// A "CollectedHeap" is an implementation of a java heap for HotSpot. This
// is an abstract class: there may be many different kinds of heaps. This
// class defines the functions that a heap must implement, and contains
// infrastructure common to all heaps.
// // CollectedHeap // SharedHeap // GenCollectedHeap // G1CollectedHeap // ParallelScavengeHeap // class CollectedHeap : public CHeapObj { friend class VMStructs; friend class IsGCActiveMark; // Block structured external access to _is_gc_active friend class constantPoolCacheKlass; // allocate() method inserts is_conc_safe #ifdef ASSERT static int _fire_out_of_memory_count; #endif // Used for filler objects (static, but initialized in ctor). static size_t _filler_array_max_size; GCHeapLog* _gc_heap_log; // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2 is being used bool _defer_initial_card_mark; protected: MemRegion _reserved; BarrierSet* _barrier_set; bool _is_gc_active; uint _n_par_threads; unsigned int _total_collections; // ... started unsigned int _total_full_collections; // ... started NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;) NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;) // Reason for current garbage collection. Should be set to // a value reflecting no collection between collections. GCCause::Cause _gc_cause; GCCause::Cause _gc_lastcause; PerfStringVariable* _perf_gc_cause; PerfStringVariable* _perf_gc_lastcause; // Constructor CollectedHeap(); // Do common initializations that must follow instance construction, // for example, those needing virtual calls. // This code could perhaps be moved into initialize() but would // be slightly more awkward because we want the latter to be a // pure virtual. void pre_initialize(); // Create a new tlab. All TLAB allocations must go through this. virtual HeapWord* allocate_new_tlab(size_t size); // Accumulate statistics on all tlabs. virtual void accumulate_statistics_all_tlabs(); // Reinitialize tlabs before resuming mutators. virtual void resize_all_tlabs(); // Allocate from the current thread's TLAB, with broken-out slow path. inline static HeapWord* allocate_from_tlab(Thread* thread, size_t size); static HeapWord* allocate_from_tlab_slow(Thread* thread, size_t size); // Allocate an uninitialized block of the given size, or returns NULL if // this is impossible. inline static HeapWord* common_mem_allocate_noinit(size_t size, TRAPS); // Like allocate_init, but the block returned by a successful allocation // is guaranteed initialized to zeros. inline static HeapWord* common_mem_allocate_init(size_t size, TRAPS); // Same as common_mem version, except memory is allocated in the permanent area // If there is no permanent area, revert to common_mem_allocate_noinit inline static HeapWord* common_permanent_mem_allocate_noinit(size_t size, TRAPS); // Same as common_mem version, except memory is allocated in the permanent area // If there is no permanent area, revert to common_mem_allocate_init inline static HeapWord* common_permanent_mem_allocate_init(size_t size, TRAPS); // Helper functions for (VM) allocation. inline static void post_allocation_setup_common(KlassHandle klass, HeapWord* obj, size_t size); inline static void post_allocation_setup_no_klass_install(KlassHandle klass, HeapWord* objPtr, size_t size); inline static void post_allocation_setup_obj(KlassHandle klass, HeapWord* obj, size_t size); inline static void post_allocation_setup_array(KlassHandle klass, HeapWord* obj, size_t size, int length); // Clears an allocated object. inline static void init_obj(HeapWord* obj, size_t size); // Filler object utilities. static inline size_t filler_array_hdr_size(); static inline size_t filler_array_min_size(); DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);) DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);) // Fill with a single array; caller must ensure filler_array_min_size() <= // words <= filler_array_max_size(). static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true); // Fill with a single object (either an int array or a java.lang.Object). static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true); // Verification functions virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size) PRODUCT_RETURN; virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) PRODUCT_RETURN; debug_only(static void check_for_valid_allocation_state();) public: enum Name { Abstract, SharedHeap, GenCollectedHeap, ParallelScavengeHeap, G1CollectedHeap }; static inline size_t filler_array_max_size() { return _filler_array_max_size; } virtual CollectedHeap::Name kind() const { return CollectedHeap::Abstract; } /** * Returns JNI error code JNI_ENOMEM if memory could not be allocated, * and JNI_OK on success. */ virtual jint initialize() = 0; // In many heaps, there will be a need to perform some initialization activities // after the Universe is fully formed, but before general heap allocation is allowed. // This is the correct place to place such initialization methods. virtual void