- 浏览: 126310 次
- 性别:
- 来自: 上海
文章分类
- 全部博客 (111)
- 资料总结参阅 (2)
- To Study List (2)
- notepaper (2)
- linux学习 (32)
- linux学习-included (3)
- 开源框架-Hibernate (2)
- 开源框架-Ibatis (1)
- JEE整理 (25)
- JEE Server参考 (5)
- 开源框架-Spring (1)
- 硬件知识 (5)
- 开发环境搭建及管理 (7)
- linux软件工具 (2)
- 数据库 (8)
- 各类文档参考 (1)
- 开源框架-Netty (1)
- 性能调优 (1)
- DP相关 (1)
- 软件知识 (3)
- 脚本语言-python (2)
- 脚本语言-perl (1)
- 分布式 (2)
最新评论
-
zhuxinhua:
谢谢,,这东西真不容易找啊。。
JBoss配置---收集中...
refer: http://www.zxdata.com/raid.html
如何保证服务器上数据的安全呢?用多个硬盘建立RAID恐怕是最普遍的手段了,它可以保障我们的数据安全。今天就由笔者通过一问一答的方式为各位天极网的读者介绍RAID相关的知识。
问题1:什么是RAID?它是由什么组成的?
RAID的中文名字为磁盘冗余阵列,顾名思义他是由磁盘组成阵列而成的。因此RAID需要至少两块硬盘组成。RAID的基本想法就是把多个便宜的小磁盘组合到一起,成为一个磁盘组, 使性能达到或超过一个容量巨大、价格昂贵的磁盘。
早期的RAID诞生初衷并不是为了数据的安全,而是为了提高硬盘的读写速度。RAID 0和RAID 1就是为了这个目的而定义的。
问题2:什么情况需要使用RAID?
根据不同的实际情况作为网络管理员的我们应该为服务器采取不同的RAID种类。目前最流行的是RAID 0,RAID 1,RAID 5。其中RAID1和RAID 5过多的用于保证数据的安全,最大程度的防止磁盘意外坏掉而丢失数据情况的发生。而RAID 0则是为了提高磁盘读取的速度,他不提供任何数据备份和保障功能。知道了不同RAID应用的情况我们根据实际情况进行选择即可。
当然那些需要在硬盘上保存大量数据的人采用 RAID 技术将会很方便。主要表现在以下几个方面——
(1)增强了速度 ,服务器可以在同一时间从多个硬盘上读取数据。
(2)扩容了存储能力,多个硬盘组成更大的空间提供给服务器使用。
(3)可高效恢复磁盘,RAID提供了相当高的数据冗余功能,我们可以保证数据的完整无缺。
问题3: RAID都有哪些种类呢?希望可以使用直观容易懂的语言来描述。
对于RAID种类恐怕很多文章都介绍过,这里我就不详细说明理论东西了。恰巧笔者看到了一个外国描述RAID各个级别的图片,感觉很多地方定义得非常准确,而且通过看图了解RAID效果会更加显著。(如图1)
(1)先为大家讲解第一个小图,也就是标记着standalone的饮水机,该图主要是通过矿泉水桶为饮水机提供水源这个现实例子来比喻 RAID各个种类的区别。两个饮水机的出水孔相当于读取数据的接口,而矿泉水桶里的水则是宝贵的数据。这些数据正是通过出水孔这个数据接口而被用户读取 的,相应的一个矿泉水对应着一块硬盘。
正常情况下我们的计算机(例如家的里计算机而不是服务器)是只有一个硬盘的,这时我们要喝水(读取硬盘数据)都是由这一个矿泉水桶提供水源的。(如图2)
(2)接下来看第二个小图,也就是标记着cluster的图。(如图3)所谓cluster就是集群的意思,集群就是用多台服务器合并为一台, 所有服务器提供的服务和数据都是一样的。就像图中显示的有两台饮水机,说明有两台服务器,这两台服务器都可以提供用户数据(水源)。
????? 用户可以到左边的饮水机来取得数据,也可以到右边的饮水机来获得数据,这样无形中就提供了用户获得水(数据)的效率。但是这种cluster集群有一个缺点,那就是需要多台服务器的硬件支持,在一定程度上造成了浪费。一般来说中小企业是不可能让多台服务器提供同样数据和同样服务的。
(3)第三个小图标记着Hot swap,(如图4)他是热交换的意思。概念上有点类似于热备份。即一台饮水机(服务器),和第一个图一样他有一个硬盘,出水量也和standalone 一样。但是当饮水机上的矿泉水桶出现问题时,例如水没了或者桶破了,这时马上采取热交换技术,将旁边的矿泉水桶替代出问题的桶放到饮水机上,从而继续提供 服务。但是这种方法也存在一个缺点,那就是需要一个桶做备份,而且仅仅在原来桶出问题的情况下该桶才派上用场。另外换桶过程是需要时间的,无形中影响了服 务的提供。
(4)第四个图就是RAID中的老大了,这里说他是老大因为他是最早的RAID。Level 0即RAID 0级,通常称为带区,是利用带区数据映射技巧的特定性能。也就是说,当数据写入磁盘组的时候,被分成带区,交错写入磁盘组的磁盘中。这带来了高I/O性 能,低开销,但不提供任何冗余。磁盘组的存储量等于总的各磁盘容量之和。 (如图5)
当饮水机上的两个桶中任何一个出问题时用户都不能通过出水孔获得宝贵的数据(水源),因此他不提供冗余功能。当然在获得水源的过程中用户是通过两个矿泉水桶同时获得的,自然在出水量等多方面比只使用一个桶有优势。提高了数据读写的速度是RAID 0的最大特色。
可能有的读者会问在RAID 0图中最上面的那个桶出了问题不是一样可以出水吗?其实这个图仅仅是方便大家记忆和理解RAID,不可能通过简单的图就能100%准确的反映出只有进行理论描述才能说清楚的RAID种类。因此大家在理解图片的过程中也不要太过于拘泥。
(5)第五个图也是RAID中比较常用的,Level 1即RAID 1级,他就是常常提到的镜像RAID,(如图6)相比其他各级别RAID来说,这个级别使用的时间较长。RAID 1通过把同样的数据写到磁盘组的每一个磁盘上,将"镜像"复制到每个磁盘上,来提供数据冗余。镜像由于它的简单实现和数据的高可信度而一直很受欢迎。
????? 1级在读数据操作时,并行处理2个或更多的磁盘,因此数据传输速率高, 但是其他的操作时无法提供高速的I/O传输速率。1级提供了非常好的数据的高可信度,并且改善了读数据操作的性能,但是耗费很大。要求组成磁盘组的各磁盘 规格相同,而组成后磁盘组的容量仅仅等于一块磁盘的容量。
正如图中显示的一样,有两个矿泉水桶放在饮水机上,这样当其中一个出了问题,例如破坏或没水时并不会影响用户使用矿泉水,因为另一个桶将会完好 的提供水源。当然由于出水口没有出现任何扩大,所以出水量和使用一个矿泉水桶是一样的。因此出水速度没有变化却多加了一个桶使得RAID 1虽然可以提供最大程度的冗余,但是无法提高读取速度。
小提示:
有一个细节需要各位的读者特别注意,在RAID 1的图片中是两个矿泉水桶共用一个供水口,自然出水量没有什么变化。而下面的RAID 5则不同。稍后会详细讲解。
(6)第六个图是服务器最常用的RAID级别,即RAID 5。(如图7)笔者所在公司购买的服务器不管是DELL的还是IBM或者曙光服务器都是使用这个最常用的RAID类型。该级别的RAID是通过把奇偶校验分布到磁盘组中的一些或所有磁盘上,5级常使用缓冲技术来降低性能的不对称性。如果组成磁盘组的各磁盘规格相同,磁盘组容量等于磁盘的总容量,减去一块磁盘的容量。
上面提到了RAID 1只是使用了一个供水口,没有提高出水速度。然而在RAID 5中我们会发现图7中三个矿泉水桶分别安装在了三个进水口中,这样我们就可以同时由三个水桶为用户提供水源了,自然在出水速度上得到了大幅度提高。同样三 个矿泉水桶有一个出现问题也没有关系,不会影响到饮用水源。
有两点是图中没有表现出来的,这里再说明下方便读者有一个清晰的认识。(1)图7中只显示了三个水桶,实际上在现实工作中只要我们有三个以上的 硬盘(水桶)就都可以配置RAID5了。四个,五个甚至更多的硬盘来配置RAID 5也是没有问题的。(2)在我们配置RAID 5后如果出现两个以上硬盘出现问题时,数据是不能得到有效的保护的。也就是说RAID 5只能在其中一块硬盘出问题时保证数据完好。
(7)最后一个图实际上是前面介绍的RAID 0和RAID 1的组合,只要大家对RAID 0和RAID 1有了清晰的认识,这个图理解起来就简单得多了,他实际上就是先配置为RAID 0然后在配置RAID 1,相应的发挥了RAID 0和1的所有优点,避免了他们的所有缺点。鉴于篇幅关系这里就不详细介绍了,毕竟RAID 0+1在实际工作中使用的机会没有前面介绍的RAID 5多。
总结:
对于服务器不是很熟悉的读者来说,掌握RAID的概念是最最基本的。他是我们进入服务器知识领域的敲门砖,希望本篇文章中的饮水机图可以帮助大 家理解各种RAID和数据冗余类别。最后再重申一下图片仅仅是为了方便大家理解和记忆,对于RAID这样理论的东西很多细节和特点是无法通过简单的图片所 表现出来的,图片描述有不完整的地方还请各位多多包涵,毕竟本篇文章是写给那些RAID知识门外汉的读者的。
??? 提到RAID卡就不得不提到什么是RAID。RAID 是英文Redundant Array of Independent Disks的缩写,翻译成中文即为独立磁盘冗余阵列,或简称磁盘阵列。简单的说,RAID是一种把多块独立的硬盘(物理硬盘)按不同方式组合起来形成一个 硬盘组(逻辑硬盘),从而提供比单个硬盘更高的存储性能和提供数据冗余的技术。组成磁盘阵列的不同方式成为RAID级别(RAID Levels)。RAID技术经过不断的发展,现在已拥有了从 RAID 0 到 6 七种基本的RAID 级别。另外,还有一些基本RAID级别的组合形式,如RAID 10(RAID 0与RAID 1的组合),RAID 50(RAID 0与RAID 5的组合)等。不同RAID 级别代表着不同的存储性能、数据安全性和存储成本。
??? 数据冗余的功能是在用户数据一旦发生损坏后,利用冗余信息可以使损坏数据得以恢复,从而保障了用户数据的安全性。在用户看起来,组成的磁盘组就像是一个硬 盘,用户可以对它进行分区,格式化等等。总之,对磁盘阵列的操作与单个硬盘一模一样。不同的是,磁盘阵列的存储性能要比单个硬盘高很多,而且可以提供数据 冗余。
??? RAID卡就是用来实现RAID功能的板卡,通常是由I/O处理器、SCSI控制器、SCSI连接器和缓存等一系列零组件构成的。不同的RAID卡支持的 RAID功能不同。支持RADI0、RAID1、RAID3、RAID4、RAID5、RAID10不等。RAID卡可以让很多磁盘驱动器同时传输数据, 而这些磁盘驱动器在逻辑上又是一个磁盘驱动器,所以使用RAID可以达到单个的磁盘驱动器几倍、几十倍甚至上百倍的速率。这也是RAID卡最初想要解决的 问题。可以提供容错功能,这是RAID卡的第二个重要功能。
以前我们介绍了RAID 0的知识:我们通过RAID 0可以获得更大的单个磁盘的容量,且通过对多个磁盘的同时读取获得更高的存取速度。RAID 0首先考虑的是磁盘的速度和容量,忽略了安全……这期要介绍的是RAID 1、3、5。
RAID 1,又称镜像方式,也就是数据的冗余。在整个镜像过程中,只有一半的磁盘容量是有效的(另一半磁盘容量用来存放同这一半完全一样的数据)。同RAID 0相比,RAID 1首先考虑的是安全性,容量减半、速度不变。为了达到既高速又安全,出现了RAID 10(或者叫RAID 0+1),可以把RAID 10简单地理解成由多个磁盘组成的RAID 0阵列再进行镜像。
RAID 3和RAID 5都是校验方式。RAID 3的工作方式是用一块磁盘存放校验数据。由于任何数据的改变都要修改相应的数据校验信息,存放数据的磁盘有好几个且并行工作,而存放校验数据的磁盘只有一 个,这就带来了校验数据存放时的瓶颈。RAID 5的工作方式是将各个磁盘生成的数据校验切成块,分别存放到组成阵列的各个磁盘中去,这样就缓解了校验数据存放时所产生的瓶颈问题,但是分割数据及控制存 放都要付出速度上的代价。RAID 30、RAID 50相对应的工作方式可以像RAID 10那样去理解。
由此可见,使用RAID功能组成阵列,总能做到单个磁盘无法做到的功能,所以说RAID卡+多磁盘对我们来说是充满诱惑的。
什么是RAID和JBOD
计算机制造商们全面打起了提速战。作为计算机最重要的外部存储设备,硬盘当然也不甘落后,也相继推出了ATA66和ATA100硬盘。即便如此,硬盘存储仍然摆脱不了系统性能瓶颈的角色,甚至由于其它计算机部件幅度大得多的性能提升,使得硬盘速度虽有提升,但依旧陷入了更为尴尬的境地。基于现在的硬盘技术,要想大幅提速非常困难。不仅如此,硬盘存储在数据安全上也是问题多多。现在人们的工作已无法摆脱计算机,这一方面使得人们的工作效率大大提高,但潜在的危险也是明摆着的:一旦硬盘的数据损坏,人们长时间的工作就可能毁于一旦。
那么,有没有基于现在的硬盘提升存储性能和数据安全的技术呢?有,它就是RAID技术。
* 什么是RAID
RAID是英文Redundant Array of Inexpensive Disks的缩写,翻译成中文即为廉价磁盘冗余阵列,或简称磁盘阵列。简单地说,RAID是一种把多块独立的硬盘(物理硬盘)按不同方式组合起来形成一个硬盘组(逻辑硬盘),从而提供比单个硬盘更高的存储性能和提供数据冗余的技术。组成磁盘阵列的不同方式成为RAID级别(RAID Levels)。
数据冗余的功能是在用户数据一旦发生损坏后,利用冗余信息可以使损坏数据得以恢复,从而保障了用户数据的安全性。
* 什么是JBOD
JBOD(Just Bundle Of Disks)译成中文可以是“简单磁盘捆绑",通常又称为Span。JBOD不是标准的RAID级别,它只是在近几年才被一些厂家提出,并被广泛采用。
Span是在逻辑上把几个物理磁盘一个接一个串联到一起,从而提供一个大的逻辑磁盘。Span上的数据简单地从第一个磁盘开始存储,当第一个磁盘的存储空间用完后,再依次从后面的磁盘开始存储数据。Span存取性能完全等同于对单一磁盘的存取操作。Span也不提供数据安全保障。它只是简单地提供一种利用磁盘空间的方法,Span的存储容量等于组成Span的所有磁盘的容量的总和。
几种常见的RAID级别
几种常见的RAID级别及比较
RAID是Redundant Array of Inexpensive Disk的缩写,意为廉价冗余磁盘阵列,是磁盘阵列在技术上实现的理论标准,其目的在于减少错误、提高存储系统的性能与可靠度。常用的等级有0、1、3、5级等。
1.什么是RAID Level 0?
