    6  0.66% 98.33%     53680 3355    222464 13904 300324 java.util.concurrent.LinkedBlockingQueue$Node
SITES END
SITES BEGIN (ordered by live bytes) Fri Oct 28 16:31:32 2005
          percent          live          alloc'ed  stack class
 rank   self  accum     bytes objs     bytes  objs trace name
    1 77.07% 77.07%  41176024 100020  41176024 100020 301069 int[]
    2 12.98% 90.05%   6933768  359 2001885688 100020 301093 int[]
    3  4.49% 94.55%   2400480 100020   2400480 100020 301082 java.util.HashMap$Entry
    4  3.00% 97.54%   1600320 100020   1600320 100020 301068 com.quiotix.dummy.MapLeaker$Task
    5  1.96% 99.50%   1048592    1   2097248    14 301104 java.util.HashMap$Entry[]
    6  0.05% 99.55%     25936 1621   1600240 100015 301101 java.util.concurrent.LinkedBlockingQueue$Node
SITES END



清单 4 展示了 hprof 输出的另一部分,给出了 Map.Entry 对象的分配点的调用堆栈信息。这个输出告诉我们哪些调用链生成了 Map.Entry 对象,并带有一些程序分析,找出内存泄漏来源一般来说是相当容易的。

清单 4. HPROF 输出,显示 Map.Entry 对象的分配点

TRACE 300446:
    java.util.HashMap$Entry.<init>(<Unknown Source>:Unknown line)
    java.util.HashMap.addEntry(<Unknown Source>:Unknown line)
    java.util.HashMap.put(<Unknown Source>:Unknown line)
    java.util.Collections$SynchronizedMap.put(<Unknown Source>:Unknown line)
    com.quiotix.dummy.MapLeaker.newTask(MapLeaker.java:48)
    com.quiotix.dummy.MapLeaker.main(MapLeaker.java:64)




弱引用来救援了

SocketManager 的问题是 Socket-User 映射的生命周期应当与 Socket 的生命周期相匹配,但是语言没有提供任何容易的方法实施这项规则。这使得程序不得不使用人工内存管理的老技术。幸运的是,从 JDK 1.2 开始,垃圾收集器提供了一种声明这种对象生命周期依赖性的方法,这样垃圾收集器就可以帮助我们防止这种内存泄漏 —— 利用弱引用。

弱引用是对一个对象(称为 referent)的引用的持有者。使用弱引用后,可以维持对 referent 的引用,而不会阻止它被垃圾收集。当垃圾收集器跟踪堆的时候,如果对一个对象的引用只有弱引用,那么这个 referent 就会成为垃圾收集的候选对象,就像没有任何剩余的引用一样,而且所有剩余的弱引用都被清除。(只有弱引用的对象称为弱可及(weakly reachable)。)

WeakReference 的 referent 是在构造时设置的,在没有被清除之前,可以用 get() 获取它的值。如果弱引用被清除了(不管是 referent 已经被垃圾收集了,还是有人调用了 WeakReference.clear()),get() 会返回 null。相应地,在使用其结果之前,应当总是检查 get() 是否返回一个非 null 值,因为 referent 最终总是会被垃圾收集的。

用一个普通的(强)引用拷贝一个对象引用时,限制 referent 的生命周期至少与被拷贝的引用的生命周期一样长。如果不小心,那么它可能就与程序的生命周期一样 —— 如果将一个对象放入一个全局集合中的话。另一方面,在创建对一个对象的弱引用时,完全没有扩展 referent 的生命周期,只是在对象仍然存活的时候,保持另一种到达它的方法。

弱引用对于构造弱集合最有用,如那些在应用程序的其余部分使用对象期间存储关于这些对象的元数据的集合 —— 这就是 SocketManager 类所要做的工作。因为这是弱引用最常见的用法,WeakHashMap 也被添加到 JDK 1.2 的类库中,它对键(而不是对值)使用弱引用。如果在一个普通 HashMap 中用一个对象作为键,那么这个对象在映射从 Map 中删除之前不能被回收,WeakHashMap 使您可以用一个对象作为 Map 键,同时不会阻止这个对象被垃圾收集。清单 5 给出了 WeakHashMap 的 get() 方法的一种可能实现,它展示了弱引用的使用:

清单 5. WeakReference.get() 的一种可能实现

public class WeakHashMap<K,V> implements Map<K,V> {
    private static class Entry<K,V> extends WeakReference<K>
      implements Map.Entry<K,V> {
        private V value;
        private final int hash;
        private Entry<K,V> next;
        ...
    }
    public V get(Object key) {
        int hash = getHash(key);
        Entry<K,V> e = getChain(hash);
        while (e != null) {
            K eKey= e.get();
            if (e.hash == hash && (key == eKey || key.equals(eKey)))
                return e.value;
            e = e.next;
        }
        return null;
    }


调用 WeakReference.get() 时,它返回一个对 referent 的强引用(如果它仍然存活的话),因此不需要担心映射在 while 循环体中消失,因为强引用会防止它被垃圾收集。WeakHashMap 的实现展示了弱引用的一种常见用法 —— 一些内部对象扩展 WeakReference。其原因在下面一节讨论引用队列时会得到解释。

在向 WeakHashMap 中添加映射时,请记住映射可能会在以后“脱离”,因为键被垃圾收集了。在这种情况下,get() 返回 null,这使得测试 get() 的返回值是否为 null 变得比平时更重要了。

用 WeakHashMap 堵住泄漏


在 SocketManager 中防止泄漏很容易,只要用 WeakHashMap 代替 HashMap 就行了,如清单 6 所示。(如果 SocketManager 需要线程安全,那么可以用 Collections.synchronizedMap() 包装 WeakHashMap)。当映射的生命周期必须与键的生命周期联系在一起时,可以使用这种方法。不过,应当小心不滥用这种技术,大多数时候还是应当使用普通的 HashMap 作为 Map 的实现。

清单 6. 用 WeakHashMap 修复 SocketManager

public class SocketManager {
    private Map<Socket,User> m = new WeakHashMap<Socket,User>();
   
    public void setUser(Socket s, User u) {
        m.put(s, u);
    }
    public User getUser(Socket s) {
        return m.get(s);
    }
}


引用队列

WeakHashMap 用弱引用承载映射键,这使得应用程序不再使用键对象时它们可以被垃圾收集,get() 实现可以根据 WeakReference.get() 是否返回 null 来区分死的映射和活的映射。但是这只是防止 Map 的内存消耗在应用程序的生命周期中不断增加所需要做的工作的一半,还需要做一些工作以便在键对象被收集后从 Map 中删除死项。否则,Map 会充满对应于死键的项。虽然这对于应用程序是不可见的,但是它仍然会造成应用程序耗尽内存,因为即使键被收集了,Map.Entry 和值对象也不会被收集。

可以通过周期性地扫描 Map,对每一个弱引用调用 get(),并在 get() 返回 null 时删除那个映射而消除死映射。但是如果 Map 有许多活的项,那么这种方法的效率很低。如果有一种方法可以在弱引用的 referent 被垃圾收集时发出通知就好了,这就是引用队列 的作用。

引用队列是垃圾收集器向应用程序返回关于对象生命周期的信息的主要方法。弱引用有两个构造函数:一个只取 referent 作为参数,另一个还取引用队列作为参数。如果用关联的引用队列创建弱引用,在 referent 成为 GC 候选对象时,这个引用对象(不是 referent)就在引用清除后加入 到引用队列中。之后,应用程序从引用队列提取引用并了解到它的 referent 已被收集,因此可以进行相应的清理活动,如去掉已不在弱集合中的对象的项。(引用队列提供了与 BlockingQueue 同样的出列模式 —— polled、timed blocking 和 untimed blocking。)

WeakHashMap 有一个名为 expungeStaleEntries() 的私有方法,大多数 Map 操作中会调用它,它去掉引用队列中所有失效的引用,并删除关联的映射。清单 7 展示了 expungeStaleEntries() 的一种可能实现。用于存储键-值映射的 Entry 类型扩展了 WeakReference,因此当 expungeStaleEntries() 要求下一个失效的弱引用时,它得到一个 Entry。用引用队列代替定期扫描内容的方法来清理 Map 更有效,因为清理过程不会触及活的项,只有在有实际加入队列的引用时它才工作。