post_initialize() = 0; MemRegion reserved_region() const { return _reserved; } address base() const { return (address)reserved_region().start(); } // Future cleanup here. The following functions should specify bytes or // heapwords as part of their signature. virtual size_t capacity() const = 0; virtual size_t used() const = 0; // Return "true" if the part of the heap that allocates Java // objects has reached the maximal committed limit that it can // reach, without a garbage collection. virtual bool is_maximal_no_gc() const = 0; virtual size_t permanent_capacity() const = 0; virtual size_t permanent_used() const = 0; // Support for java.lang.Runtime.maxMemory(): return the maximum amount of // memory that the vm could make available for storing 'normal' java objects. // This is based on the reserved address space, but should not include space // that the vm uses internally for bookkeeping or temporary storage (e.g., // perm gen space or, in the case of the young gen, one of the survivor // spaces). virtual size_t max_capacity() const = 0; // Returns "TRUE" if "p" points into the reserved area of the heap. bool is_in_reserved(const void* p) const { return _reserved.contains(p); } bool is_in_reserved_or_null(const void* p) const { return p == NULL || is_in_reserved(p); } // Returns "TRUE" iff "p" points into the committed areas of the heap. // Since this method can be expensive in general, we restrict its // use to assertion checking only. virtual bool is_in(const void* p) const = 0; bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); } // Let's define some terms: a "closed" subset of a heap is one that // // 1) contains all currently-allocated objects, and // // 2) is closed under reference: no object in the closed subset // references one outside the closed subset. // // Membership in a heap's closed subset is useful for assertions. // Clearly, the entire heap is a closed subset, so the default // implementation is to use "is_in_reserved". But this may not be too // liberal to perform useful checking. Also, the "is_in" predicate // defines a closed subset, but may be too expensive, since "is_in" // verifies that its argument points to an object head. The // "closed_subset" method allows a heap to define an intermediate // predicate, allowing more precise checking than "is_in_reserved" at // lower cost than "is_in." // One important case is a heap composed of disjoint contiguous spaces, // such as the Garbage-First collector. Such heaps have a convenient // closed subset consisting of the allocated portions of those // contiguous spaces. // Return "TRUE" iff the given pointer points into the heap's defined // closed subset (which defaults to the entire heap). virtual bool is_in_closed_subset(const void* p) const { return is_in_reserved(p); } bool is_in_closed_subset_or_null(const void* p) const { return p == NULL || is_in_closed_subset(p); } // XXX is_permanent() and is_in_permanent() should be better named // to distinguish one from the other. // Returns "TRUE" if "p" is allocated as "permanent" data. // If the heap does not use "permanent" data, returns the same // value is_in_reserved() would return. // NOTE: this actually returns true if "p" is in reserved space // for the space not that it is actually allocated (i.e. in committed // space). If you need the more conservative answer use is_permanent(). virtual bool is_in_permanent(const void *p) const = 0; #ifdef ASSERT // Returns true if "p" is in the part of the // heap being collected. virtual bool is_in_partial_collection(const void *p) = 0; #endif bool is_in_permanent_or_null(const void *p) const { return p == NULL || is_in_permanent(p); } // Returns "TRUE" if "p" is in the committed area of "permanent" data. // If the heap does not use "permanent" data, returns the same // value is_in() would return. virtual bool is_permanent(const void *p) const = 0; bool is_permanent_or_null(const void *p) const { return p == NULL || is_permanent(p); } // An object is scavengable if its location may move during a scavenge. // (A scavenge is a GC which is not a full GC.) virtual bool is_scavengable(const void *p) = 0; // Returns "TRUE" if "p" is a method oop in the // current heap, with high probability. This predicate // is not stable, in general. bool is_valid_method(oop p) const; void set_gc_cause(GCCause::Cause v) { if (UsePerfData) { _gc_lastcause = _gc_cause; _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause)); _perf_gc_cause->set_value(GCCause::to_string(v)); } _gc_cause = v; } GCCause::Cause gc_cause() { return _gc_cause; } // Number of threads currently working on GC tasks. uint n_par_threads() { return _n_par_threads; } // May be overridden to set additional parallelism. virtual void set_par_threads(uint t) { _n_par_threads = t; }; // Preload classes into the shared portion of the heap, and then dump // that data to a file so that it can be loaded directly by another // VM (then terminate). virtual void preload_and_dump(TRAPS) { ShouldNotReachHere(); } // Allocate and