RAID Level 0是Data Striping(数据分割)技术的实现,它将所有硬盘构成一个磁盘阵列,可以同时对多个硬盘做读写动作,但是不具备备份及容错能力,它价格便宜,硬盘使用效率最佳,但是可靠度是最差的。以一个由两个硬盘组成的RAID Level 0磁盘阵列为例,它把数据的第1和2位写入第一个硬盘,第三和第四位写入第二个硬盘……以此类推,所以叫“数据分割”,因为各盘数据的写入动作是同时做的,所以它的存储速度可以比单个硬盘快几倍。但是,这样一来,万一磁盘阵列上有一个硬盘坏了,由于它把数据拆开分别存到了不同的硬盘上,坏了一颗等于中断了数据的完整性,如果没有整个磁盘阵列的备份磁带的话,所有的数据是无法挽回的。因此,尽管它的效率很高,但是很少有人冒着数据丢失的危险采用这项技术。
2.什么是RAID Level 1?
RAID Level 1使用的是Disk Mirror(磁盘映射)技术,就是把一个硬盘的内容同步备份复制到另一个硬盘里,所以具备了备份和容错能力,这样做的使用效率不高,但是可靠性高。
3.什么是RAID Level 3?
RAID Level 3采用Byte-interleaving(数据交错存储)技术,硬盘在SCSI控制卡下同时动作,并将用于奇偶校验的数据储存到特定硬盘机中,它具备了容错能力,硬盘的使用效率是安装几个就减掉一个,它的可靠度较佳。
4.什么是RAID Level 5?
RAID Level 5使用的是Disk Striping(硬盘分割)技术,与Level 3的不同之处在于它把奇偶校验数据存放到各个硬盘里,各个硬盘在SCSI控制卡的控制下平行动作,有容错能力,跟Level 3一样,它的使用效率也是安装几个再减掉一个。
RAID级别的优点和缺点 :
RAID 0 存取速度最快 没有容错
RAID 1 完全容错 成本高
RAID 3 写入性能最好 没有多任务功能
RAID 4 具备多任务及容错功能 Parity 磁盘驱动器造成性能瓶颈
RAID 5 具备多任务及容错功能 写入时有overhead
RAID 0+1/RAID 10 速度快、完全容错 成本高
什么是raid
RAID是英文Redundant Array of Inexpensive Disks的缩写,中文简称为廉价磁盘冗余阵列。RAID就是一种由多块硬盘构成的冗余阵列。
虽然RAID包含多块硬盘,但是在操作系统下是作为一个独立的大型存储设备出现。利用RAID技术于存储系统的好处主要有以下三种:
1. 通过把多个磁盘组织在一起作为一个逻辑卷提供磁盘跨越功能
2. 通过把数据分成多个数据块(Block)并行写入/读出多个磁盘以提高访问磁盘的速度
3. 通过镜像或校验操作提供容错能力
最初开发RAID的主要目的是节省成本,当时几块小容量硬盘的价格总和要低于大容量的硬盘。目前来看RAID在节省成本方面的作用并不明显,但是 RAID可以充分发挥出多块硬盘的优势,实现远远超出任何一块单独硬盘的速度和吞吐量。除了性能上的提高之外,RAID还可以提供良好的容错能力,在任何 一块硬盘出现问题的情况下都可以继续工作,不会受到损坏硬盘的影响。
RAID技术分为几种不同的等级,分别可以提供不同的速度,安全性 和性价比。根据实际情况选择适当的RAID级别可以满足用户对存储系统可用性、性能和容量的要求。常用的RAID级别有以下几种:NRAID,JBOD, RAID0,RAID1,RAID0+1,RAID3,RAID5等。目前经常使用的是RAID5和RAID(0+1)。
Re: 請問什麼是RAID? 回應
oasis表示 : 目前看到很多板子都有raid的字眼
到底raid是什麼樣的功能啊?
(Redundant Array of Independent Disks) 一個能增加效能或是具備資料容錯的子系統叫做RAID. 磁碟陣列利用多部低價的硬碟來組成一個大型的磁碟機, RAID 建立在2個或兩個以上的硬碟上, 並由一個含有RAID功能的磁碟控制晶片來控制.
RAID的技術起源來自1992年於美國加州柏克萊大學Patterson, Gibson 和 Katz 3人所發表的論文 : A Case for Redundant Arrays of Inexpensive Disks中所出現, Redundant意旨多餘的, 重複的, 在RAID的磁碟系統上會有部分空間用來紀錄多餘及重複的資料.
除了在高級的伺服器跟獨立的磁碟存取系統上有RAID, 在桌上型電腦上也出現了首次出現了容錯功能.
RAID 也能靠軟體來建立, 但是效率比較差, 尤其是在發生錯誤後資料重建時,例如在 Microsoft Windows 2000 以及 Linux 作業系統內都內建有軟體的 RAID.
RAID 藉由資料的平行寫入來增加效能並將位元或位元組的資料存取於多個磁碟當中, 所以超過一個以上的磁碟能同時被存取.
資料的容錯(Fault tolerance)能藉由映射(mirroring)或是同位元檢查(parity)來達成. Mirroring 100% 複製兩個磁碟的資料(RAID 1), 同位元檢查(RAID 3 and 5) 計算2個磁碟的資料並將計算的結果儲存在第3顆磁碟上: 來自於第一個磁碟的位元資料與來自第二個磁碟的位元資料經由互斥或運算(XOR)後, 把計算結果存在第三顆磁碟上,錯誤的磁碟能藉由熱差拔換成一顆新的磁碟, RAID 控制晶片將會自動重建錯誤磁碟鎖遺失的資料.
有哪些RAID 等級?
RAID LEVEL 0 僅僅將磁碟資料做分割並無容錯功能, 而組構的多顆硬碟機, 被依一定的切割區段, 連貫成一大容量的陣列硬碟以增進磁碟效能.
由於每顆硬碟可被同時存取, 所以RAID 0是最有效率的一種陣列類別, 以兩顆硬碟所組成的RAID0來說, 最高可以增進效能達1.7倍,適用於需要高效能資料存取的系統, 缺點是只要陣列裡有任何一顆硬碟損壞, 整個磁碟陣列的資料將無法復原.
RAID LEVEL 1
磁碟映射, 100% 完全複製兩顆硬碟的資料, 即使兩顆硬碟裡有一顆硬碟損壞, 剩下的硬碟仍有完整的資料,所以有高可靠度, 具容錯功能, 缺點是必須浪費一顆硬碟的容量.
RAID LEVEL 2
RAID 2 算是RAID1 的改良版, 不同的是每個位元資料經過Hamming Code 編碼後儲存在多顆硬碟上, 具容錯功能, 缺點是Hamming Code 只能容許一個位元的錯誤, 兩個以上的位元同時錯誤資料將無法復原, RAID 2是很少見的一種磁碟陣列.
RAID LEVEL 3
RAID 3 類似於 RAID2, 不同的是 RAID 3 捨棄需要費時運算的Hamming Code, 而改用速度較快的同位元檢查(Parity Check), 資料平均儲存在每顆硬碟, 但是另外需要額外一顆硬碟來儲存同位元檢查的資料, 優點是適合高資料傳輸量的系統, 資料流量小時也必須動到所有的硬碟, 所以只有小資料存取的系統並不適合.
RAID LEVEL 4
類似於 RAID3, 不同的是 RAID 3的資料存取是以位元或位元組為單位, 而且 RAID 4 是以硬碟區塊為單位, 數個區塊可以同時存取,資料可以等到佔滿整個區塊再儲存, 所以沒有RAID3的缺點, 但是同位元資料都存放在單一硬碟, 該硬碟容易損耗是缺點.
RAID LEVEL 5
類似於RAID4, 不同的是RAID5 將同位元資料以位元分割方式儲存在每顆硬碟上, 所以沒有RAID4的缺點, 但是同位元資料必須分割再儲存, 所以效率較RAID4差.
RAID LEVEL 6
高可靠度, 但是並不廣泛使用. 類似於RAID 5, 但是使用兩種不同的同位元檢查, 或是一種同位元堆疊使用, 雖然資料可靠度更高, 但是整體效能較RAID 5 更差
RAID LEVEL 10
綜合 RAID 0 跟 RAID 1的優點(mirroring and striping), 同時兼顧效率跟容錯, 有高傳輸效率, 缺點是會浪費一半的硬碟容量當資料備份用.
IDE RAID 大多只有支援 RAID 0, RAID1, RAID 10(0+1) 及 JBOD(Just a Bunch Of Disks), 少數有做成RAID 5,但是價格過高, 由於IDE RAID 打的是低價市場, 而RAID 5需要 CPU, XOR Engine 及 Momory, 所以大多是高價的SCSI RAID 有支援 RAID 3, 5.
IDE RAID
IDE RAID 0(Stripe)
一般IDE只有兩個通道(SCSI 只有一個) , IDE RAID正好利用了這個優點可以同時利用這兩個通道同時存取硬碟的資料, IDE RAID 0 的做法是將欲寫入硬碟的資料, 經由RAID CONTROLLER 將資料分為兩份, 分別寫入不同的兩個通道上的硬碟, 如此便能減少一半的寫入時間, 讀資料也是同樣的原理, 這就是為什麼IDE RAID 0 能增加PERFORMANCE的原因, 一般來說 IDE RAID 0 能增加約 70%的效能, 不過這跟整個系統的配備有很密切的關係, 像是硬碟的規格品牌或主機板的晶片組等等, 都會影響整體的效能.
硬碟容量計算方法 : RAID 0 必須使用 2顆以上的硬碟, 以最小硬碟的容量為基準, RAID的總容量為其倍數, 例如有2顆硬碟分別為 30GB 跟 40GB, 以最小硬碟的兩倍 60GB 為這組RAID 0的實際容量, 3顆硬碟 30GB, 40GB, 50GB, 總容量為 30GB *3 = 90GB, 依此類推.
IDE RAID 1(Mirror)
同樣善用同時存取兩個通道硬碟的方法, 將一份資料寫兩次, 分別同時寫到不同的兩顆硬碟中, 因而使兩顆硬碟有相同的資料, 也就是所謂的MIRROR, HARDWARE IDE RAID 1 不像SOFTWARE RAID 1需要發兩次寫入資料的命令, 所以要多花一倍的時間, 而是由RAID CONTROLLER 將一個寫入命令自動將資料寫兩次, 如此除了寫入時間不會增加之外, 也減少了CPU的負擔.
硬碟容量計算方法 : RAID 1 只能使用兩顆硬碟組成, 以較小硬碟的容量為總容量, 例如兩顆硬碟 30GB, 40GB 實際只有30GB可用, 較小的硬碟必須當成 SOURCE 碟, 所以使用兩顆容量相同大小的硬碟會比較適合.
IDE RAID 0+1(Stripe+Mirror)
同時擁有RAID 0 跟RAID 1 的優點 就成了 RAID 0+1 , RAID 0+1 需要有4顆硬碟, 分別由兩顆兩顆硬碟做成RAID 0, 再由這兩組RAID 0 做成RAID 1,如此便兼顧了效率跟資料保全的功能, 缺點是需要4顆硬碟, 而整個RAID 0+1 可用的硬碟容量只有實際的一半, 另一半必須當備份用, 所以實際上有四顆硬碟, 但是可用的只有兩顆硬碟的容量.
JBOD (Just a Bunch Of Disks)
嚴格說來JBOD不算是RAID, 只是單純將硬碟容量加起來, 例如有兩顆硬碟30GB, 40GB, 加起來變成一顆70GB的硬碟, 跟 RAID 0 一樣沒有容錯的功能 , 但是也不會增加效率, 只是方便使用硬碟而已.