清单 7. WeakHashMap.expungeStaleEntries() 的可能实现

    private void expungeStaleEntries() {
    Entry<K,V> e;
        while ( (e = (Entry<K,V>) queue.poll()) != null) {
            int hash = e.hash;
            Entry<K,V> prev = getChain(hash);
            Entry<K,V> cur = prev;
            while (cur != null) {
                Entry<K,V> next = cur.next;
                if (cur == e) {
                    if (prev == e)
                        setChain(hash, next);
                    else
                        prev.next = next;
                    break;
                }
                prev = cur;
                cur = next;
            }
        }
    }






结束语

弱引用和弱集合是对堆进行管理的强大工具,使得应用程序可以使用更复杂的可及性方案,而不只是由普通(强)引用所提供的“要么全部要么没有”可及性。下个月,我们将分析与弱引用有关的软引用,将分析在使用弱引用和软引用时,垃圾收集器的行为。

 

 

 

 

 

 

 

转自http://www.ibm.com/developerworks/cn/java/j-jtp11225/

 

分享到:
评论

相关推荐

    Java 理论与实践:用弱引用堵住内存泄漏

    本月,负责保障应用程序健康的工程师 Brian Goetz 探讨了无意识的对象保留的常见原因,并展示了如何用弱引用堵住泄漏。  要让垃圾收集(GC)回收程序不再使用的对象,对象的逻辑 生命周期(应用程序使用它的时间...

    Java理论与实践:用弱引用堵住内存泄漏

    【Java理论与实践:用弱引用堵住内存泄漏】这篇文章除了介绍弱引用的概念,还探讨了如何使用弱引用来防止内存泄漏的问题。在Java编程中,内存泄漏并非像C++那样由忘记释放内存引起,而是由于对象生命周期与引用生命...

    Java弱引用与WeakHashMap

     《Java 理论与实践: 用弱引用堵住内存泄漏》一文也指出了使用全局的Map作为缓存容器时发生的内存泄露问题,介绍了如何使用hprof工具来找出内存泄露,并分析了如何使用弱引用来防止内存泄露,还分析了

    拟阵约束下最大化子模函数的模型及其算法的一种熵聚类方法.pdf

    拟阵约束下最大化子模函数的模型及其算法的一种熵聚类方法.pdf

    电力市场领域中基于CVaR风险评估的省间交易商最优购电模型研究与实现

    内容概要:本文探讨了在两级电力市场环境中,针对省间交易商的最优购电模型的研究。文中提出了一个双层非线性优化模型,用于处理省内电力市场和省间电力交易的出清问题。该模型采用CVaR(条件风险价值)方法来评估和管理由新能源和负荷不确定性带来的风险。通过KKT条件和对偶理论,将复杂的双层非线性问题转化为更易求解的线性单层问题。此外,还通过实际案例验证了模型的有效性,展示了不同风险偏好设置对购电策略的影响。 适合人群:从事电力系统规划、运营以及风险管理的专业人士,尤其是对电力市场机制感兴趣的学者和技术专家。 使用场景及目标:适用于希望深入了解电力市场运作机制及其风险控制手段的研究人员和技术开发者。主要目标是为省间交易商提供一种科学有效的购电策略,以降低风险并提高经济效益。 其他说明:文章不仅介绍了理论模型的构建过程,还包括具体的数学公式推导和Python代码示例,便于读者理解和实践。同时强调了模型在实际应用中存在的挑战,如数据精度等问题,并指出了未来改进的方向。

    MATLAB/Simulink平台下四机两区系统风储联合调频技术及其高效仿真实现

    内容概要:本文探讨了在MATLAB/Simulink平台上针对四机两区系统的风储联合调频技术。首先介绍了四机两区系统作为经典的电力系统模型,在风电渗透率增加的情况下,传统一次调频方式面临挑战。接着阐述了风储联合调频技术的应用,通过引入虚拟惯性控制和下垂控制策略,提高了系统的频率稳定性。文章展示了具体的MATLAB/Simulink仿真模型,包括系统参数设置、控制算法实现以及仿真加速方法。最终结果显示,在风电渗透率为25%的情况下,通过风储联合调频,系统频率特性得到显著提升,仿真时间缩短至5秒以内。 适合人群:从事电力系统研究、仿真建模的技术人员,特别是关注风电接入电网稳定性的研究人员。 使用场景及目标:适用于希望深入了解风储联合调频机制及其仿真实现的研究人员和技术开发者。目标是掌握如何利用MATLAB/Simulink进行高效的电力系统仿真,尤其是针对含有高比例风电接入的复杂场景。 其他说明:文中提供的具体参数配置和控制算法有助于读者快速搭建类似的仿真环境,并进行相关研究。同时强调了参考文献对于理论基础建立的重要性。

