byte buffer一般在网络交互过程中java使用得比较多,尤其是以NIO的框架中;
看名字就知道是以字节码作为缓冲的,先buffer一段,然后flush到终端。
而本文要说的一个重点就是HeapByteBuffer与DirectByteBuffer,以及如何合理使用DirectByteBuffer。
1、HeapByteBuffer与DirectByteBuffer,在原理上,前者可以看出分配的buffer是在heap区域的,其实真正flush到远程的时候会先拷贝得到直接内存,再做下一步操作(考虑细节还会到OS级别的内核区直接内存),其实发送静态文件最快速的方法是通过OS级别的send_file,只会经过OS一个内核拷贝,而不会来回拷贝;在NIO的框架下,很多框架会采用DirectByteBuffer来操作,这样分配的内存不再是在java heap上,而是在C heap上,经过性能测试,可以得到非常快速的网络交互,在大量的网络交互下,一般速度会比HeapByteBuffer要快速好几倍。
最基本的情况下
分配HeapByteBuffer的方法是:
- ByteBuffer.allocate(int capacity);参数大小为字节的数量
分配DirectByteBuffer的方法是:
- ByteBuffer.allocateDirect(int capacity);//可以看到分配内存是通过unsafe.allocateMemory()来实现的,这个unsafe默认情况下java代码是没有能力可以调用到的,不过你可以通过反射的手段得到实例进而做操作,当然你需要保证的是程序的稳定性,既然叫unsafe的,就是告诉你这不是安全的,其实并不是不安全,而是交给程序员来操作,它可能会因为程序员的能力而导致不安全,而并非它本身不安全。
由于HeapByteBuffer和DirectByteBuffer类都是default类型的,所以你无法字节访问到,你只能通过ByteBuffer间接访问到它,因为JVM不想让你访问到它,对了,JVM不想让你访问到它肯定就有它不可告人的秘密;后面我们来跟踪下他的秘密吧。
2、前面说到了,这块区域不是在java heap上,那么这块内存的大小是多少呢?默认是一般是64M,可以通过参数:-XX:MaxDirectMemorySize来控制,你够牛的话,还可以用代码控制,呵呵,这里就不多说了。
3、直接内存好,我们为啥不都用直接内存?请注意,这个直接内存的释放并不是由你控制的,而是由full gc来控制的,直接内存会自己检测情况而调用system.gc(),但是如果参数中使用了DisableExplicitGC 那么这是个坑了,所以啊,这玩意,设置不设置都是一个坑坑,所以java的优化有没有绝对的,只有针对实际情况的,针对实际情况需要对系统做一些拆分做不同的优化。
4、那么full gc不触发,我想自己释放这部分内存有方法吗?可以的,在这里没有什么是不可以的,呵呵!私有属性我们都任意玩他,还有什么不可以玩的;我们看看它的源码中DirectByteBuffer发现有一个:Cleaner,貌似是用来搞资源回收的,经过查证,的确是,而且又看到这个对象是sun.misc开头的了,此时既惊喜又郁闷,呵呵,只要我能拿到它,我就能有希望消灭掉了;下面第五步我们来做个试验。
5、因为我们的代码全是私有的,所以我要访问它不能直接访问,我需要通过反射来实现,OK,我知道要调用cleaner()方法来获取它Cleaner对象,进而通过该对象,执行clean方法;(付:以下代码大部分也取自网络上的一篇copy无数次的代码,但是那个代码是有问题的,有问题的部分,我将用红色标识出来,如果没有哪条代码是无法运行的)
- import java.nio.ByteBuffer;
- import sun.nio.ch.DirectBuffer;
- public class DirectByteBufferCleaner {
- public static void clean(final ByteBuffer byteBuffer) {
- if (byteBuffer.isDirect()) {
- ((DirectBuffer)byteBuffer).cleaner().clean();
- }
- }
- }
上述类你可以在任何位置建立都可以,这里多谢一楼的回复,以前我的写法是见到DirectByteBuffer类是Default类型的,因此这个类无法直接引用到,是通过反射去找到cleaner的实例,进而调用内部的clean方法,那样做麻烦了,其实并不需要那么麻烦,因为DirectByteBuffer implements了DirectBuffer,而DirectBuffer本身是public的,所以通过接口去调用内部的Clear对象来做clean方法。
我们下面来做测试来证明这个程序是有效地回收的:
在任意一个地方写一段main方法来调用,我这里就直接写在这个类里面了:
- public static void sleep(long i) {
- try {
- Thread.sleep(i);
- }catch(Exception e) {
- /*skip*/
- }
- }
- public static void main(String []args) throws Exception {
- ByteBuffer buffer = ByteBuffer.allocateDirect(1024 * 1024 * 100);
- System.out.println("start");
- sleep(10000);
- clean(buffer);
- System.out.println("end");
- sleep(10000);
- }
这里分配了100M内存,为了将结果看清楚,在执行前,执行后分别看看延迟10s,当然你可以根据你的要求自己改改。请提前将OS的资源管理器打开,看看当前使用的内存是多少,如果你是linux当然是看看free或者用top等命令来看;本地程序我是用windows完成,在运行前机器的内存如下图所示:
开始运行在输入start后,但是未输出end前,内存直接上升将近100m。
在输入end后发现内存立即降低到2.47m,说明回收是有效的。
此时可以观察JVM堆的内存,不会有太多的变化,注意:JVM本身启动后也有一些内存开销,所以不要将那个开销和这个绑定在一起;这里之所以一次性申请100m也是为了看清楚过程,其余的可以做实验玩玩了。
相关推荐
与HeapByteBuffer不同,DirectByteBuffer的读写速度通常更快,因为它避免了Java对象之间的复制。 4. **性能优化**:在处理大量数据或高并发的网络传输时,使用DirectByteBuffer可以减少不必要的内存拷贝和提高效率...