什么是raid
[日期:2005-07-11] 来源: 作者: [字体:大 中 小]
独立磁盘冗余阵列(RAID——Redundant Arrays of Independent Disks)是一种使用多硬盘驱动器来存储数据的数据存储系统。可以使用多种不同的存储技术来实现不同等级的冗余、错误恢复和性能。
美国商务 3535.us
注册.Us美国域名
提供优质稳定美国主机空间
值得长期信赖的互联网合作伙伴
365音乐网yue365.com
365音乐网
最新流行歌曲排行榜
伊瓦科技 Iva.cn
提供福建电信服务器托管租用
送IVA服务器安全规划
品质+信誉+服务打造Iva品牌
乐博网 Lob.cn
VB.Net原创
提供VB.Net教程、书籍、实例
过去,高可用计算机的安装都要求有足够的数据冗余,即一套复杂的数据镜像备份在出现问题时可以马上替代当前的数据。随着数据量的不断增长,这种解决方案的花费令人难以接受,于是,IT开发人员用RAID(独立磁盘冗余阵列)来解决这一问题。不像磁盘镜像,一个RAID系统并不一定要具备两倍于数据量的磁盘空间,如一个RAID 5系统为了保证数据的使用和安全可以只增加数据量20%的磁盘空间。
磁盘阵列分类
根据磁盘阵列的结构、要求及数据处理特点,一般分为六个级别(也叫标准),即RAID 0、1、2、3、4、5,若另加一个派生的RAID 0+1,实际上有七个。其中RAID 2、3、4已基本淘汰,而RAID 5虽然最完备,但因至少由3块硬盘组成使其价格较高,往往应用于高中端网络数据库存储系统,RAID 0、1、0+1三种标准则主要应用于低中端网络数据库存储系统之中。
根据磁盘阵列的数据接口,一般可以分为SCSI接口、IDE 接口、光纤通道三类。虽然它们只是接口不同,但却可直接影响到磁盘阵列数据传输速度的快慢、数据存储备份容量的大小、设备成本与价格的高低、设备安装与维护的难度等,因而它们各有优劣,各自适应不同的应用环境,可满足不同用户的应用要求,所以磁盘阵列按接口分类广泛为人们所接受。磁盘阵列一般都能够在支持多个SCSI接口或光纤通道接口的同时,还可支持多台主机连接,从而可形成群集环境的高可用性架构和多主机共用网络存储数据系统。在高档SCSI接口的磁盘阵列中,还普遍支持32位RISC专用CPU,配置4~256MB高速缓存,使之能与主机并行运作,完全不需要任何软件或驱动程序支持,极大地提高了磁盘阵列的数据处理速度。
传统的RAID都配有专用处理器、大容量缓存以及高速SCSI硬盘为其阵列基础,基本上都支持RAID 0、1、5等工业标准,并具有热插拔冗余控制器的相互备援,支持全自动的故障切换,可为内存镜像提供无单点错误能力等。这种磁盘阵列技术成熟、性能稳定、数据安全、存储可靠,同时存取速度快、存储容量大,但价格十分昂贵,且安装、维护和管理较复杂,是大中型网络数据存储系统的首选产品;基于IDE接口的磁盘阵列IDE RAID,由于采用普通IDE接口硬盘,没有专用处理器和内存,在通过自带的BIOS调用下,可以利用主机CPU来实现RAID运算,因而结构简单、兼容性好、安装维护管理方便,其最大优点则是价格便宜(不仅省去了处理器和高速缓存,而且一块9G的SCSI硬盘在3千元左右,而一块9G的IDE硬盘只有1 千元左右),是中小型企业网络存储设备的重要选择内容。IDE RAID也基本上支持RAID 0、1、0+1标准,某些还支持RAID 5标准,普遍采用支持UDMA/66高速接口的普通硬盘作为阵列存储单元。其中多条独立数据通道在提高阵列性能的同时,能够增强数据的可靠性和数据的保护能力。另外,IDE RAID还普遍具有数据冗余功能,有的还可作为系统盘。光纤通道接口磁盘阵列是一种采用最新技术的高数据传输率和高带宽磁盘阵列,其最大特点是通道带宽高达100/200MB(SCSI只有80到160MB,IDE仅有33到66MB)。
被称为第二代磁盘阵列系统的RD20,因其采用了新型体系结构,具有高可用性、高性能和大数据量存储处理能力,具有灵活的计算能力和低廉的价格特点。RD20采用了先进的冗余设计技术与软件,有效地保证了数据的最大可用性。其冗余体系结构及标准组件设计使其具有很强的灵活性,主机接口设计为独立的可添加的夹层卡,用户可自由选择异端或单端宽 Ultra SCSI接口,大大方便了用户的自行设计外形结构和升级。单槽或双槽1.0625Gbps光纤接口,还允许用户直接与有光纤接口的主机、光纤交换机、网络集线器或其他冗余设备直接连接。RD20一般采用两个控制器,由RAID子系统进行双重控制,并由装在控制器中的温度传感器随时报告各扇区物理环境的异常现象,从而保证了系统的安全运行。
RD20的主要特点是,采用了处理频率为133MHz的嵌入式RISC处理器,有多个用于控制硬盘驱动器和主机接口的PCI智能I/O处理器,内部PCI总线可提供132Mbps的数据传输带宽,主要用于连接后端硬盘驱动器的四个独立旋转式 Ultra SCSI通道,大大提高了数据传输速率,其动态随机存储能力高达256MB,可双倍提高内存的读取速度。
RAID标准的意义
基于RAID标准的磁盘阵列,之所以具有性能可靠和容量极大的技术优势,其主要原因是由于:首先,RAID控制器通过并行数据读写克服了磁盘机电设计的限制,可大大提高存取速度。RAID可以同时操作多张磁盘的读写,如四张磁盘组成的阵列的读写速度几乎是单张磁盘的四倍。所以,RAID的高速读写能力既可用来完成象高速的实时图像编辑,也可用于大量数据的高速存储备份;其次,RAID系统提供了大容量的数据存储,而且多张磁盘上的数据对于主机来说是随时可用的。复杂的RAID系统甚至允许用户通过控制器所发出的数据途径来组成多盘菊链,使得高性能的RAID控制器可同时进行多达90多张盘片的寻址操作;最后,RAID系统运用了奇偶校验技术,极大地提高了数据的可靠性。因为当RAID控制器在磁盘上写数据时,RAID系统会记录相应的奇偶位冗余数据,若该磁盘失效,该奇偶信息可使RAID控制器在不降低性能的情况下,重新计算丢失的信息。下面我们来总结一下RAID标准的意义。
标准RAID:如前所述,传统RAID标准一般分为七级,其区别主要是阵列中的磁盘数与数据写入磁盘方式不同,但广泛应用的标准只有RAID 0、1、5和0+1四种,下面我们就来介绍这四种标准的意义。
符合RAID 0标准磁盘阵列的基本特点是数据传输率高和安全性低。由于该标准阵列只能操作两块硬盘,并采用了将数据流分割成大小相同的数据条块(条块标准:容量一般为 64KB,也可以调整为8KB或256KB),然后平均分配给两块硬盘,同时完成数据传输,其数据传输率基本上为两块硬盘传输率之和。虽然这种采用条块化存储数据的方法的传输数据率最快,效率最高,但因没有冗余,是以牺牲RAID的安全性为代价换到的极限性能,因此数据存储可靠性脆弱,一旦阵列中某块硬盘出现故障,整个系统也将随之瘫痪。
符合RAID 1标准磁盘阵列的基本标准是数据传输率低和安全性高,恰好与RAID 0标准相反。符合该标准的磁盘阵列也只能操作两块硬盘,由于它使用了磁盘镜像,提供了冗余容错机制,使得阵列在每次写或更换数据时,同样的操作可发生在另一张磁盘上,即每次操作都能把写往主盘的数据同步地写到镜像盘上,一旦某磁盘失效另一张磁盘将马上接手工作。
但这种工作方式使得镜像和冗余的成本较高,将浪费一半的磁盘空间,而且也影响了阵列的数据读写速度。虽然RAID 1还可以在读取数据时,保证同步在两个磁盘上搜索,并且能把先找到的数据传输回来,从而可改善阵列系统的调用效率,但因消耗主机CPU资源,几乎没有提高阵列系统的整体性能。所以RAID 1阵列只对紧要任务数据存储才有意义。
符合RAID 0+1标准的磁盘阵列,实际上已考虑了上述两类标准的因素,吸收了上述两种标准的优点,即在RAID 0标准上把写往两个硬盘的数据同时做两个镜像,既保证了数据传输的高速率,又保证了系统数据的高安全性,但需提供4块硬盘,所以成本也要大大高出前两者。
符合RAID 3标准的磁盘阵列包括数据分割,另外,它还指定一个驱动器来存储奇偶信息。这就提供了某种容错功能,在数据密集型环境或单一用户环境中尤其有益于访问较长的连续记录。RAID 3需要同步主轴驱动器来预防较短记录的性能下降。
符合RAID 5标准的磁盘阵列,采用了奇偶校验和并行传送技术,虽然没有使用专用驱动器,但将校验位按要求写到了阵列中的某一台驱动器上,将数据和奇偶信息分布在阵列中的全部磁盘上,同样也避免了专用奇偶磁盘的需要。RAID 5标准的读写操作可同时进行,并使用了Exclusive-OR算法来计算奇偶信息。
在RAID 5分布式奇偶校验块的例子中,磁盘3中的奇偶校验块是磁盘1、2、4和5上的数据的备份数据映像;磁盘2中的奇偶校验块是磁盘1、3、4和5上的数据的备份数据映像;磁盘1中的奇偶校验块是磁盘2、3、4和5上的数据的备份数据映像……依此类推。如果一块磁盘出现问题,控制器可以利用奇偶校验块来重建数据。
奇偶校验块可以降低RAID 3和5数据存储的开销。例如RAID 5用一块磁盘来为4块磁盘提供数据冗余,那就意味着用5块磁盘来存储4块磁盘容量的数据并为那些数据提供完全备份。
软硬件RAID:RAID还有基于软件的RAID和基于硬件的RAID,两者在性能方面有较大区别,且能在不同领域各领风骚。其中,基于软件的RAID 只能利用主机CPU和存储器来实现磁盘阵列的存储备份,根据操作系统又可分为基于Novell平台、Windows NT平台和Unix平台的软件RAID,软件RAID存储备份级别较低,由于高速缓冲存储器可以使得简单的分段和镜像完成得更快,可大大提高读写速度,因而任务较少时有明显优势。尤其是各类新版操作系统、容错软件和群集技术的普遍应用,又使得软件RAID在性能和功能方面到了充分的发挥。
基于硬件的RAID因为拥有自己独立的CPU和存储器,完全可以自己计算奇偶信息并完成文件定位,提高数据并行传输速度。硬件RAID又可分为内置插卡式和外置机柜式RAID,内置插卡式RAID也依赖主机的操作系统,要求有专门的驱动器连接和设置RAID控制器,其优势在于速度,因为内置式系统无需通过SCSI适配器,当然内置式价格便宜,但内置式系统大部分没有扩充插件板,容量大小固定不变。另外,因在一个时间段内只有一台主机可和内置系统通信,很难进行双机容错备份;外置机柜式RAID可以独立计算,不仅可以灵活地增加驱动器,提高RAID存储备份容量,还能简单地实现双机容错热备份。所以,内置式RAID系统主要应用于PC服务器或成为其选件,或成为其标准配置,外置式RAID系统则主要用于双机容错系统中的大容量高可靠系统中。
新标准RAID 7:还有一种磁盘阵列新标准RAID 7。其实,RAID 7不仅仅是一种技术,还是一种存储计算机(Storage Computer)。因为它与RAID 0、1、5标准有明显区别,RAID 7自身带有智能化实时操作系统和用于存储管理的软件工具,可完全独立于主机运行,不占用主机CPU资源。RAID 7不仅具有更高的性能和卓越的存储管理能力,而且集普通RAID标准的所有优点于一身,因而RAID 7系统整体性能极佳。
RAID 7存储计算机操作系统(Storage Computer Operating System)是一套实时事件驱动操作系统,主要用来进行系统初始化和安排RAID 7磁盘阵列的所有数据传输,并把它们转换到相应的物理存储驱动器上。通过自身系统中的阵列电脑板来设定和控制读写速度,存储计算机操作系统可使主机I/O 传递性能达到最佳。如果一个磁盘出现故障,还可自动执行恢复操作,并可管理备份磁盘的重建过程。
RAID 7突破了以往RAID标准的技术架构,采用了非同步访问,极大地减轻了数据写瓶颈,提高了I/O速度。所谓非同步访问,即RAID 7的每个I/O界面都有一条专用的高速通道,作为数据或控制信息的流通路径,因此可独立地控制自身系统中每个磁盘的数据存取。如果RAID 7有N个磁盘,那么除去一个校验盘(用作冗余计算)外,可同时处理N-1个主机系统随机发出的读/写指令,从而显著地改善了I/O应用。RAID 7系统内置实时操作系统还可自动对主机发送过来的读/写指令进行优化处理,以智能化方式将可能被读取的数据预先读入快速缓存中,从而大大减少了磁头的转动次数,提高了I/O速度。RAID 7可帮助用户有效地管理日益庞大的数据存储系统,并使系统的运行效率提高至少一倍以上,满足了各类用户的不同需求。
选购RAID小技巧
市场上的RAID产品丰富多彩,每个产品又含有一大堆的技术指标,令用户眼花缭乱。那么用户在选购RAID的时候应该考虑哪些因素呢?
首先,最重要的就是要搞清楚用RAID来做什么,也就是从应用角度出发来选择。因为RAID有很多标准,每种标准有不同的特长,所对应的应用也不同。如果用户要求快速地存取数据,而对可靠性没有过高要求,可以选择RIAD 0标准的产品。如前所述,RAID 0的数据传输率高,而安全性低。
RAID 1标准磁盘阵列的基本标准是数据传输率低和安全性高,正好与RAID 0相反,因此如果用户对速度没有需求,而要求可靠性的话,RAID 1是最好的选择。但是RAID的花费很高。
那么有没有一种产品速度又快、可靠性高呢?RAID 0和1的完美结合将这两种优点集成在一起,但是成本也不比RAID 1低。因为RAID 0/1的这种配置要求至少4块磁盘。数据块1写到磁盘1,数据镜像写到磁盘2;数据块2写到磁盘3,数据镜像写到磁盘4;数据块3写到磁盘1,数据镜像写到磁盘2……依此类推。因为数据被分割后存储在多个磁盘上,所以RAID 0/1既有RAID 0速度快的优点,又有RAID 1高可用性的优点。但是RAID 0/1也和RAID 1一样要求一组完全备份磁盘。所以也不能称之为经济高效的方案。
对于管理数据库操作和关键型业务的用户,其数据库的查询活动频繁,但数据量不大,RAID 5 的存储结构非常适合于电子邮件、电子表格和数据库应用等数据传输和事务处理。RAID 5阵列读磁盘的速度较快、数据可靠性高,有效容量达到66%~87%之间,因此性价比较高,是现在应用最广泛的磁盘阵列。而RAID 3较适合于视频系统。
互联网上的数据传输安全问题一直是用户所担心的,新标准RAID 7可保证数据传输的安全性,防止数据丢失。
除了考虑这些标准外,软硬件RAID也关系到成本和性能问题。硬RAID,速度快,但价格高;软件RAID便宜,但速度慢,主要应用于基于IDE接口的中低档磁盘阵列中。
第二,RAID的冗余性、可靠性和可维护性也是需要考虑的因素。
冗余性主要表现在RAID控制器、电源、风扇、磁盘的冗余性。如RAID控制器冗余就有两种方式,一种是一个控制器做备份,另一个工作,当工作控制器出故障后,备份控制器会接替其工作;另一种是两个控制器都是工作控制器,同时工作,当一个出故障,另一个会继续工作,只是带宽也会减半。
可靠性主要表现在电源、风扇、磁盘等是否能够热插拔。它们的这些性能体现在数据的可靠性方面。可维护性即是否有单点故障出现等。
此外,用户还应根据自己的需求选择是SCSI接口还是光纤通道接口的RAID,这些都对性能和价格有很大的影响。
RAID技术入门
作者:IT动力源 IT来源:收集整理 点击数: 更新时间:2004-9-10
RAID技术入门
计算机技术的发展,已使的CPU的速度进入GHz 时代。而计算机的内存也有66MHz发展到 100MHz 甚至133MHz。显卡的速度也日新月异。 计算机制造商们全面打起了提速战。作为计算机最重要的外部存储设备,硬盘当然也不甘落后,也相继推出了ATA66和ATA100 硬盘。即便如此,硬盘存储仍然摆脱不了系统性能瓶颈的角色,甚至由于其它计算机部件幅度大得多的性能提升,使得硬盘速度虽有提升,但依旧陷入了更为尴尬的境地。而且由于硬盘速度很大程度上依赖于机械部分,因此基于现在的硬盘技术,要想大副提速非常困难。
不仅如此, 硬盘存储在数据安全上也是问题多多。现在人们的工作已无法摆脱计算机, 这一方面使得人们的工作效率大大提高, 但潜在的危险也是明摆着的: 一旦硬盘的数据损坏,人们长时间的工作就可能毁于一旦。
那么,有没有基于现在的硬盘提升存储性能和数据安全的技术呢?有,它就是RAID技术。
什么是RAID?