    永磁同步电机无感控制:高频方波注入与滑膜观测器结合实现及其应用场景

    内容概要:本文介绍了永磁同步电机(PMSM)无感控制技术,特别是高频方波注入与滑膜观测器相结合的方法。首先解释了高频方波注入法的工作原理,即通过向电机注入高频方波电压信号,利用电机的凸极效应获取转子位置信息。接着讨论了滑膜观测器的作用,它能够根据电机的电压和电流估计转速和位置,具有较强的鲁棒性。两者结合可以提高无传感器控制系统的稳定性和精度。文中还提供了具体的Python、C语言和Matlab代码示例,展示了如何实现这两种技术。此外,简要提及了正弦波注入的相关论文资料,强调了其在不同工况下的优势。 适合人群:从事电机控制系统设计的研发工程师和技术爱好者,尤其是对永磁同步电机无感控制感兴趣的读者。 使用场景及目标:适用于需要减少传感器依赖、降低成本并提高系统可靠性的情况,如工业自动化设备、电动汽车等领域的电机控制。目标是掌握高频方波注入与滑膜观测器结合的具体实现方法,应用于实际工程项目中。 其他说明:文中提到的高频方波注入和滑膜观测器的结合方式,不仅提高了系统的性能,还在某些特殊情况下表现出更好的适应性。同时,附带提供的代码片段有助于读者更好地理解和实践这一技术。

    MATLAB中扩展卡尔曼滤波与双扩展卡尔曼滤波在电池参数辨识的应用

    内容概要:本文深入探讨了MATLAB中扩展卡尔曼滤波(EKF)和双扩展卡尔曼滤波(DEKF)在电池参数辨识中的应用。首先介绍了EKF的基本原理和代码实现,包括状态预测和更新步骤。接着讨论了DEKF的工作机制,即同时估计系统状态和参数,解决了参数和状态耦合估计的问题。文章还详细描述了电池参数辨识的具体应用场景,特别是针对电池管理系统中的荷电状态(SOC)估计。此外,提到了一些实用技巧,如雅可比矩阵的计算、参数初始值的选择、数据预处理方法等,并引用了几篇重要文献作为参考。 适合人群:从事电池管理系统开发的研究人员和技术人员,尤其是对状态估计和参数辨识感兴趣的读者。 使用场景及目标:适用于需要精确估计电池参数的实际项目,如电动汽车、储能系统等领域。目标是提高电池管理系统的性能,确保电池的安全性和可靠性。 其他说明:文章强调了实际应用中的注意事项,如数据处理、参数选择和模型优化等方面的经验分享。同时提醒读者关注最新的研究成果和技术进展,以便更好地应用于实际工作中。

    基于三菱FX3U PLC和威纶通触摸屏的分切机上下收放卷张力控制系统设计

    内容概要:本文详细介绍了在无电子凸轮功能情况下,利用三菱FX3U系列PLC和威纶通触摸屏实现分切机上下收放卷张力控制的方法。主要内容涵盖硬件连接、程序框架设计、张力检测与读取、PID控制逻辑以及触摸屏交互界面的设计。文中通过具体代码示例展示了如何初始化寄存器、读取张力传感器数据、计算张力偏差并实施PID控制,最终实现稳定的张力控制。此外,还讨论了卷径计算、速度同步控制等关键技术点,并提供了现场调试经验和优化建议。 适合人群:从事自动化生产设备维护和技术支持的专业人士,尤其是熟悉PLC编程和触摸屏应用的技术人员。 使用场景及目标:适用于需要对分切机进行升级改造的企业,旨在提高分切机的张力控制精度,确保材料切割质量,降低生产成本。通过本方案可以实现±3%的张力控制精度,满足基本生产需求。 其他说明:本文不仅提供详细的程序代码和硬件配置指南,还分享了许多实用的调试技巧和经验,帮助技术人员更好地理解和应用相关技术。