initialize instances of Class static oop Class_obj_allocate(KlassHandle klass, int size, KlassHandle real_klass, TRAPS); // General obj/array allocation facilities. inline static oop obj_allocate(KlassHandle klass, int size, TRAPS); inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS); inline static oop array_allocate_nozero(KlassHandle klass, int size, int length, TRAPS); // Special obj/array allocation facilities. // Some heaps may want to manage "permanent" data uniquely. These default // to the general routines if the heap does not support such handling. inline static oop permanent_obj_allocate(KlassHandle klass, int size, TRAPS); // permanent_obj_allocate_no_klass_install() does not do the installation of // the klass pointer in the newly created object (as permanent_obj_allocate() // above does). This allows for a delay in the installation of the klass // pointer that is needed during the create of klassKlass's. The // method post_allocation_install_obj_klass() is used to install the // klass pointer. inline static oop permanent_obj_allocate_no_klass_install(KlassHandle klass, int size, TRAPS); inline static void post_allocation_install_obj_klass(KlassHandle klass, oop obj, int size); inline static oop permanent_array_allocate(KlassHandle klass, int size, int length, TRAPS); // Raw memory allocation facilities // The obj and array allocate methods are covers for these methods. // The permanent allocation method should default to mem_allocate if // permanent memory isn't supported. mem_allocate() should never be // called to allocate TLABs, only individual objects. virtual HeapWord* mem_allocate(size_t size, bool* gc_overhead_limit_was_exceeded) = 0; virtual HeapWord* permanent_mem_allocate(size_t size) = 0; // Utilities for turning raw memory into filler objects. // // min_fill_size() is the smallest region that can be filled. // fill_with_objects() can fill arbitrary-sized regions of the heap using // multiple objects. fill_with_object() is for regions known to be smaller // than the largest array of integers; it uses a single object to fill the // region and has slightly less overhead. static size_t min_fill_size() { return size_t(align_object_size(oopDesc::header_size())); } static void fill_with_objects(HeapWord* start, size_t words, bool zap = true); static void fill_with_object(HeapWord* start, size_t words, bool zap = true); static void fill_with_object(MemRegion region, bool zap = true) { fill_with_object(region.start(), region.word_size(), zap); } static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) { fill_with_object(start, pointer_delta(end, start), zap); } // Some heaps may offer a contiguous region for shared non-blocking // allocation, via inlined code (by exporting the address of the top and // end fields defining the extent of the contiguous allocation region.) // This function returns "true" iff the heap supports this kind of // allocation. (Default is "no".) virtual bool supports_inline_contig_alloc() const { return false; } // These functions return the addresses of the fields that define the // boundaries of the contiguous allocation area. (These fields should be // physically near to one another.) virtual HeapWord** top_addr() const { guarantee(false, "inline contiguous allocation not supported"); return NULL; } virtual HeapWord** end_addr() const { guarantee(false, "inline contiguous allocation not supported"); return NULL; } // Some heaps may be in an unparseable state at certain times between // collections. This may be necessary for efficient implementation of // certain allocation-related activities. Calling this function before // attempting to parse a heap ensures that the heap is in a parsable // state (provided other concurrent activity does not introduce // unparsability). It is normally expected, therefore, that this // method is invoked with the world stopped. // NOTE: if you override this method, make sure you call // super::ensure_parsability so that the non-generational // part of the work gets done. See implementation of // CollectedHeap::ensure_parsability and, for instance, // that of GenCollectedHeap::ensure_parsability(). // The argument "retire_tlabs" controls whether existing TLABs // are merely filled or also retired, thus preventing further // allocation from them and necessitating allocation of new TLABs. virtual void ensure_parsability(bool retire_tlabs); // Return an estimate of the maximum allocation that could be performed // without triggering any collection or expansion activity. In a // generational collector, for example, this is probably the largest // allocation that could be supported (without expansion) in the youngest // generation. It is "unsafe" because no locks are taken; the result // should be treated as an approximation, not a guarantee, for use in // heuristic resizing decisions. virtual size_t unsafe_max_alloc() = 0; // Section on thread-local allocation buffers (TLABs) // If the heap supports thread-local allocation buffers, it should override // the