RAID是英文Redundant Array of Independent Disks的缩写,翻译成中文即为独立磁盘冗余阵列,或简称磁盘阵列。简单的说,RAID是一种把多块独立的硬盘(物理硬盘)按不同方式组合起来形成一个硬盘组(逻辑硬盘),从而提供比单个硬盘更高的存储性能和提供数据冗余的技术。组成磁盘阵列的不同方式成为RAID级别(RAID Levels)。
数据冗余的功能是在用户数据一旦发生损坏后,利用冗余信息可以使损坏数据得以恢复,从而保障了用户数据的安全性。
在用户看起来,组成的磁盘组就像是一个硬盘,用户可以对它进行分区,格式化等等。总之,对磁盘阵列的操作与单个硬盘一模一样。不同的是,磁盘阵列的存储性能要比单个硬盘高很多,而且可以提供数据冗余。
Independent还是Inexpensive?
细心的读者可以注意到,一部分文章把RAID 解释为 Redundant Array of Inexpensive Disks,即廉价磁盘冗余阵列。那么,到底是Independent 还是Inexpensive呢? 说到这里,我们要看一看RAID的历史了。
1988年,由加州大学Berkeley 分校的David A. Patterson等人在原有技术的基础上进行了扩充,提出几种新的磁盘组织方式,目的是用多个用于个人电脑上的廉价磁盘替代当时数据中心系统普遍采用的价格昂贵的SLEDs磁盘(Single Large Expensive Disks)。根据这一目的,David A. Patterson 等人首次使用了Redundant Array of Inexpensive Disks这一名称。RAID被提出后,引起了人们的极大兴趣,并获得了成功。
但是随着存储技术的发展,SLEDs磁盘已经成为过去。现在普遍采用的磁盘在价格和性能上相差不多,因此如果再用廉价(Inexpensive)来形容组成RAID的磁盘就不合适了。 为了适应技术的发展,委员会开始普遍把RAID解释为Redundant Array of Independent Disks。
RAID级别:
RAID技术经过不断的发展,现在已拥有了从 RAID 0 到 6 七种基本的RAID 级别。另外,还有一些基本RAID级别的组合形式,如RAID 10(RAID 0与RAID 1的组合),RAID 50(RAID 0与RAID 5的组合)等。
不同RAID 级别代表着不同的存储性能、数据安全性和存储成本。下面就针对一些最为常用的 RAID级别做简单介绍。
RAID 0 :
RAID 0又称为Stripe或Striping,它代表了所有RAID级别中最高的存储性能。RAID 0提高存储性能的原理是把连续的数据分散到多个磁盘上存取,这样,系统有数据请求就可以被多个磁盘并行的执行,每个磁盘执行属于它自己的那部分数据请求。这种数据上的并行操作可以充分利用总线的带宽,显著提高磁盘整体存取性能。
示图 1
如图1所示:系统向三个磁盘组成的逻辑硬盘(RADI 0 磁盘组)发出的I/O数据请求被转化为3项操作,其中的每一项操作都对应于一块物理硬盘。我们从图中可以清楚的看到通过建立RAID 0,原先顺序的数据请求被分散到所有的三块硬盘中同时执行。从理论上讲,三块硬盘的并行操作使同一时间内磁盘读写速度提升了3倍。但由于总线带宽等多种因素的影响,实际的提升速率肯定会低于理论值,但是,大量数据并行传输与串行传输比较,提速效果显著显然毋庸置疑。
RAID 0的缺点是不提供数据冗余,因此一旦用户数据损坏,损坏的数据将无法得到恢复。
RAID 0具有的特点,使其特别适用于对性能要求较高,而对数据安全不太在乎的领域,如图形工作站等。对于个人用户,RAID 0也是提高硬盘存储性能的绝佳选择。
RAID 1:
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。如图2所示:
示图 2
当读取数据时,系统先从RAID 0的源盘读取数据,如果读取数据成功,则系统不去管备份盘上的数据;如果读取源盘数据失败,则系统自动转而读取备份盘上的数据,不会造成用户工作任务的中断。当然,我们应当及时地更换损坏的硬盘并利用备份数据重新建立Mirror,避免备份盘在发生损坏时,造成不可挽回的数据损失。
由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mirror虽不能提高存储性能,但由于其具有的高数据安全性,使其尤其适用于存放重要数据,如服务器和数据库存储等领域。
RAID 0+1:
正如其名字一样RAID 0+1是RAID 0和RAID 1的组合形式,也称为RAID 10。
以四个磁盘组成的RAID 0+1为例,其数据存储方式如图3所示:
示图 3
RAID 0+1是存储性能和数据安全兼顾的方案。它在提供与RAID 1一样的数据安全保障的同时,也提供了与RAID 0近似的存储性能。
由于RAID 0+1也通过数据的100%备份提供数据安全保障,因此RAID 0+1的磁盘空间利用率与RAID 1相同,存储成本高。
RAID 0+1的特点使其特别适用于既有大量数据需要存取,同时又对数据安全性要求严格的领域,如银行、金融、商业超市、仓储库房、各种档案管理等。
RAID 5:
RAID 5 是一种存储性能、数据安全和存储成本兼顾的存储解决方案。 以四个硬盘组成的RAID 5为例,其数据存储方式如图4所示:
示图 4
图中,P0为D0,D1和D2的奇偶校验信息,其它以此类推。
由图中可以看出,RAID 5不对存储的数据进行备份,而是把数据和相对应的奇偶校验信息存储到组成RAID5的各个磁盘上,并且奇偶校验信息和相对应的数据分别存储于不同的磁盘上。当RAID5的一个磁盘数据发生损坏后,利用剩下的数据和相应的奇偶校验信息去恢复被损坏的数据。
RAID 5可以理解为是RAID 0和RAID 1的折衷方案。RAID 5可以为系统提供数据安全保障,但保障程度要比Mirror低而磁盘空间利用率要比Mirror高。RAID 5具有和RAID 0相近似的数据读取速度,只是多了一个奇偶校验信息,写入数据的速度比对单个磁盘进行写入操作稍慢。同时由于多个数据对应一个奇偶校验信息,RAID 5的磁盘空间利用率要比RAID 1高,存储成本相对较低。
JBOD:
JBOD(Just Bundle Of Disks)译成中文可以是"简单磁盘捆绑",通常又称为Span。 JBOD 不是标准的RAID级别,它只是在近几年才被一些厂家提出,并被广泛采用。三个硬盘组成的Span为例,其数据存储方式如图5所示:
示图 5
Span是在逻辑上把几个物理磁盘一个接一个串联到一起,从而提供一个大的逻辑磁盘。Span上的数据简单的从第一个磁盘开始存储, 当第一个磁盘的存储空间用完后, 再依次从后面的磁盘开始存储数据。
Span存取性能完全等同于对单一磁盘的存取操作。Span也不提供数据安全保障。它只是简单的提供一种利用磁盘空间的方法,Span的存储容量等于组成Span的所有磁盘的容量的总和。
IDE RAID与SCSI RAID
IDE和SCSI是计算机的两种不同的接口,前者普遍用于PC计算机,而后者一般用于Apple Macintosh系统和UNIX操作系统。
RAID技术问世时是基于SCSI接口,因其成本高,因此主要面向服务器等高端应用。普通用户根本无缘拥有RAID。
随着计算机的大众化,由此带动PC计算机的空前繁荣。相应的,在市场的带动下,用于PC计算机的IDE接口设备价格大幅降低,同时性能大幅提高。以30G 容量硬盘为例,IDE接口的硬盘现在只需1000元左右,而SCSI接口的硬盘则需5000到6000元,而它们的性能则相差无几。
但是,RAID技术仍只基于SCSI接口,普通的PC用户在羡慕RAID技术的好处的同时,却无法拥有RAID。
可喜的是,近来一些厂商看到了 RAID 在低端用户中的巨大市场,开始把RAID技术移植到IDE 接口上,推出了基于IDE接口的RAID应用,称为IDE RAID。而基于SCSI接口的RAID应用则相应称为SCSI RAID。
与SCSI RAID相比,IDE RAID具有极低的价格,和一点也不逊色的性能表现,相应的,IDE RAID 解决方案就具有SCSI RAID无法比拟的高性价比。因此 IDE RAID自推出后,受到普通PC用户和普通商业应用的普遍欢迎。RAID对于普通的用户来说,再也不是什么奢侈的技术了。
RAID技术简介
本文出自: www.ibm.com.cn (2001-06-05 22:08:00)
RAID是通过磁盘阵列与数据条块化方法相结合, 以提高数据可用率的一种结构.IBM早于1970年就开始研究
此项技术.RAID 可分为RAID级别1到RAID级别6, 通常称为: RAID 0, RAID 1, RAID 2, RAID 3,RAID 4,
RAID 5,RAID6.每一个RAID级别都有自己的强项和弱项. "奇偶校验"定义为用户数据的冗余信息, 当硬盘
失效时, 可以重新产生数据.
RAID 0: RAID 0 并不是真正的RAID结构, 没有数据冗余. RAID 0 连续地分割数据并并行地读/写于多个磁盘上.
因此具有很高的数据传输率. 但RAID 0在提高性能的同时,并没有提供数据可靠性,如果一个磁盘失效,
将影响整个数据.因此RAID 0 不可应用于需要数据高可用性的关键应用.
RAID 1: RAID 1通过数据镜像实现数据冗余, 在两对分离的磁盘上产生互为备份的数据. RAID 1可以提高读的性能,
当原始数据繁忙时, 可直接从镜像拷贝中读取数据.RAID 1是磁盘阵列中费用最高的, 但提供了最高的数据
可用率. 当一个磁盘失效, 系统可以自动地交换到镜像磁盘上, 而不需要重组失效的数据.
RAID 2: 从概念上讲, RAID 2 同RAID 3类似, 两者都是将数据条块化分布于不同的硬盘上, 条块单位为位或字节.
然而RAID 2 使用称为"加重平均纠错码"的编码技术来提供错误检查及恢复. 这种编码技术需要多个磁盘存
放检查及恢复信息, 使得RAID 2技术实施更复杂. 因此,在商业环境中很少使用.
RAID 3: 不同于RAID 2, RAID 3使用单块磁盘存放奇偶校验信息. 如果一块磁盘失效, 奇偶盘及其他数据盘可以重新
产生数据. 如果奇偶盘失效,则不影响数据使用.RAID 3对于大量的连续数据可提供很好的传输率, 但对于随
机数据, 奇偶盘会成为写操作的瓶颈.
RAID 4: 同RAID 2, RAID 3一样, RAID 4, RAID 5也同样将数据条块化并分布于不同的磁盘上, 但条块单位为块或记
录. RAID 4使用一块磁盘作为奇偶校验盘, 每次写操作都需要访问奇偶盘, 成为写操作的瓶颈. 在商业应用
中很少使用.
RAID 5: RAID 5没有单独指定的奇偶盘, 而是交叉地存取数据及奇偶校验信息于所有磁盘上. 在RAID5 上, 读/写指针
可同时对阵列设备进行操作, 提供了更高的数据流量. RAID 5更适合于小数据块, 随机读写的数据.RAID 3
与RAID 5相比, 重要的区别在于RAID 3每进行一次数据传输,需涉及到所有的阵列盘.而对于RAID 5来说, 大部
分数据传输只对一块磁盘操作, 可进行并行操作.在RAID 5中有"写损失", 即每一次写操作,将产生四个实际的
读/写操作, 其中两次读旧的数据及奇偶信息, 两次写新的数据及奇偶信息.
RAID 6: RAID 6 与RAID 5相比,增加了第二个独立的奇偶校验信息块. 两个独立的奇偶系统使用不同的算法, 数据的可
靠性非常高. 即使两块磁盘同时失效,也不会影响数据的使用. 但需要分配给奇偶校验信息更大的磁盘空间,
相对于RAID 5有更大的"写损失". RAID 6 的写性能非常差, 较差的性能和复杂的实施使得RAID 6很少使用.