    基于S7系列PLC与组态王的三泵变频恒压供水系统设计与实现

    内容概要:本文详细介绍了一种基于西门子S7-200和S7-300 PLC以及组态王软件的三泵变频恒压供水系统。主要内容涵盖IO分配、接线图原理图、梯形图程序编写和组态画面设计四个方面。通过合理的硬件配置和精确的编程逻辑,确保系统能够在不同负载情况下保持稳定的供水压力,同时实现节能和延长设备使用寿命的目标。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是熟悉PLC编程和组态软件使用的专业人士。 使用场景及目标:适用于需要稳定供水的各种场合,如住宅小区、工厂等。目标是通过优化控制系统,提升供水效率,减少能源消耗,并确保系统的可靠性和安全性。 其他说明:文中提供了详细的实例代码和调试技巧,帮助读者更好地理解和实施该项目。此外,还分享了一些实用的经验教训,有助于避免常见的错误和陷阱。

    三相三线制SVG/STATCOM的Simulink仿真建模与控制策略解析

    内容概要:本文详细介绍了三相三线制静止无功发生器(SVG/STATCOM)在Simulink中的仿真模型设计与实现。主要内容涵盖ip-iq检测法用于无功功率检测、dq坐标系下的电流解耦控制、电压电流双闭环控制系统的设计、SVPWM调制技术的应用以及具体的仿真参数设置。文中不仅提供了理论背景,还展示了具体的Matlab代码片段,帮助读者理解各个控制环节的工作原理和技术细节。此外,文章还讨论了实际调试中遇到的问题及解决方案,强调了参数调整的重要性。 适合人群:从事电力系统自动化、电力电子技术研究的专业人士,特别是对SVG/STATCOM仿真感兴趣的工程师和研究人员。 使用场景及目标:适用于希望深入了解SVG/STATCOM工作原理并掌握其仿真方法的研究人员和工程师。目标是在实践中能够正确搭建和优化SVG/STATCOM的仿真模型,提高无功补偿的效果。 其他说明:文章提供了丰富的实例代码和调试技巧,有助于读者更好地理解和应用所学知识。同时,文中提及的一些经验和注意事项来源于实际项目,具有较高的参考价值。

    基于SIMULINK的风力机发电效率建模探究.pdf

    基于SIMULINK的风力机发电效率建模探究.pdf

    CarSim与Simulink联合仿真:基于MPC模型预测控制实现智能超车换道

    内容概要:本文介绍了如何将CarSim的动力学模型与Simulink的智能算法相结合,利用模型预测控制(MPC)实现车辆的智能超车换道。主要内容包括MPC控制器的设计、路径规划算法、联合仿真的配置要点以及实际应用效果。文中提供了详细的代码片段和技术细节,如权重矩阵设置、路径跟踪目标函数、安全超车条件判断等。此外,还强调了仿真过程中需要注意的关键参数配置,如仿真步长、插值设置等,以确保系统的稳定性和准确性。 适合人群:从事自动驾驶研究的技术人员、汽车工程领域的研究人员、对联合仿真感兴趣的开发者。 使用场景及目标:适用于需要进行自动驾驶车辆行为模拟的研究机构和企业,旨在提高超车换道的安全性和效率,为自动驾驶技术研发提供理论支持和技术验证。 其他说明:随包提供的案例文件已调好所有参数,可以直接导入并运行,帮助用户快速上手。文中提到的具体参数和配置方法对于初学者非常友好,能够显著降低入门门槛。