following methods: // Returns "true" iff the heap supports thread-local allocation buffers. // The default is "no". virtual bool supports_tlab_allocation() const { return false; } // The amount of space available for thread-local allocation buffers. virtual size_t tlab_capacity(Thread *thr) const { guarantee(false, "thread-local allocation buffers not supported"); return 0; } // An estimate of the maximum allocation that could be performed // for thread-local allocation buffers without triggering any // collection or expansion activity. virtual size_t unsafe_max_tlab_alloc(Thread *thr) const { guarantee(false, "thread-local allocation buffers not supported"); return 0; } // Can a compiler initialize a new object without store barriers? // This permission only extends from the creation of a new object // via a TLAB up to the first subsequent safepoint. If such permission // is granted for this heap type, the compiler promises to call // defer_store_barrier() below on any slow path allocation of // a new object for which such initializing store barriers will // have been elided. virtual bool can_elide_tlab_store_barriers() const = 0; // If a compiler is eliding store barriers for TLAB-allocated objects, // there is probably a corresponding slow path which can produce // an object allocated anywhere. The compiler's runtime support // promises to call this function on such a slow-path-allocated // object before performing initializations that have elided // store barriers. Returns new_obj, or maybe a safer copy thereof. virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj); // Answers whether an initializing store to a new object currently // allocated at the given address doesn't need a store // barrier. Returns "true" if it doesn't need an initializing // store barrier; answers "false" if it does. virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0; // If a compiler is eliding store barriers for TLAB-allocated objects, // we will be informed of a slow-path allocation by a call // to new_store_pre_barrier() above. Such a call precedes the // initialization of the object itself, and no post-store-barriers will // be issued. Some heap types require that the barrier strictly follows // the initializing stores. (This is currently implemented by deferring the // barrier until the next slow-path allocation or gc-related safepoint.) // This interface answers whether a particular heap type needs the card // mark to be thus strictly sequenced after the stores. virtual bool card_mark_must_follow_store() const = 0; // If the CollectedHeap was asked to defer a store barrier above, // this informs it to flush such a deferred store barrier to the // remembered set. virtual void flush_deferred_store_barrier(JavaThread* thread); // Can a compiler elide a store barrier when it writes // a permanent oop into the heap? Applies when the compiler // is storing x to the heap, where x->is_perm() is true. virtual bool can_elide_permanent_oop_store_barriers() const = 0; // Does this heap support heap inspection (+PrintClassHistogram?) virtual bool supports_heap_inspection() const = 0; // Perform a collection of the heap; intended for use in implementing // "System.gc". This probably implies as full a collection as the // "CollectedHeap" supports. virtual void collect(GCCause::Cause cause) = 0; // This interface assumes that it's being called by the // vm thread. It collects the heap assuming that the // heap lock is already held and that we are executing in // the context of the vm thread. virtual void collect_as_vm_thread(GCCause::Cause cause) = 0; // Returns the barrier set for this heap BarrierSet* barrier_set() { return _barrier_set; } // Returns "true" iff there is a stop-world GC in progress. (I assume // that it should answer "false" for the concurrent part of a concurrent // collector -- dld). bool is_gc_active() const { return _is_gc_active; } // Total number of GC collections (started) unsigned int total_collections() const { return _total_collections; } unsigned int total_full_collections() const { return _total_full_collections;} // Increment total number of GC collections (started) // Should be protected but used by PSMarkSweep - cleanup for 1.4.2 void increment_total_collections(bool full = false) { _total_collections++; if (full) { increment_total_full_collections(); } } void increment_total_full_collections() { _total_full_collections++; } // Return the AdaptiveSizePolicy for the heap. virtual AdaptiveSizePolicy* size_policy() = 0; // Return the CollectorPolicy for the heap virtual CollectorPolicy* collector_policy() const = 0; // Iterate over all the ref-containing fields of all objects, calling // "cl.do_oop" on each. This includes objects in permanent memory. virtual void oop_iterate(OopClosure* cl) = 0; // Iterate over all objects, calling "cl.do_object" on each. // This includes objects in permanent memory. virtual void object_iterate(ObjectClosure* cl) = 0; // Similar to object_iterate() except iterates only // over live