[精华] RAID技术基础知识
http://www.chinaunix.net 作者:好好先生 发表于:2006-12-04 22:02:40
【发表评论】【查看原文】【服务器及硬件技术讨论区】【关闭】
RAID,为Redundant Arrays of Independent Disks的简称,中文为廉价冗余磁盘阵列。在1987年由美国柏克莱大学提出RAID(Redundant Arrayof Inexpensive Disks)理论,作为高性能的存储系统,巳经得到了越来越广泛的应用。 RAID的级别从RAID概念的提出到现在,巳经发展了多个级别,有明确标准级别分别是0、1、2、3、4、5等。但是最常用的是0、1、3、5四个级别。其他还有6、7、10、30、50等。RAID为使用者降低了成本、增加了执行效率,并提供了系统运行的稳定性。
标准的RAID写操作,包括如:RAID4或RAID5中所必需的校验计算,需包括以下几个步骤:
(1)以校验盘中读取数据
(2)以目标数据盘中读取数据
(3)以旧校验数据,新数据及已存在数据,生成新的校验数据
(4)将新校验数据写入校验盘
(5)将新数据写入目标数据盘
当主机将一个待写入阵列RAID组中的数据发送到阵列时,阵列控制器将该数据保存在缓存中并立即报告主机该数据的写入工作已完成。该数据写入到阵列硬盘的工作由阵列控制器完成,该数据可继续存放在Cache中直到Cache满,而且要为新数据腾出空间而必须刷新时或阵列需停机时,控制器会及时将该数据从Cache写入阵列硬盘中。
这种缓存回写技术使得主机不必等待RAID校验计算过程的完成,即可处理下一个读写任务,这样,主机的读写效率大为增加。当主机命令将一个数据写入硬盘,则阵列控制器将该数据写入缓存最上面的位置,只有新数据才会被控制器按Write-Back Cache的方式最后写入硬盘。
RAID级别
NRAID:
硬盘连续使用。NRAID 意思是不使用RAID功能。它使用硬盘的总容量组成逻辑碟(不使用条块读写)。换句话说,它生成的逻辑碟容量就是物理碟容量的总和。此外,NRAID 不提供资料的备余。
JBOD:
JBOD 的含意是控制器将机器上每颗硬盘都当作单独的硬盘处理,因此每颗硬盘都被当作单颗独立的逻辑碟使用。此外,JBOD并不提供资料备余的功能。
RAID0:RAID 0 - Disk Stripping without parity (常用)
又称数据分块,即把数据分成若干相等大小的小块,并把它们写到阵列上不同的硬盘上,这种技术又称“Stripping”(即将数据条带化),这种把数据分布在多个盘上,在读写时是以并行的方式对各硬盘同时进行操作。从理论上讲,其容量和数据传输率是单个硬盘的N倍。N为构成RAID0的硬盘总数。当然,若阵列控制器有多个硬盘通道时,对多个通道上的硬盘进行RAID0操作,I/O性能会更高。因此常用于图象,视频等领域,RAID0 I/O传输率较高,但平均故障时间MTTF只有单盘的N分之一,因此RAID0可靠性最差。
RAID1:RAID 1 - Disk Mirroring(较常用)
又称镜像。即每个工作盘都有一个镜像盘,每次写数据时必须同时写入镜像盘,读数据时只从工作盘读出,一旦工作盘发生故障立即转入镜像盘,从镜像盘中读出数据。当更换故障盘后,数据可以重构,恢复工作盘正确数据,这种阵列可靠性很高,但其有效容量减小到总容量一半以下,因此RAID1常用于对容错要求极严的应用场合,如财政、金融等领域。
RAID (0+1):
结合了RAID 0 和 RAID 1 — 条块化读写的同时使用镜像操作。 RAID (0+1) 允许多个硬盘损坏,因为它完全使用硬盘来实现资料备余。如果有超过两个硬盘做RAID 1,系统会自动实现RAID (0+1)。
RAID2:
又称位交叉,它采用汉明码作盘错校验,采用按位交叉存取,运用于大数据的读写,但冗余信息开销太大(校验盘为多个),已被淘汰。
RAID3:RAID 3 - Parallel Disk Array
为单盘容错并行传输。即采用Stripping技术将数据分块,对这些块进行异或校验,校验数据写到最后一个硬盘上。它的特点是有一个盘为校验盘,数据以位或字节的方式存于各盘(分散记录在组内相同扇区的各个硬盘上)。当一个硬盘发生故障,除故障盘外,写操作将继续对数据盘和校验盘进行操作。而读操作是通过对剩余数据盘和校验盘的异或计算重构故障盘上应有的数据来进行的。RAID3的优点是并行I/O传输和单盘容错,具有很高可靠性。缺点:每次读写要牵动整个组,每次只能完成一次I/O。
RAID4:
与RAID3相似,区别是:RAID3是按位或字节交叉存取,而RAID4是按块(扇区)存取,可以单独地对某个盘进行操作,无须像RAID3那样,哪怕每一次小I/O操作也要涉及全组,只需涉及组中两块硬盘(一块数据盘,一块校验盘)即可,从而提高了小量数据I/O速度。缺点:对于随机分散的小数据量I/O,固定的校验盘又成为I/O瓶颈,例如:事务处理。作两个很小的写操作,一个写在drive2的stripe1 上,一个写在drive3的 stripe2上,它们都要往校验盘上写,所以发生争用校验盘的问题。
RAID5:RAID 5 - Striping with floating parity drive(最常用)
是一种旋转奇偶校验独立存取的阵列方式,它与RAID3,RAID4不同的是没有固定的校验盘,而是按某种规则把奇偶校验信息均匀地分布在阵列所属的硬盘上,所以在每块硬盘上,既有数据信息也有校验信息。这一改变解决了争用校验盘的问题,使得在同一组内并发进行多个写操作。所以RAID5即适用于大数据量的操作,也适用于各种事务处理,它是一种快速、大容量和容错分布合理的磁盘阵列。当有N块阵列盘时,用户空间为N-1块盘容量。
RAID3、RAID5中,在一块硬盘发生故障后,RAID组从ONLINE变为DEGRADED方式,但I/O读写不受影响,直到故障盘恢复。但如果DEGRADED状态下,又有第二块盘故障,整个RAID组的数据将丢失。
RAID技术的应用
DAS --direct access storage device直接访问存储设备
DAS是磁盘存储设备的术语,以前被用在大、中型机上。使用在PC机上还包括硬盘设备DAS的最新形式是RAID。“直接访问”指访问所有数据的时间是相同的。
NAS --Network Attached Storage 网络附加存储设备
一种特殊目的的服务器,它具有嵌入式的软件系统,可以通过网络对个种的系统平台提供文件共享服务
SAN --Storage Area Networks 存储区域网
一种高速的专用网络,用于建立服务器、磁盘阵列和磁带库之间的一种直接联接。它如同扩展的存储器总线,将专用的集线器、交换器以及网关或桥路互相连接在一起。 SAN 常使用光纤通道。一个 SAN 可以是本地的或者是远程的,也可以是共享的或者是专用的。SAN 打破了存储器与服务器之间的束缚,允许你独立地选择最佳的存储器或者是最佳的服务器,从而提高可扩性和灵活性
RAID翻译成中文意思是“独立磁盘冗余阵列”,实际上也是我们经常所说的“磁盘阵列”。这种技术可以让多个独立的硬盘通过不同方式组合成一个硬盘组,硬盘组的性能较单个硬盘在性能上有大幅度的提升,并且硬盘组里还提供了数据恢复功能,当硬盘组内的硬盘出现故障时,其他硬盘会将这些数据进行恢复,极大保护了数据的安全。
通过RAID技术实现的硬盘组我们可以将它看成一个硬盘,可以对它进行分区,格式化等操作。因此,RAID技术出现后,在服务器和存储行业得到广泛应用,并且有一些简单的RAID功能也逐步进入了家用市场。
如何保证服务器上数据的安全呢?用多个硬盘建立RAID恐怕是最普遍的手段了,它可以保障我们的数据安全。今天就由笔者通过一问一答的方式为各位天极网的读者介绍RAID相关的知识。
问题1:什么是RAID?它是由什么组成的?
RAID的中文名字为磁盘冗余阵列,顾名思义他是由磁盘组成阵列而成的。因此RAID需要至少两块硬盘组成。RAID的基本想法就是把多个便宜的小磁盘组合到一起,成为一个磁盘组, 使性能达到或超过一个容量巨大、价格昂贵的磁盘。
早期的RAID诞生初衷并不是为了数据的安全,而是为了提高硬盘的读写速度。RAID 0和RAID 1就是为了这个目的而定义的。
问题2:什么情况需要使用RAID?
根据不同的实际情况作为网络管理员的我们应该为服务器采取不同的RAID种类。目前最流行的是RAID 0,RAID 1,RAID 5。其中RAID1和RAID 5过多的用于保证数据的安全,最大程度的防止磁盘意外坏掉而丢失数据情况的发生。而RAID 0则是为了提高磁盘读取的速度,他不提供任何数据备份和保障功能。知道了不同RAID应用的情况我们根据实际情况进行选择即可。
当然那些需要在硬盘上保存大量数据的人采用 RAID 技术将会很方便。主要表现在以下几个方面——
(1)增强了速度 ,服务器可以在同一时间从多个硬盘上读取数据。
(2)扩容了存储能力,多个硬盘组成更大的空间提供给服务器使用。
(3)可高效恢复磁盘,RAID提供了相当高的数据冗余功能,我们可以保证数据的完整无缺。
问题3: RAID都有哪些种类呢?希望可以使用直观容易懂的语言来描述。
对于RAID种类恐怕很多文章都介绍过,这里我就不详细说明理论东西了。恰巧笔者看到了一个外国描述RAID各个级别的图片,感觉很多地方定义得非常准确,而且通过看图了解RAID效果会更加显著。(如图1)
(1)先为大家讲解第一个小图,也就是标记着standalone的饮水机,该图主要是通过矿泉水桶为饮水机提供水源这个现实例子来比喻 RAID各个种类的区别。两个饮水机的出水孔相当于读取数据的接口,而矿泉水桶里的水则是宝贵的数据。这些数据正是通过出水孔这个数据接口而被用户读取 的,相应的一个矿泉水对应着一块硬盘。
正常情况下我们的计算机(例如家的里计算机而不是服务器)是只有一个硬盘的,这时我们要喝水(读取硬盘数据)都是由这一个矿泉水桶提供水源的。(如图2)
(2)接下来看第二个小图,也就是标记着cluster的图。(如图3)所谓cluster就是集群的意思,集群就是用多台服务器合并为一台, 所有服务器提供的服务和数据都是一样的。就像图中显示的有两台饮水机,说明有两台服务器,这两台服务器都可以提供用户数据(水源)。
????? 用户可以到左边的饮水机来取得数据,也可以到右边的饮水机来获得数据,这样无形中就提供了用户获得水(数据)的效率。但是这种cluster集群有一个缺点,那就是需要多台服务器的硬件支持,在一定程度上造成了浪费。一般来说中小企业是不可能让多台服务器提供同样数据和同样服务的。
(3)第三个小图标记着Hot swap,(如图4)他是热交换的意思。概念上有点类似于热备份。即一台饮水机(服务器),和第一个图一样他有一个硬盘,出水量也和standalone 一样。但是当饮水机上的矿泉水桶出现问题时,例如水没了或者桶破了,这时马上采取热交换技术,将旁边的矿泉水桶替代出问题的桶放到饮水机上,从而继续提供 服务。但是这种方法也存在一个缺点,那就是需要一个桶做备份,而且仅仅在原来桶出问题的情况下该桶才派上用场。另外换桶过程是需要时间的,无形中影响了服 务的提供。
(4)第四个图就是RAID中的老大了,这里说他是老大因为他是最早的RAID。Level 0即RAID 0级,通常称为带区,是利用带区数据映射技巧的特定性能。也就是说,当数据写入磁盘组的时候,被分成带区,交错写入磁盘组的磁盘中。这带来了高I/O性 能,低开销,但不提供任何冗余。磁盘组的存储量等于总的各磁盘容量之和。 (如图5)
当饮水机上的两个桶中任何一个出问题时用户都不能通过出水孔获得宝贵的数据(水源),因此他不提供冗余功能。当然在获得水源的过程中用户是通过两个矿泉水桶同时获得的,自然在出水量等多方面比只使用一个桶有优势。提高了数据读写的速度是RAID 0的最大特色。
可能有的读者会问在RAID 0图中最上面的那个桶出了问题不是一样可以出水吗?其实这个图仅仅是方便大家记忆和理解RAID,不可能通过简单的图就能100%准确的反映出只有进行理论描述才能说清楚的RAID种类。因此大家在理解图片的过程中也不要太过于拘泥。
(5)第五个图也是RAID中比较常用的,Level 1即RAID 1级,他就是常常提到的镜像RAID,(如图6)相比其他各级别RAID来说,这个级别使用的时间较长。RAID 1通过把同样的数据写到磁盘组的每一个磁盘上,将"镜像"复制到每个磁盘上,来提供数据冗余。镜像由于它的简单实现和数据的高可信度而一直很受欢迎。
????? 1级在读数据操作时,并行处理2个或更多的磁盘,因此数据传输速率高, 但是其他的操作时无法提供高速的I/O传输速率。1级提供了非常好的数据的高可信度,并且改善了读数据操作的性能,但是耗费很大。要求组成磁盘组的各磁盘 规格相同,而组成后磁盘组的容量仅仅等于一块磁盘的容量。
正如图中显示的一样,有两个矿泉水桶放在饮水机上,这样当其中一个出了问题,例如破坏或没水时并不会影响用户使用矿泉水,因为另一个桶将会完好 的提供水源。当然由于出水口没有出现任何扩大,所以出水量和使用一个矿泉水桶是一样的。因此出水速度没有变化却多加了一个桶使得RAID 1虽然可以提供最大程度的冗余,但是无法提高读取速度。
小提示:
有一个细节需要各位的读者特别注意,在RAID 1的图片中是两个矿泉水桶共用一个供水口,自然出水量没有什么变化。而下面的RAID 5则不同。稍后会详细讲解。
(6)第六个图是服务器最常用的RAID级别,即RAID 5。(如图7)笔者所在公司购买的服务器不管是DELL的还是IBM或者曙光服务器都是使用这个最常用的RAID类型。该级别的RAID是通过把奇偶校验分布到磁盘组中的一些或所有磁盘上,5级常使用缓冲技术来降低性能的不对称性。如果组成磁盘组的各磁盘规格相同,磁盘组容量等于磁盘的总容量,减去一块磁盘的容量。
上面提到了RAID 1只是使用了一个供水口,没有提高出水速度。然而在RAID 5中我们会发现图7中三个矿泉水桶分别安装在了三个进水口中,这样我们就可以同时由三个水桶为用户提供水源了,自然在出水速度上得到了大幅度提高。同样三 个矿泉水桶有一个出现问题也没有关系,不会影响到饮用水源。
有两点是图中没有表现出来的,这里再说明下方便读者有一个清晰的认识。(1)图7中只显示了三个水桶,实际上在现实工作中只要我们有三个以上的 硬盘(水桶)就都可以配置RAID5了。四个,五个甚至更多的硬盘来配置RAID 5也是没有问题的。(2)在我们配置RAID 5后如果出现两个以上硬盘出现问题时,数据是不能得到有效的保护的。也就是说RAID 5只能在其中一块硬盘出问题时保证数据完好。
(7)最后一个图实际上是前面介绍的RAID 0和RAID 1的组合,只要大家对RAID 0和RAID 1有了清晰的认识,这个图理解起来就简单得多了,他实际上就是先配置为RAID 0然后在配置RAID 1,相应的发挥了RAID 0和1的所有优点,避免了他们的所有缺点。鉴于篇幅关系这里就不详细介绍了,毕竟RAID 0+1在实际工作中使用的机会没有前面介绍的RAID 5多。
总结:
对于服务器不是很熟悉的读者来说,掌握RAID的概念是最最基本的。他是我们进入服务器知识领域的敲门砖,希望本篇文章中的饮水机图可以帮助大 家理解各种RAID和数据冗余类别。最后再重申一下图片仅仅是为了方便大家理解和记忆,对于RAID这样理论的东西很多细节和特点是无法通过简单的图片所 表现出来的,图片描述有不完整的地方还请各位多多包涵,毕竟本篇文章是写给那些RAID知识门外汉的读者的。
??? 提到RAID卡就不得不提到什么是RAID。RAID 是英文Redundant Array of Independent Disks的缩写,翻译成中文即为独立磁盘冗余阵列,或简称磁盘阵列。简单的说,RAID是一种把多块独立的硬盘(物理硬盘)按不同方式组合起来形成一个 硬盘组(逻辑硬盘),从而提供比单个硬盘更高的存储性能和提供数据冗余的技术。组成磁盘阵列的不同方式成为RAID级别(RAID Levels)。RAID技术经过不断的发展,现在已拥有了从 RAID 0 到 6 七种基本的RAID 级别。另外,还有一些基本RAID级别的组合形式,如RAID 10(RAID 0与RAID 1的组合),RAID 50(RAID 0与RAID 5的组合)等。不同RAID 级别代表着不同的存储性能、数据安全性和存储成本。
??? 数据冗余的功能是在用户数据一旦发生损坏后,利用冗余信息可以使损坏数据得以恢复,从而保障了用户数据的安全性。在用户看起来,组成的磁盘组就像是一个硬 盘,用户可以对它进行分区,格式化等等。总之,对磁盘阵列的操作与单个硬盘一模一样。不同的是,磁盘阵列的存储性能要比单个硬盘高很多,而且可以提供数据 冗余。
??? RAID卡就是用来实现RAID功能的板卡,通常是由I/O处理器、SCSI控制器、SCSI连接器和缓存等一系列零组件构成的。不同的RAID卡支持的 RAID功能不同。支持RADI0、RAID1、RAID3、RAID4、RAID5、RAID10不等。RAID卡可以让很多磁盘驱动器同时传输数据, 而这些磁盘驱动器在逻辑上又是一个磁盘驱动器,所以使用RAID可以达到单个的磁盘驱动器几倍、几十倍甚至上百倍的速率。这也是RAID卡最初想要解决的 问题。可以提供容错功能,这是RAID卡的第二个重要功能。
以前我们介绍了RAID 0的知识:我们通过RAID 0可以获得更大的单个磁盘的容量,且通过对多个磁盘的同时读取获得更高的存取速度。RAID 0首先考虑的是磁盘的速度和容量,忽略了安全……这期要介绍的是RAID 1、3、5。
RAID 1,又称镜像方式,也就是数据的冗余。在整个镜像过程中,只有一半的磁盘容量是有效的(另一半磁盘容量用来存放同这一半完全一样的数据)。同RAID 0相比,RAID 1首先考虑的是安全性,容量减半、速度不变。为了达到既高速又安全,出现了RAID 10(或者叫RAID 0+1),可以把RAID 10简单地理解成由多个磁盘组成的RAID 0阵列再进行镜像。
RAID 3和RAID 5都是校验方式。RAID 3的工作方式是用一块磁盘存放校验数据。由于任何数据的改变都要修改相应的数据校验信息,存放数据的磁盘有好几个且并行工作,而存放校验数据的磁盘只有一 个,这就带来了校验数据存放时的瓶颈。RAID 5的工作方式是将各个磁盘生成的数据校验切成块,分别存放到组成阵列的各个磁盘中去,这样就缓解了校验数据存放时所产生的瓶颈问题,但是分割数据及控制存 放都要付出速度上的代价。RAID 30、RAID 50相对应的工作方式可以像RAID 10那样去理解。
由此可见,使用RAID功能组成阵列,总能做到单个磁盘无法做到的功能,所以说RAID卡+多磁盘对我们来说是充满诱惑的。
什么是RAID和JBOD
计算机制造商们全面打起了提速战。作为计算机最重要的外部存储设备,硬盘当然也不甘落后,也相继推出了ATA66和ATA100硬盘。即便如此,硬盘存储仍然摆脱不了系统性能瓶颈的角色,甚至由于其它计算机部件幅度大得多的性能提升,使得硬盘速度虽有提升,但依旧陷入了更为尴尬的境地。基于现在的硬盘技术,要想大幅提速非常困难。不仅如此,硬盘存储在数据安全上也是问题多多。现在人们的工作已无法摆脱计算机,这一方面使得人们的工作效率大大提高,但潜在的危险也是明摆着的:一旦硬盘的数据损坏,人们长时间的工作就可能毁于一旦。
那么,有没有基于现在的硬盘提升存储性能和数据安全的技术呢?有,它就是RAID技术。
* 什么是RAID
RAID是英文Redundant Array of Inexpensive Disks的缩写,翻译成中文即为廉价磁盘冗余阵列,或简称磁盘阵列。简单地说,RAID是一种把多块独立的硬盘(物理硬盘)按不同方式组合起来形成一个硬盘组(逻辑硬盘),从而提供比单个硬盘更高的存储性能和提供数据冗余的技术。组成磁盘阵列的不同方式成为RAID级别(RAID Levels)。
数据冗余的功能是在用户数据一旦发生损坏后,利用冗余信息可以使损坏数据得以恢复,从而保障了用户数据的安全性。
* 什么是JBOD
JBOD(Just Bundle Of Disks)译成中文可以是“简单磁盘捆绑",通常又称为Span。JBOD不是标准的RAID级别,它只是在近几年才被一些厂家提出,并被广泛采用。
Span是在逻辑上把几个物理磁盘一个接一个串联到一起,从而提供一个大的逻辑磁盘。Span上的数据简单地从第一个磁盘开始存储,当第一个磁盘的存储空间用完后,再依次从后面的磁盘开始存储数据。Span存取性能完全等同于对单一磁盘的存取操作。Span也不提供数据安全保障。它只是简单地提供一种利用磁盘空间的方法,Span的存储容量等于组成Span的所有磁盘的容量的总和。
几种常见的RAID级别
几种常见的RAID级别及比较
RAID是Redundant Array of Inexpensive Disk的缩写,意为廉价冗余磁盘阵列,是磁盘阵列在技术上实现的理论标准,其目的在于减少错误、提高存储系统的性能与可靠度。常用的等级有0、1、3、5级等。
1.什么是RAID Level 0?
RAID Level 0是Data Striping(数据分割)技术的实现,它将所有硬盘构成一个磁盘阵列,可以同时对多个硬盘做读写动作,但是不具备备份及容错能力,它价格便宜,硬盘使用效率最佳,但是可靠度是最差的。以一个由两个硬盘组成的RAID Level 0磁盘阵列为例,它把数据的第1和2位写入第一个硬盘,第三和第四位写入第二个硬盘……以此类推,所以叫“数据分割”,因为各盘数据的写入动作是同时做的,所以它的存储速度可以比单个硬盘快几倍。但是,这样一来,万一磁盘阵列上有一个硬盘坏了,由于它把数据拆开分别存到了不同的硬盘上,坏了一颗等于中断了数据的完整性,如果没有整个磁盘阵列的备份磁带的话,所有的数据是无法挽回的。因此,尽管它的效率很高,但是很少有人冒着数据丢失的危险采用这项技术。
2.什么是RAID Level 1?
RAID Level 1使用的是Disk Mirror(磁盘映射)技术,就是把一个硬盘的内容同步备份复制到另一个硬盘里,所以具备了备份和容错能力,这样做的使用效率不高,但是可靠性高。
3.什么是RAID Level 3?
RAID Level 3采用Byte-interleaving(数据交错存储)技术,硬盘在SCSI控制卡下同时动作,并将用于奇偶校验的数据储存到特定硬盘机中,它具备了容错能力,硬盘的使用效率是安装几个就减掉一个,它的可靠度较佳。
4.什么是RAID Level 5?
RAID Level 5使用的是Disk Striping(硬盘分割)技术,与Level 3的不同之处在于它把奇偶校验数据存放到各个硬盘里,各个硬盘在SCSI控制卡的控制下平行动作,有容错能力,跟Level 3一样,它的使用效率也是安装几个再减掉一个。
RAID级别的优点和缺点 :
RAID 0 存取速度最快 没有容错
RAID 1 完全容错 成本高
RAID 3 写入性能最好 没有多任务功能
RAID 4 具备多任务及容错功能 Parity 磁盘驱动器造成性能瓶颈
RAID 5 具备多任务及容错功能 写入时有overhead
RAID 0+1/RAID 10 速度快、完全容错 成本高
什么是raid
RAID是英文Redundant Array of Inexpensive Disks的缩写,中文简称为廉价磁盘冗余阵列。RAID就是一种由多块硬盘构成的冗余阵列。
虽然RAID包含多块硬盘,但是在操作系统下是作为一个独立的大型存储设备出现。利用RAID技术于存储系统的好处主要有以下三种:
1. 通过把多个磁盘组织在一起作为一个逻辑卷提供磁盘跨越功能
2. 通过把数据分成多个数据块(Block)并行写入/读出多个磁盘以提高访问磁盘的速度
3. 通过镜像或校验操作提供容错能力
最初开发RAID的主要目的是节省成本,当时几块小容量硬盘的价格总和要低于大容量的硬盘。目前来看RAID在节省成本方面的作用并不明显,但是 RAID可以充分发挥出多块硬盘的优势,实现远远超出任何一块单独硬盘的速度和吞吐量。除了性能上的提高之外,RAID还可以提供良好的容错能力,在任何 一块硬盘出现问题的情况下都可以继续工作,不会受到损坏硬盘的影响。
RAID技术分为几种不同的等级,分别可以提供不同的速度,安全性 和性价比。根据实际情况选择适当的RAID级别可以满足用户对存储系统可用性、性能和容量的要求。常用的RAID级别有以下几种:NRAID,JBOD, RAID0,RAID1,RAID0+1,RAID3,RAID5等。目前经常使用的是RAID5和RAID(0+1)。
Re: 請問什麼是RAID? 回應
oasis表示 : 目前看到很多板子都有raid的字眼
到底raid是什麼樣的功能啊?
(Redundant Array of Independent Disks) 一個能增加效能或是具備資料容錯的子系統叫做RAID. 磁碟陣列利用多部低價的硬碟來組成一個大型的磁碟機, RAID 建立在2個或兩個以上的硬碟上, 並由一個含有RAID功能的磁碟控制晶片來控制.
RAID的技術起源來自1992年於美國加州柏克萊大學Patterson, Gibson 和 Katz 3人所發表的論文 : A Case for Redundant Arrays of Inexpensive Disks中所出現, Redundant意旨多餘的, 重複的, 在RAID的磁碟系統上會有部分空間用來紀錄多餘及重複的資料.
除了在高級的伺服器跟獨立的磁碟存取系統上有RAID, 在桌上型電腦上也出現了首次出現了容錯功能.
RAID 也能靠軟體來建立, 但是效率比較差, 尤其是在發生錯誤後資料重建時,例如在 Microsoft Windows 2000 以及 Linux 作業系統內都內建有軟體的 RAID.
RAID 藉由資料的平行寫入來增加效能並將位元或位元組的資料存取於多個磁碟當中, 所以超過一個以上的磁碟能同時被存取.
資料的容錯(Fault tolerance)能藉由映射(mirroring)或是同位元檢查(parity)來達成. Mirroring 100% 複製兩個磁碟的資料(RAID 1), 同位元檢查(RAID 3 and 5) 計算2個磁碟的資料並將計算的結果儲存在第3顆磁碟上: 來自於第一個磁碟的位元資料與來自第二個磁碟的位元資料經由互斥或運算(XOR)後, 把計算結果存在第三顆磁碟上,錯誤的磁碟能藉由熱差拔換成一顆新的磁碟, RAID 控制晶片將會自動重建錯誤磁碟鎖遺失的資料.
有哪些RAID 等級?
RAID LEVEL 0 僅僅將磁碟資料做分割並無容錯功能, 而組構的多顆硬碟機, 被依一定的切割區段, 連貫成一大容量的陣列硬碟以增進磁碟效能.
由於每顆硬碟可被同時存取, 所以RAID 0是最有效率的一種陣列類別, 以兩顆硬碟所組成的RAID0來說, 最高可以增進效能達1.7倍,適用於需要高效能資料存取的系統, 缺點是只要陣列裡有任何一顆硬碟損壞, 整個磁碟陣列的資料將無法復原.
RAID LEVEL 1
磁碟映射, 100% 完全複製兩顆硬碟的資料, 即使兩顆硬碟裡有一顆硬碟損壞, 剩下的硬碟仍有完整的資料,所以有高可靠度, 具容錯功能, 缺點是必須浪費一顆硬碟的容量.
RAID LEVEL 2
RAID 2 算是RAID1 的改良版, 不同的是每個位元資料經過Hamming Code 編碼後儲存在多顆硬碟上, 具容錯功能, 缺點是Hamming Code 只能容許一個位元的錯誤, 兩個以上的位元同時錯誤資料將無法復原, RAID 2是很少見的一種磁碟陣列.
RAID LEVEL 3
RAID 3 類似於 RAID2, 不同的是 RAID 3 捨棄需要費時運算的Hamming Code, 而改用速度較快的同位元檢查(Parity Check), 資料平均儲存在每顆硬碟, 但是另外需要額外一顆硬碟來儲存同位元檢查的資料, 優點是適合高資料傳輸量的系統, 資料流量小時也必須動到所有的硬碟, 所以只有小資料存取的系統並不適合.
RAID LEVEL 4
類似於 RAID3, 不同的是 RAID 3的資料存取是以位元或位元組為單位, 而且 RAID 4 是以硬碟區塊為單位, 數個區塊可以同時存取,資料可以等到佔滿整個區塊再儲存, 所以沒有RAID3的缺點, 但是同位元資料都存放在單一硬碟, 該硬碟容易損耗是缺點.
RAID LEVEL 5
類似於RAID4, 不同的是RAID5 將同位元資料以位元分割方式儲存在每顆硬碟上, 所以沒有RAID4的缺點, 但是同位元資料必須分割再儲存, 所以效率較RAID4差.
RAID LEVEL 6
高可靠度, 但是並不廣泛使用. 類似於RAID 5, 但是使用兩種不同的同位元檢查, 或是一種同位元堆疊使用, 雖然資料可靠度更高, 但是整體效能較RAID 5 更差
RAID LEVEL 10
綜合 RAID 0 跟 RAID 1的優點(mirroring and striping), 同時兼顧效率跟容錯, 有高傳輸效率, 缺點是會浪費一半的硬碟容量當資料備份用.
IDE RAID 大多只有支援 RAID 0, RAID1, RAID 10(0+1) 及 JBOD(Just a Bunch Of Disks), 少數有做成RAID 5,但是價格過高, 由於IDE RAID 打的是低價市場, 而RAID 5需要 CPU, XOR Engine 及 Momory, 所以大多是高價的SCSI RAID 有支援 RAID 3, 5.
IDE RAID
IDE RAID 0(Stripe)
一般IDE只有兩個通道(SCSI 只有一個) , IDE RAID正好利用了這個優點可以同時利用這兩個通道同時存取硬碟的資料, IDE RAID 0 的做法是將欲寫入硬碟的資料, 經由RAID CONTROLLER 將資料分為兩份, 分別寫入不同的兩個通道上的硬碟, 如此便能減少一半的寫入時間, 讀資料也是同樣的原理, 這就是為什麼IDE RAID 0 能增加PERFORMANCE的原因, 一般來說 IDE RAID 0 能增加約 70%的效能, 不過這跟整個系統的配備有很密切的關係, 像是硬碟的規格品牌或主機板的晶片組等等, 都會影響整體的效能.
硬碟容量計算方法 : RAID 0 必須使用 2顆以上的硬碟, 以最小硬碟的容量為基準, RAID的總容量為其倍數, 例如有2顆硬碟分別為 30GB 跟 40GB, 以最小硬碟的兩倍 60GB 為這組RAID 0的實際容量, 3顆硬碟 30GB, 40GB, 50GB, 總容量為 30GB *3 = 90GB, 依此類推.