### NIO Trick and Trap:构建高性能Java NIO网络框架 #### 概述 NIO(New I/O),作为Java平台的一项重要技术革新,为开发者提供了更高效的数据处理方式。相较于传统的IO模型,NIO通过非阻塞式I/O操作、多路复用...
- **类型**:主要分为两种类型:`DirectByteBuffer` 和 `HeapByteBuffer`。 - **HeapByteBuffer**:在JVM堆上分配空间,使用简单但效率较低。 - **DirectByteBuffer**:直接在本机内存中分配空间,避免了JVM堆和...
【项目资源】: 物联网项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。
【项目资源】: 适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。
# 基于Python的KMeans和EM算法结合图像分割项目 ## 项目简介 本项目结合KMeans聚类和EM(期望最大化)算法,实现对马赛克图像的精准分割。通过Gabor滤波器提取图像的多维特征,并利用KMeans进行初步聚类,随后使用EM算法优化聚类结果,最终生成高质量的分割图像。 ## 项目的主要特性和功能 1. 图像导入和预处理: 支持导入马赛克图像,并进行灰度化、滤波等预处理操作。 2. 特征提取: 使用Gabor滤波器提取图像的多维特征向量。 3. 聚类分析: 使用KMeans算法对图像进行初步聚类。 利用KMeans的聚类中心初始化EM算法,进一步优化聚类结果。 4. 图像生成和比较: 生成分割后的图像,并与原始图像进行比较,评估分割效果。 5. 数值比较: 通过计算特征向量之间的余弦相似度,量化分割效果的提升。 ## 安装使用步骤 ### 假设用户已经下载了项目的源码文件 1. 环境准备:
HCIP第一次作业:静态路由综合实验
【项目资源】: 单片机项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。
内容概要:本文详细介绍了Johnson-SU分布的参数计算与优化过程,涵盖位置参数γ、形状参数δ、尺度参数ξ和伸缩参数λ的计算方法,并实现了相应的Python代码。文中首先导入必要的库并设置随机种子以确保结果的可复现性。接着,分别定义了四个参数的计算函数,其中位置参数γ通过加权平均值计算,形状参数δ基于局部均值和标准差的比值,尺度参数ξ结合峰度和绝对偏差,伸缩参数λ依据偏态系数。此外,还实现了Johnson-SU分布的概率密度函数(PDF),并使用负对数似然函数作为目标函数,采用L-BFGS-B算法进行参数优化。最后,通过弹性网络的贝叶斯优化展示了另一种参数优化方法。; 适合人群:具有Python编程基础,对统计学和机器学习有一定了解的研究人员或工程师。; 使用场景及目标:①需要对复杂数据分布进行建模和拟合的场景;②希望通过优化算法提升模型性能的研究项目;③学习如何实现和应用先进的统计分布及优化技术。; 阅读建议:由于涉及较多数学公式和编程实现,建议读者在阅读时结合相关数学知识,同时动手实践代码,以便更好地理解和掌握Johnson-SU分布及其优化方法。
TSP问题的3种智能优化方法求解(研究生课程《智能优化算法》结课大作业).zip
【项目资源】: 物联网项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。
【项目资源】: 单片机项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。
自动发布Java项目(Tomcat)Shell脚本
# 基于webpack和Vue的前端项目构建方案 ## 项目简介 本项目是基于webpack和Vue构建的前端项目方案,借助webpack强大的打包能力以及Vue的开发特性,可用于快速搭建现代化的前端应用。项目不仅完成了基本的webpack与Vue的集成配置,还在构建速度优化和代码规范性方面做了诸多配置。 ## 项目的主要特性和功能 1. 打包功能运用webpack进行模块打包,支持将scss转换为css,借助babel实现语法转换。 2. Vue开发支持集成Vue框架,能使用Vue单文件组件的开发模式。 3. 构建优化采用threadloader实现多进程打包,cacheloader缓存资源,极大提高构建速度开启热更新功能,开发更高效。 4. 错误处理与优化提供不同环境下的错误映射配置,便于定位错误利用webpackbundleanalyzer分析打包体积。
Hands-On Large Language Models - Jay Alammar 袋鼠书 《动手学大语言模型》PDF
资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。
# 基于Arduino Feather M0和Raspberry Pi的传感器数据采集与监控系统 ## 项目简介 本项目是一个基于Arduino Feather M0和Raspberry Pi的传感器数据采集与监控系统。系统通过Arduino Feather M0采集传感器数据,并通过WiFi将数据传输到Raspberry Pi。Raspberry Pi运行BalenaOS,集成了MySQL、PHP、NGINX、Apache和Grafana等工具,用于数据的存储、处理和可视化。项目适用于环境监测、物联网设备监控等场景。 ## 项目的主要特性和功能 1. 传感器数据采集使用Arduino Feather M0和AM2315传感器采集温度和湿度数据。 2. WiFi数据传输Arduino Feather M0通过WiFi将采集到的数据传输到Raspberry Pi。
资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。
【项目资源】: 适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。
【项目资源】: 物联网项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。