objects. virtual void safe_object_iterate(ObjectClosure* cl) = 0; // Behaves the same as oop_iterate, except only traverses // interior pointers contained in permanent memory. If there // is no permanent memory, does nothing. virtual void permanent_oop_iterate(OopClosure* cl) = 0; // Behaves the same as object_iterate, except only traverses // object contained in permanent memory. If there is no // permanent memory, does nothing. virtual void permanent_object_iterate(ObjectClosure* cl) = 0; // NOTE! There is no requirement that a collector implement these // functions. // // A CollectedHeap is divided into a dense sequence of "blocks"; that is, // each address in the (reserved) heap is a member of exactly // one block. The defining characteristic of a block is that it is // possible to find its size, and thus to progress forward to the next // block. (Blocks may be of different sizes.) Thus, blocks may // represent Java objects, or they might be free blocks in a // free-list-based heap (or subheap), as long as the two kinds are // distinguishable and the size of each is determinable. // Returns the address of the start of the "block" that contains the // address "addr". We say "blocks" instead of "object" since some heaps // may not pack objects densely; a chunk may either be an object or a // non-object. virtual HeapWord* block_start(const void* addr) const = 0; // Requires "addr" to be the start of a chunk, and returns its size. // "addr + size" is required to be the start of a new chunk, or the end // of the active area of the heap. virtual size_t block_size(const HeapWord* addr) const = 0; // Requires "addr" to be the start of a block, and returns "TRUE" iff // the block is an object. virtual bool block_is_obj(const HeapWord* addr) const = 0; // Returns the longest time (in ms) that has elapsed since the last // time that any part of the heap was examined by a garbage collection. virtual jlong millis_since_last_gc() = 0; // Perform any cleanup actions necessary before allowing a verification. virtual void prepare_for_verify() = 0; // Generate any dumps preceding or following a full gc void pre_full_gc_dump(); void post_full_gc_dump(); // Print heap information on the given outputStream. virtual void print_on(outputStream* st) const = 0; // The default behavior is to call print_on() on tty. virtual void print() const { print_on(tty); } // Print more detailed heap information on the given // outputStream. The default behaviour is to call print_on(). It is // up to each subclass to override it and add any additional output // it needs. virtual void print_extended_on(outputStream* st) const { print_on(st); } // Print all GC threads (other than the VM thread) // used by this heap. virtual void print_gc_threads_on(outputStream* st) const = 0; // The default behavior is to call print_gc_threads_on() on tty. void print_gc_threads() { print_gc_threads_on(tty); } // Iterator for all GC threads (other than VM thread) virtual void gc_threads_do(ThreadClosure* tc) const = 0; // Print any relevant tracing info that flags imply. // Default implementation does nothing. virtual void print_tracing_info() const = 0; // If PrintHeapAtGC is set call the appropriate routi void print_heap_before_gc() { if (PrintHeapAtGC) { Universe::print_heap_before_gc(); } if (_gc_heap_log != NULL) { _gc_heap_log->log_heap_before(); } } void print_heap_after_gc() { if (PrintHeapAtGC) { Universe::print_heap_after_gc(); } if (_gc_heap_log != NULL) { _gc_heap_log->log_heap_after(); } } // Allocate GCHeapLog during VM startup static void initialize_heap_log(); // Heap verification virtual void verify(bool allow_dirty, bool silent, VerifyOption option) = 0; // Non product verification and debugging. #ifndef PRODUCT // Support for PromotionFailureALot. Return true if it's time to cause a // promotion failure. The no-argument version uses // this->_promotion_failure_alot_count as the counter. inline bool promotion_should_fail(volatile size_t* count); inline bool promotion_should_fail(); // Reset the PromotionFailureALot counters. Should be called at the end of a // GC in which promotion failure ocurred. inline void reset_promotion_should_fail(volatile size_t* count); inline void reset_promotion_should_fail(); #endif // #ifndef PRODUCT #ifdef ASSERT static int fired_fake_oom() { return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt); } #endif public: // This is a convenience method that is used in cases where // the actual number of GC worker threads is not pertinent but // only whether there more than 0. Use of this method helps // reduce the occurrence of ParallelGCThreads to uses where the // actual number may be germane. static bool use_parallel_gc_threads() { return ParallelGCThreads > 0; } /////////////// Unit tests /////////////// NOT_PRODUCT(static void test_is_in();) };
1、https://en.wikipedia.org/wiki/Memory_management#HEAP
相关推荐
- 查阅JVM源代码中的`CollectedHeap`类,找到了相关解释:“`Runtime.getRuntime().maxMemory()`方法返回JVM可用于存储‘正常’Java对象的最大内存量,该值基于保留的地址空间,但不包括JVM内部用于维护或临时存储的...