IDE RAID 1(Mirror)
同樣善用同時存取兩個通道硬碟的方法, 將一份資料寫兩次, 分別同時寫到不同的兩顆硬碟中, 因而使兩顆硬碟有相同的資料, 也就是所謂的MIRROR, HARDWARE IDE RAID 1 不像SOFTWARE RAID 1需要發兩次寫入資料的命令, 所以要多花一倍的時間, 而是由RAID CONTROLLER 將一個寫入命令自動將資料寫兩次, 如此除了寫入時間不會增加之外, 也減少了CPU的負擔.
硬碟容量計算方法 : RAID 1 只能使用兩顆硬碟組成, 以較小硬碟的容量為總容量, 例如兩顆硬碟 30GB, 40GB 實際只有30GB可用, 較小的硬碟必須當成 SOURCE 碟, 所以使用兩顆容量相同大小的硬碟會比較適合.
IDE RAID 0+1(Stripe+Mirror)
同時擁有RAID 0 跟RAID 1 的優點 就成了 RAID 0+1 , RAID 0+1 需要有4顆硬碟, 分別由兩顆兩顆硬碟做成RAID 0, 再由這兩組RAID 0 做成RAID 1,如此便兼顧了效率跟資料保全的功能, 缺點是需要4顆硬碟, 而整個RAID 0+1 可用的硬碟容量只有實際的一半, 另一半必須當備份用, 所以實際上有四顆硬碟, 但是可用的只有兩顆硬碟的容量.
JBOD (Just a Bunch Of Disks)
嚴格說來JBOD不算是RAID, 只是單純將硬碟容量加起來, 例如有兩顆硬碟30GB, 40GB, 加起來變成一顆70GB的硬碟, 跟 RAID 0 一樣沒有容錯的功能 , 但是也不會增加效率, 只是方便使用硬碟而已.
什么是raid
[日期:2005-07-11] 来源: 作者: [字体:大 中 小]
独立磁盘冗余阵列(RAID——Redundant Arrays of Independent Disks)是一种使用多硬盘驱动器来存储数据的数据存储系统。可以使用多种不同的存储技术来实现不同等级的冗余、错误恢复和性能。
美国商务 3535.us
注册.Us美国域名
提供优质稳定美国主机空间
值得长期信赖的互联网合作伙伴
365音乐网yue365.com
365音乐网
最新流行歌曲排行榜
伊瓦科技 Iva.cn
提供福建电信服务器托管租用
送IVA服务器安全规划
品质+信誉+服务打造Iva品牌
乐博网 Lob.cn
VB.Net原创
提供VB.Net教程、书籍、实例
过去,高可用计算机的安装都要求有足够的数据冗余,即一套复杂的数据镜像备份在出现问题时可以马上替代当前的数据。随着数据量的不断增长,这种解决方案的花费令人难以接受,于是,IT开发人员用RAID(独立磁盘冗余阵列)来解决这一问题。不像磁盘镜像,一个RAID系统并不一定要具备两倍于数据量的磁盘空间,如一个RAID 5系统为了保证数据的使用和安全可以只增加数据量20%的磁盘空间。
磁盘阵列分类
根据磁盘阵列的结构、要求及数据处理特点,一般分为六个级别(也叫标准),即RAID 0、1、2、3、4、5,若另加一个派生的RAID 0+1,实际上有七个。其中RAID 2、3、4已基本淘汰,而RAID 5虽然最完备,但因至少由3块硬盘组成使其价格较高,往往应用于高中端网络数据库存储系统,RAID 0、1、0+1三种标准则主要应用于低中端网络数据库存储系统之中。
根据磁盘阵列的数据接口,一般可以分为SCSI接口、IDE 接口、光纤通道三类。虽然它们只是接口不同,但却可直接影响到磁盘阵列数据传输速度的快慢、数据存储备份容量的大小、设备成本与价格的高低、设备安装与维护的难度等,因而它们各有优劣,各自适应不同的应用环境,可满足不同用户的应用要求,所以磁盘阵列按接口分类广泛为人们所接受。磁盘阵列一般都能够在支持多个SCSI接口或光纤通道接口的同时,还可支持多台主机连接,从而可形成群集环境的高可用性架构和多主机共用网络存储数据系统。在高档SCSI接口的磁盘阵列中,还普遍支持32位RISC专用CPU,配置4~256MB高速缓存,使之能与主机并行运作,完全不需要任何软件或驱动程序支持,极大地提高了磁盘阵列的数据处理速度。
传统的RAID都配有专用处理器、大容量缓存以及高速SCSI硬盘为其阵列基础,基本上都支持RAID 0、1、5等工业标准,并具有热插拔冗余控制器的相互备援,支持全自动的故障切换,可为内存镜像提供无单点错误能力等。这种磁盘阵列技术成熟、性能稳定、数据安全、存储可靠,同时存取速度快、存储容量大,但价格十分昂贵,且安装、维护和管理较复杂,是大中型网络数据存储系统的首选产品;基于IDE接口的磁盘阵列IDE RAID,由于采用普通IDE接口硬盘,没有专用处理器和内存,在通过自带的BIOS调用下,可以利用主机CPU来实现RAID运算,因而结构简单、兼容性好、安装维护管理方便,其最大优点则是价格便宜(不仅省去了处理器和高速缓存,而且一块9G的SCSI硬盘在3千元左右,而一块9G的IDE硬盘只有1 千元左右),是中小型企业网络存储设备的重要选择内容。IDE RAID也基本上支持RAID 0、1、0+1标准,某些还支持RAID 5标准,普遍采用支持UDMA/66高速接口的普通硬盘作为阵列存储单元。其中多条独立数据通道在提高阵列性能的同时,能够增强数据的可靠性和数据的保护能力。另外,IDE RAID还普遍具有数据冗余功能,有的还可作为系统盘。光纤通道接口磁盘阵列是一种采用最新技术的高数据传输率和高带宽磁盘阵列,其最大特点是通道带宽高达100/200MB(SCSI只有80到160MB,IDE仅有33到66MB)。
被称为第二代磁盘阵列系统的RD20,因其采用了新型体系结构,具有高可用性、高性能和大数据量存储处理能力,具有灵活的计算能力和低廉的价格特点。RD20采用了先进的冗余设计技术与软件,有效地保证了数据的最大可用性。其冗余体系结构及标准组件设计使其具有很强的灵活性,主机接口设计为独立的可添加的夹层卡,用户可自由选择异端或单端宽 Ultra SCSI接口,大大方便了用户的自行设计外形结构和升级。单槽或双槽1.0625Gbps光纤接口,还允许用户直接与有光纤接口的主机、光纤交换机、网络集线器或其他冗余设备直接连接。RD20一般采用两个控制器,由RAID子系统进行双重控制,并由装在控制器中的温度传感器随时报告各扇区物理环境的异常现象,从而保证了系统的安全运行。
RD20的主要特点是,采用了处理频率为133MHz的嵌入式RISC处理器,有多个用于控制硬盘驱动器和主机接口的PCI智能I/O处理器,内部PCI总线可提供132Mbps的数据传输带宽,主要用于连接后端硬盘驱动器的四个独立旋转式 Ultra SCSI通道,大大提高了数据传输速率,其动态随机存储能力高达256MB,可双倍提高内存的读取速度。
RAID标准的意义
基于RAID标准的磁盘阵列,之所以具有性能可靠和容量极大的技术优势,其主要原因是由于:首先,RAID控制器通过并行数据读写克服了磁盘机电设计的限制,可大大提高存取速度。RAID可以同时操作多张磁盘的读写,如四张磁盘组成的阵列的读写速度几乎是单张磁盘的四倍。所以,RAID的高速读写能力既可用来完成象高速的实时图像编辑,也可用于大量数据的高速存储备份;其次,RAID系统提供了大容量的数据存储,而且多张磁盘上的数据对于主机来说是随时可用的。复杂的RAID系统甚至允许用户通过控制器所发出的数据途径来组成多盘菊链,使得高性能的RAID控制器可同时进行多达90多张盘片的寻址操作;最后,RAID系统运用了奇偶校验技术,极大地提高了数据的可靠性。因为当RAID控制器在磁盘上写数据时,RAID系统会记录相应的奇偶位冗余数据,若该磁盘失效,该奇偶信息可使RAID控制器在不降低性能的情况下,重新计算丢失的信息。下面我们来总结一下RAID标准的意义。
标准RAID:如前所述,传统RAID标准一般分为七级,其区别主要是阵列中的磁盘数与数据写入磁盘方式不同,但广泛应用的标准只有RAID 0、1、5和0+1四种,下面我们就来介绍这四种标准的意义。
符合RAID 0标准磁盘阵列的基本特点是数据传输率高和安全性低。由于该标准阵列只能操作两块硬盘,并采用了将数据流分割成大小相同的数据条块(条块标准:容量一般为 64KB,也可以调整为8KB或256KB),然后平均分配给两块硬盘,同时完成数据传输,其数据传输率基本上为两块硬盘传输率之和。虽然这种采用条块化存储数据的方法的传输数据率最快,效率最高,但因没有冗余,是以牺牲RAID的安全性为代价换到的极限性能,因此数据存储可靠性脆弱,一旦阵列中某块硬盘出现故障,整个系统也将随之瘫痪。
符合RAID 1标准磁盘阵列的基本标准是数据传输率低和安全性高,恰好与RAID 0标准相反。符合该标准的磁盘阵列也只能操作两块硬盘,由于它使用了磁盘镜像,提供了冗余容错机制,使得阵列在每次写或更换数据时,同样的操作可发生在另一张磁盘上,即每次操作都能把写往主盘的数据同步地写到镜像盘上,一旦某磁盘失效另一张磁盘将马上接手工作。
但这种工作方式使得镜像和冗余的成本较高,将浪费一半的磁盘空间,而且也影响了阵列的数据读写速度。虽然RAID 1还可以在读取数据时,保证同步在两个磁盘上搜索,并且能把先找到的数据传输回来,从而可改善阵列系统的调用效率,但因消耗主机CPU资源,几乎没有提高阵列系统的整体性能。所以RAID 1阵列只对紧要任务数据存储才有意义。
符合RAID 0+1标准的磁盘阵列,实际上已考虑了上述两类标准的因素,吸收了上述两种标准的优点,即在RAID 0标准上把写往两个硬盘的数据同时做两个镜像,既保证了数据传输的高速率,又保证了系统数据的高安全性,但需提供4块硬盘,所以成本也要大大高出前两者。
符合RAID 3标准的磁盘阵列包括数据分割,另外,它还指定一个驱动器来存储奇偶信息。这就提供了某种容错功能,在数据密集型环境或单一用户环境中尤其有益于访问较长的连续记录。RAID 3需要同步主轴驱动器来预防较短记录的性能下降。
符合RAID 5标准的磁盘阵列,采用了奇偶校验和并行传送技术,虽然没有使用专用驱动器,但将校验位按要求写到了阵列中的某一台驱动器上,将数据和奇偶信息分布在阵列中的全部磁盘上,同样也避免了专用奇偶磁盘的需要。RAID 5标准的读写操作可同时进行,并使用了Exclusive-OR算法来计算奇偶信息。
在RAID 5分布式奇偶校验块的例子中,磁盘3中的奇偶校验块是磁盘1、2、4和5上的数据的备份数据映像;磁盘2中的奇偶校验块是磁盘1、3、4和5上的数据的备份数据映像;磁盘1中的奇偶校验块是磁盘2、3、4和5上的数据的备份数据映像……依此类推。如果一块磁盘出现问题,控制器可以利用奇偶校验块来重建数据。
奇偶校验块可以降低RAID 3和5数据存储的开销。例如RAID 5用一块磁盘来为4块磁盘提供数据冗余,那就意味着用5块磁盘来存储4块磁盘容量的数据并为那些数据提供完全备份。
软硬件RAID:RAID还有基于软件的RAID和基于硬件的RAID,两者在性能方面有较大区别,且能在不同领域各领风骚。其中,基于软件的RAID 只能利用主机CPU和存储器来实现磁盘阵列的存储备份,根据操作系统又可分为基于Novell平台、Windows NT平台和Unix平台的软件RAID,软件RAID存储备份级别较低,由于高速缓冲存储器可以使得简单的分段和镜像完成得更快,可大大提高读写速度,因而任务较少时有明显优势。尤其是各类新版操作系统、容错软件和群集技术的普遍应用,又使得软件RAID在性能和功能方面到了充分的发挥。
基于硬件的RAID因为拥有自己独立的CPU和存储器,完全可以自己计算奇偶信息并完成文件定位,提高数据并行传输速度。硬件RAID又可分为内置插卡式和外置机柜式RAID,内置插卡式RAID也依赖主机的操作系统,要求有专门的驱动器连接和设置RAID控制器,其优势在于速度,因为内置式系统无需通过SCSI适配器,当然内置式价格便宜,但内置式系统大部分没有扩充插件板,容量大小固定不变。另外,因在一个时间段内只有一台主机可和内置系统通信,很难进行双机容错备份;外置机柜式RAID可以独立计算,不仅可以灵活地增加驱动器,提高RAID存储备份容量,还能简单地实现双机容错热备份。所以,内置式RAID系统主要应用于PC服务器或成为其选件,或成为其标准配置,外置式RAID系统则主要用于双机容错系统中的大容量高可靠系统中。
新标准RAID 7:还有一种磁盘阵列新标准RAID 7。其实,RAID 7不仅仅是一种技术,还是一种存储计算机(Storage Computer)。因为它与RAID 0、1、5标准有明显区别,RAID 7自身带有智能化实时操作系统和用于存储管理的软件工具,可完全独立于主机运行,不占用主机CPU资源。RAID 7不仅具有更高的性能和卓越的存储管理能力,而且集普通RAID标准的所有优点于一身,因而RAID 7系统整体性能极佳。
RAID 7存储计算机操作系统(Storage Computer Operating System)是一套实时事件驱动操作系统,主要用来进行系统初始化和安排RAID 7磁盘阵列的所有数据传输,并把它们转换到相应的物理存储驱动器上。通过自身系统中的阵列电脑板来设定和控制读写速度,存储计算机操作系统可使主机I/O 传递性能达到最佳。如果一个磁盘出现故障,还可自动执行恢复操作,并可管理备份磁盘的重建过程。
RAID 7突破了以往RAID标准的技术架构,采用了非同步访问,极大地减轻了数据写瓶颈,提高了I/O速度。所谓非同步访问,即RAID 7的每个I/O界面都有一条专用的高速通道,作为数据或控制信息的流通路径,因此可独立地控制自身系统中每个磁盘的数据存取。如果RAID 7有N个磁盘,那么除去一个校验盘(用作冗余计算)外,可同时处理N-1个主机系统随机发出的读/写指令,从而显著地改善了I/O应用。RAID 7系统内置实时操作系统还可自动对主机发送过来的读/写指令进行优化处理,以智能化方式将可能被读取的数据预先读入快速缓存中,从而大大减少了磁头的转动次数,提高了I/O速度。RAID 7可帮助用户有效地管理日益庞大的数据存储系统,并使系统的运行效率提高至少一倍以上,满足了各类用户的不同需求。
选购RAID小技巧
市场上的RAID产品丰富多彩,每个产品又含有一大堆的技术指标,令用户眼花缭乱。那么用户在选购RAID的时候应该考虑哪些因素呢?