    基于MATLAB的信号与系统实验:常见信号生成、卷积积分、频域分析及Z变换详解

    内容概要:本文详细介绍了利用MATLAB进行信号与系统实验的具体步骤和技术要点。首先讲解了常见信号(如方波、sinc函数、正弦波等)的生成方法及其注意事项,强调了时间轴设置和参数调整的重要性。接着探讨了卷积积分的两种实现方式——符号运算和数值积分,指出了各自的特点和应用场景,并特别提醒了数值卷积时的时间轴重构和步长修正问题。随后深入浅出地解释了频域分析的方法,包括傅里叶变换的符号计算和快速傅里叶变换(FFT),并给出了具体的代码实例和常见错误提示。最后阐述了离散时间信号与系统的Z变换分析,展示了如何通过Z变换将差分方程转化为传递函数以及如何绘制零极点图来评估系统的稳定性。 适合人群:正在学习信号与系统课程的学生,尤其是需要完成相关实验任务的人群;对MATLAB有一定基础,希望通过实践加深对该领域理解的学习者。 使用场景及目标:帮助学生掌握MATLAB环境下信号生成、卷积积分、频域分析和Z变换的基本技能;提高学生解决实际问题的能力,避免常见的编程陷阱;培养学生的动手能力和科学思维习惯。 其他说明:文中不仅提供了详细的代码示例,还分享了许多实用的小技巧,如如何正确保存实验结果图、如何撰写高质量的实验报告等。同时,作者以幽默风趣的语言风格贯穿全文,使得原本枯燥的技术内容变得生动有趣。

    【KUKA 机器人移动编程】:mo2_motion_ptp_en.ppt

    KUKA机器人相关文档

    永磁同步电机(PMSM)无传感器控制:I/F启动与滑模观测器结合的技术实现及应用

    内容概要:本文详细介绍了无传感器永磁同步电机(PMSM)控制技术,特别是针对低速和中高速的不同控制策略。低速阶段采用I/F控制,通过固定电流幅值和斜坡加速的方式启动电机,确保平稳启动。中高速阶段则引入滑模观测器进行反电动势估算,从而精确控制电机转速。文中还讨论了两者之间的平滑切换逻辑,强调了参数选择和调试技巧的重要性。此外,提供了具体的伪代码示例,帮助读者更好地理解和实现这一控制方案。 适合人群:从事电机控制系统设计的研发工程师和技术爱好者。 使用场景及目标:适用于需要降低成本并提高可靠性的应用场景,如家用电器、工业自动化设备等。主要目标是掌握无传感器PMSM控制的基本原理及其优化方法。 其他说明:文中提到的实际案例和测试数据有助于加深理解,同时提醒开发者注意硬件参数准确性以及调试过程中可能出现的问题。

    智能家居与物联网培训材料.ppt

    智能家居与物联网培训材料.ppt

    Matlab实现车辆路径规划:基于TSP、CVRP、CDVRP、VRPTW的四大算法解析及应用

    内容概要:本文详细介绍了使用Matlab解决车辆路径规划问题的四种经典算法:TSP(旅行商问题)、CVRP(带容量约束的车辆路径问题)、CDVRP(带容量和距离双重约束的车辆路径问题)和VRPTW(带时间窗约束的车辆路径问题)。针对每个问题,文中提供了具体的算法实现思路和关键代码片段,如遗传算法用于TSP的基础求解,贪心算法和遗传算法结合用于CVRP的路径分割,以及带有惩罚函数的时间窗约束处理方法。此外,还讨论了性能优化技巧,如矩阵运算替代循环、锦标赛选择、2-opt局部优化等。 适合人群:具有一定编程基础,尤其是对物流调度、路径规划感兴趣的开发者和技术爱好者。 使用场景及目标:适用于物流配送系统的路径优化,旨在提高配送效率,降低成本。具体应用场景包括但不限于外卖配送、快递运输等。目标是帮助读者掌握如何利用Matlab实现高效的路径规划算法,解决实际业务中的复杂约束条件。 其他说明:文中不仅提供了详细的代码实现,还分享了许多实践经验,如参数设置、数据预处理、异常检测等。建议读者在实践中不断尝试不同的算法组合和优化策略,以应对更加复杂的实际问题。

    软考网络工程师2010-2014真题及答案

    软考网络工程师2010-2014真题及答案完整版 全国计算机软考 适合软考中级人群

    基于单片机的酒驾检测设计(51+1602+PCF8591+LED+BZ+KEY3)#0055

    包括:源程序工程文件、Proteus仿真工程文件、论文材料、配套技术手册等 1、采用51/52单片机作为主控芯片; 2、采用1602液晶显示:测量酒精值、酒驾阈值、醉驾阈值; 3、采用PCF8591进行AD模数转换; 4、LED指示:正常绿灯、酒驾黄灯、醉驾红灯; 5、可通过按键修改酒驾醉驾阈值;

Global site tag (gtag.js) - Google Analytics