例如,`src/hotspot/share/runtime`目录下的`G1GarbageCollector.cpp`和`G1CollectedHeap.cpp`文件涉及到了G1垃圾收集器的实现,它是Java 8中默认的垃圾收集器,提供了更高效的内存管理。 总的来说,通过研究...
该项目包含完整的前后端代码、数据库脚本和相关工具,简单部署即可运行。功能完善、界面美观、操作简单,具有很高的实际应用价值,非常适合作为Java毕业设计或Java课程设计使用。 所有项目均经过严格调试,确保可运行!下载后即可快速部署和使用。 1 适用场景: 毕业设计 期末大作业 课程设计 2 项目特点: 代码完整:详细代码注释,适合新手学习和使用 功能强大:涵盖常见的核心功能,满足大部分课程设计需求 部署简单:有基础的人,只需按照教程操作,轻松完成本地或服务器部署 高质量代码:经过严格测试,确保无错误,稳定运行 3 技术栈和工具 前端:HTML + Vue.js 后端框架:Spring Boot 开发环境:IntelliJ IDEA 数据库:MySQL(建议使用 5.7 版本,更稳定) 数据库可视化工具:Navicat 部署环境:Tomcat(推荐 7.x 或 8.x 版本),Maven
输入格式为:A B # # C # #,使用根左右的输入方式,所有没有孩子节点的地方都用#代表空
如何通过智能卡读写器SDK接入鸿蒙操作系统?通过智能卡读写器提供的SDK范例可以将智能卡读写器接入在运行鸿蒙操作系统的智能终端设备上。
Matlab领域上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
QT 下拉菜单设置参数 起始端口和结束端口
该项目包含完整的前后端代码、数据库脚本和相关工具,简单部署即可运行。功能完善、界面美观、操作简单,具有很高的实际应用价值,非常适合作为Java毕业设计或Java课程设计使用。 所有项目均经过严格调试,确保可运行!下载后即可快速部署和使用。 1 适用场景: 毕业设计 期末大作业 课程设计 2 项目特点: 代码完整:详细代码注释,适合新手学习和使用 功能强大:涵盖常见的核心功能,满足大部分课程设计需求 部署简单:有基础的人,只需按照教程操作,轻松完成本地或服务器部署 高质量代码:经过严格测试,确保无错误,稳定运行 3 技术栈和工具 前端:HTML + Vue.js 后端框架:Spring Boot 开发环境:IntelliJ IDEA 数据库:MySQL(建议使用 5.7 版本,更稳定) 数据库可视化工具:Navicat 部署环境:Tomcat(推荐 7.x 或 8.x 版本),Maven
随着信息技术在管理上越来越深入而广泛的应用,管理信息系统的实施在技术上已逐步成熟。管理信息系统是一个不断发展的新型学科,任何一个单位要生存要发展,要高效率地把内部活动有机地组织起来,就必须建立与自身特点相适应的管理信息系统。 本文采用JSP和MS SQL-Server等软件为开发工具,以Windows XP(或Windows 2000)为开发平台,设计出一个学籍管理信息系统,对学生的信息、课程、成绩进行统一管理,便于查询、修改和删除。涉及到的主要内容有:体系结构规划、设计平台的搭建以及系统的设计。主要实现的功能模块有管理系统的功能介绍子系统、新生入学子系统、学生成绩管理子系统、在校学生管理子系统、离校学生管理子系统、各种信息查询子系统以及系统维护子系统。 该系统功能完善,可使高校的学籍管理系统从纯手工中解脱出来,实现高校学籍管理系统自动化、规范化、合理化、科学化,其实用性强,用户界面友好,有助于加快高校的信息传递和智能建设,并为高校整体实现信息化管理体系作好铺垫。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
该项目为PublicCMS官网2019版的响应式静态化设计源码,采用HTML、JavaScript和CSS技术,包含208个文件,涵盖63个HTML文件、50个JavaScript文件、25个JSON文件、25个PNG图片文件等多种类型,适用于全站静态化模板,支持响应式布局。
Matlab领域上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
win32汇编环境,怎么进行加法运算的
内容概要:本文对深度学习领域的注意力机制进行了全面介绍,旨在阐述该技术如何优化长序列处理中的信息筛选。首先,解释了引入注意力机制的原因,指出传统模型在处理长序列任务中存在的不足。然后,分类介绍了软注意力、硬注意力及自注意力三类机制的特点,重点探讨了基于Transformers架构的自注意力机制的作用和意义。接着,描述了注意力机制的具体操作流程:包括打分、加权以及输出组合等阶段。最后,给出了一段使用Python和NumPy构建简单自注意力模型的代码实例。 适用人群:希望深入了解自然语言处理或者机器翻译系统背后原理的研究者和技术开发者。 使用场景及目标:适用于需要解决文本或者其他线性序列中远距离元素间关系的学习项目,例如语音识别、语义搜索推荐等。 其他说明:提供的Python代码可以帮助初学者直观地理解整个过程的工作方式,尽管它只是实现了最基础的功能。
1、资源内容地址:https://blog.csdn.net/2301_79696294/article/details/144633303 2、数据特点:今年全新,手工精心整理,放心引用,数据来自权威,且标注《数据来源》,相对于其他人的控制变量数据准确很多,适合写论文做实证用 ,不会出现数据造假问题 3、适用对象:大学生,本科生,研究生小白可用,容易上手!!! 4、课程引用: 经济学,地理学,城市规划与城市研究,公共政策与管理,社会学,商业与管理
【模型+参考文献】事件触发模型 基于倒立摆matlab仿真 模型为状态空间形式 事件触发机制可自行调节参数
h3cvsr1k-7.1.064-R1340P19 可用于EVE-NG,Pnetlab等模拟器
内容概要:本文档详尽介绍了SC2210这款高性能CMOS图像传感器的技术细节及其应用场景。内容涵盖了SC2210的核心技术参数,如高分辨率(1920H x 1080V)、多种输出接口(MIPI、DVP、LVDS)、宽动态模式、高光敏感度、多传感器同步等功能。同时文档还涉及了初始化步骤、配置接口(I2C总线配置)、寄存器映射等重要信息,旨在帮助工程师深入了解传感器的工作机制和实际操作方法。 适合人群:适用于从事嵌入式视觉系统的硬件工程师和软件开发者。 使用场景及目标:本手册主要用于帮助开发人员设计基于SC2210传感器的产品,如安防监控、网络摄像头、移动设备相机等领域。通过对手册的学习能够理解和配置该传感器的各项功能以满足具体项目的需求。 其他说明:手册详细描述了SC2210的操作流程,包括上电时序、初始化设置、帧率调节等。它还讨论了不同应用场景下的性能优化技巧,如HDR合成、AEC/AGC自动控制等,使得开发者可以根据实际情况灵活运用这些功能。
C语言程序设计(第5版)习题解答-第4章 原创代码
MTPA数值求解两种方法
花生缺陷识别,可识别坏的,有虫子,霉变,萎缩,好的,7245张图片,支持pasical voc xml格式的标注,准确识别率在94.3%以上 花生缺陷识别,可识别坏的,有虫子,霉变,萎缩,好的,7245张图片,支持yolo,pasical voc xml,coco json格式的标注,准确识别率在94.3%以上 详情查看 https://backend.blog.csdn.net/article/details/144984596