首先,最重要的就是要搞清楚用RAID来做什么,也就是从应用角度出发来选择。因为RAID有很多标准,每种标准有不同的特长,所对应的应用也不同。如果用户要求快速地存取数据,而对可靠性没有过高要求,可以选择RIAD 0标准的产品。如前所述,RAID 0的数据传输率高,而安全性低。
RAID 1标准磁盘阵列的基本标准是数据传输率低和安全性高,正好与RAID 0相反,因此如果用户对速度没有需求,而要求可靠性的话,RAID 1是最好的选择。但是RAID的花费很高。
那么有没有一种产品速度又快、可靠性高呢?RAID 0和1的完美结合将这两种优点集成在一起,但是成本也不比RAID 1低。因为RAID 0/1的这种配置要求至少4块磁盘。数据块1写到磁盘1,数据镜像写到磁盘2;数据块2写到磁盘3,数据镜像写到磁盘4;数据块3写到磁盘1,数据镜像写到磁盘2……依此类推。因为数据被分割后存储在多个磁盘上,所以RAID 0/1既有RAID 0速度快的优点,又有RAID 1高可用性的优点。但是RAID 0/1也和RAID 1一样要求一组完全备份磁盘。所以也不能称之为经济高效的方案。
对于管理数据库操作和关键型业务的用户,其数据库的查询活动频繁,但数据量不大,RAID 5 的存储结构非常适合于电子邮件、电子表格和数据库应用等数据传输和事务处理。RAID 5阵列读磁盘的速度较快、数据可靠性高,有效容量达到66%~87%之间,因此性价比较高,是现在应用最广泛的磁盘阵列。而RAID 3较适合于视频系统。
互联网上的数据传输安全问题一直是用户所担心的,新标准RAID 7可保证数据传输的安全性,防止数据丢失。
除了考虑这些标准外,软硬件RAID也关系到成本和性能问题。硬RAID,速度快,但价格高;软件RAID便宜,但速度慢,主要应用于基于IDE接口的中低档磁盘阵列中。
第二,RAID的冗余性、可靠性和可维护性也是需要考虑的因素。
冗余性主要表现在RAID控制器、电源、风扇、磁盘的冗余性。如RAID控制器冗余就有两种方式,一种是一个控制器做备份,另一个工作,当工作控制器出故障后,备份控制器会接替其工作;另一种是两个控制器都是工作控制器,同时工作,当一个出故障,另一个会继续工作,只是带宽也会减半。
可靠性主要表现在电源、风扇、磁盘等是否能够热插拔。它们的这些性能体现在数据的可靠性方面。可维护性即是否有单点故障出现等。
此外,用户还应根据自己的需求选择是SCSI接口还是光纤通道接口的RAID,这些都对性能和价格有很大的影响。
RAID技术入门
作者:IT动力源 IT来源:收集整理 点击数: 更新时间:2004-9-10
RAID技术入门
计算机技术的发展,已使的CPU的速度进入GHz 时代。而计算机的内存也有66MHz发展到 100MHz 甚至133MHz。显卡的速度也日新月异。 计算机制造商们全面打起了提速战。作为计算机最重要的外部存储设备,硬盘当然也不甘落后,也相继推出了ATA66和ATA100 硬盘。即便如此,硬盘存储仍然摆脱不了系统性能瓶颈的角色,甚至由于其它计算机部件幅度大得多的性能提升,使得硬盘速度虽有提升,但依旧陷入了更为尴尬的境地。而且由于硬盘速度很大程度上依赖于机械部分,因此基于现在的硬盘技术,要想大副提速非常困难。
不仅如此, 硬盘存储在数据安全上也是问题多多。现在人们的工作已无法摆脱计算机, 这一方面使得人们的工作效率大大提高, 但潜在的危险也是明摆着的: 一旦硬盘的数据损坏,人们长时间的工作就可能毁于一旦。
那么,有没有基于现在的硬盘提升存储性能和数据安全的技术呢?有,它就是RAID技术。
什么是RAID?
RAID是英文Redundant Array of Independent Disks的缩写,翻译成中文即为独立磁盘冗余阵列,或简称磁盘阵列。简单的说,RAID是一种把多块独立的硬盘(物理硬盘)按不同方式组合起来形成一个硬盘组(逻辑硬盘),从而提供比单个硬盘更高的存储性能和提供数据冗余的技术。组成磁盘阵列的不同方式成为RAID级别(RAID Levels)。
数据冗余的功能是在用户数据一旦发生损坏后,利用冗余信息可以使损坏数据得以恢复,从而保障了用户数据的安全性。
在用户看起来,组成的磁盘组就像是一个硬盘,用户可以对它进行分区,格式化等等。总之,对磁盘阵列的操作与单个硬盘一模一样。不同的是,磁盘阵列的存储性能要比单个硬盘高很多,而且可以提供数据冗余。
Independent还是Inexpensive?
细心的读者可以注意到,一部分文章把RAID 解释为 Redundant Array of Inexpensive Disks,即廉价磁盘冗余阵列。那么,到底是Independent 还是Inexpensive呢? 说到这里,我们要看一看RAID的历史了。
1988年,由加州大学Berkeley 分校的David A. Patterson等人在原有技术的基础上进行了扩充,提出几种新的磁盘组织方式,目的是用多个用于个人电脑上的廉价磁盘替代当时数据中心系统普遍采用的价格昂贵的SLEDs磁盘(Single Large Expensive Disks)。根据这一目的,David A. Patterson 等人首次使用了Redundant Array of Inexpensive Disks这一名称。RAID被提出后,引起了人们的极大兴趣,并获得了成功。
但是随着存储技术的发展,SLEDs磁盘已经成为过去。现在普遍采用的磁盘在价格和性能上相差不多,因此如果再用廉价(Inexpensive)来形容组成RAID的磁盘就不合适了。 为了适应技术的发展,委员会开始普遍把RAID解释为Redundant Array of Independent Disks。
RAID级别:
RAID技术经过不断的发展,现在已拥有了从 RAID 0 到 6 七种基本的RAID 级别。另外,还有一些基本RAID级别的组合形式,如RAID 10(RAID 0与RAID 1的组合),RAID 50(RAID 0与RAID 5的组合)等。
不同RAID 级别代表着不同的存储性能、数据安全性和存储成本。下面就针对一些最为常用的 RAID级别做简单介绍。
RAID 0 :
RAID 0又称为Stripe或Striping,它代表了所有RAID级别中最高的存储性能。RAID 0提高存储性能的原理是把连续的数据分散到多个磁盘上存取,这样,系统有数据请求就可以被多个磁盘并行的执行,每个磁盘执行属于它自己的那部分数据请求。这种数据上的并行操作可以充分利用总线的带宽,显著提高磁盘整体存取性能。
示图 1
如图1所示:系统向三个磁盘组成的逻辑硬盘(RADI 0 磁盘组)发出的I/O数据请求被转化为3项操作,其中的每一项操作都对应于一块物理硬盘。我们从图中可以清楚的看到通过建立RAID 0,原先顺序的数据请求被分散到所有的三块硬盘中同时执行。从理论上讲,三块硬盘的并行操作使同一时间内磁盘读写速度提升了3倍。但由于总线带宽等多种因素的影响,实际的提升速率肯定会低于理论值,但是,大量数据并行传输与串行传输比较,提速效果显著显然毋庸置疑。
RAID 0的缺点是不提供数据冗余,因此一旦用户数据损坏,损坏的数据将无法得到恢复。
RAID 0具有的特点,使其特别适用于对性能要求较高,而对数据安全不太在乎的领域,如图形工作站等。对于个人用户,RAID 0也是提高硬盘存储性能的绝佳选择。
RAID 1:
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。如图2所示:
示图 2
当读取数据时,系统先从RAID 0的源盘读取数据,如果读取数据成功,则系统不去管备份盘上的数据;如果读取源盘数据失败,则系统自动转而读取备份盘上的数据,不会造成用户工作任务的中断。当然,我们应当及时地更换损坏的硬盘并利用备份数据重新建立Mirror,避免备份盘在发生损坏时,造成不可挽回的数据损失。
由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mirror虽不能提高存储性能,但由于其具有的高数据安全性,使其尤其适用于存放重要数据,如服务器和数据库存储等领域。
RAID 0+1:
正如其名字一样RAID 0+1是RAID 0和RAID 1的组合形式,也称为RAID 10。
以四个磁盘组成的RAID 0+1为例,其数据存储方式如图3所示:
示图 3
RAID 0+1是存储性能和数据安全兼顾的方案。它在提供与RAID 1一样的数据安全保障的同时,也提供了与RAID 0近似的存储性能。
由于RAID 0+1也通过数据的100%备份提供数据安全保障,因此RAID 0+1的磁盘空间利用率与RAID 1相同,存储成本高。
RAID 0+1的特点使其特别适用于既有大量数据需要存取,同时又对数据安全性要求严格的领域,如银行、金融、商业超市、仓储库房、各种档案管理等。
RAID 5:
RAID 5 是一种存储性能、数据安全和存储成本兼顾的存储解决方案。 以四个硬盘组成的RAID 5为例,其数据存储方式如图4所示:
示图 4
图中,P0为D0,D1和D2的奇偶校验信息,其它以此类推。
由图中可以看出,RAID 5不对存储的数据进行备份,而是把数据和相对应的奇偶校验信息存储到组成RAID5的各个磁盘上,并且奇偶校验信息和相对应的数据分别存储于不同的磁盘上。当RAID5的一个磁盘数据发生损坏后,利用剩下的数据和相应的奇偶校验信息去恢复被损坏的数据。
RAID 5可以理解为是RAID 0和RAID 1的折衷方案。RAID 5可以为系统提供数据安全保障,但保障程度要比Mirror低而磁盘空间利用率要比Mirror高。RAID 5具有和RAID 0相近似的数据读取速度,只是多了一个奇偶校验信息,写入数据的速度比对单个磁盘进行写入操作稍慢。同时由于多个数据对应一个奇偶校验信息,RAID 5的磁盘空间利用率要比RAID 1高,存储成本相对较低。
JBOD:
JBOD(Just Bundle Of Disks)译成中文可以是"简单磁盘捆绑",通常又称为Span。 JBOD 不是标准的RAID级别,它只是在近几年才被一些厂家提出,并被广泛采用。三个硬盘组成的Span为例,其数据存储方式如图5所示:
示图 5
Span是在逻辑上把几个物理磁盘一个接一个串联到一起,从而提供一个大的逻辑磁盘。Span上的数据简单的从第一个磁盘开始存储, 当第一个磁盘的存储空间用完后, 再依次从后面的磁盘开始存储数据。
Span存取性能完全等同于对单一磁盘的存取操作。Span也不提供数据安全保障。它只是简单的提供一种利用磁盘空间的方法,Span的存储容量等于组成Span的所有磁盘的容量的总和。
IDE RAID与SCSI RAID
IDE和SCSI是计算机的两种不同的接口,前者普遍用于PC计算机,而后者一般用于Apple Macintosh系统和UNIX操作系统。
RAID技术问世时是基于SCSI接口,因其成本高,因此主要面向服务器等高端应用。普通用户根本无缘拥有RAID。
随着计算机的大众化,由此带动PC计算机的空前繁荣。相应的,在市场的带动下,用于PC计算机的IDE接口设备价格大幅降低,同时性能大幅提高。以30G 容量硬盘为例,IDE接口的硬盘现在只需1000元左右,而SCSI接口的硬盘则需5000到6000元,而它们的性能则相差无几。
但是,RAID技术仍只基于SCSI接口,普通的PC用户在羡慕RAID技术的好处的同时,却无法拥有RAID。
可喜的是,近来一些厂商看到了 RAID 在低端用户中的巨大市场,开始把RAID技术移植到IDE 接口上,推出了基于IDE接口的RAID应用,称为IDE RAID。而基于SCSI接口的RAID应用则相应称为SCSI RAID。
与SCSI RAID相比,IDE RAID具有极低的价格,和一点也不逊色的性能表现,相应的,IDE RAID 解决方案就具有SCSI RAID无法比拟的高性价比。因此 IDE RAID自推出后,受到普通PC用户和普通商业应用的普遍欢迎。RAID对于普通的用户来说,再也不是什么奢侈的技术了。
RAID技术简介
本文出自: www.ibm.com.cn (2001-06-05 22:08:00)
RAID是通过磁盘阵列与数据条块化方法相结合, 以提高数据可用率的一种结构.IBM早于1970年就开始研究
此项技术.RAID 可分为RAID级别1到RAID级别6, 通常称为: RAID 0, RAID 1, RAID 2, RAID 3,RAID 4,
RAID 5,RAID6.每一个RAID级别都有自己的强项和弱项. "奇偶校验"定义为用户数据的冗余信息, 当硬盘
失效时, 可以重新产生数据.
RAID 0: RAID 0 并不是真正的RAID结构, 没有数据冗余. RAID 0 连续地分割数据并并行地读/写于多个磁盘上.
因此具有很高的数据传输率. 但RAID 0在提高性能的同时,并没有提供数据可靠性,如果一个磁盘失效,
将影响整个数据.因此RAID 0 不可应用于需要数据高可用性的关键应用.
RAID 1: RAID 1通过数据镜像实现数据冗余, 在两对分离的磁盘上产生互为备份的数据. RAID 1可以提高读的性能,
当原始数据繁忙时, 可直接从镜像拷贝中读取数据.RAID 1是磁盘阵列中费用最高的, 但提供了最高的数据
可用率. 当一个磁盘失效, 系统可以自动地交换到镜像磁盘上, 而不需要重组失效的数据.
RAID 2: 从概念上讲, RAID 2 同RAID 3类似, 两者都是将数据条块化分布于不同的硬盘上, 条块单位为位或字节.
然而RAID 2 使用称为"加重平均纠错码"的编码技术来提供错误检查及恢复. 这种编码技术需要多个磁盘存
放检查及恢复信息, 使得RAID 2技术实施更复杂. 因此,在商业环境中很少使用.
RAID 3: 不同于RAID 2, RAID 3使用单块磁盘存放奇偶校验信息. 如果一块磁盘失效, 奇偶盘及其他数据盘可以重新
产生数据. 如果奇偶盘失效,则不影响数据使用.RAID 3对于大量的连续数据可提供很好的传输率, 但对于随
机数据, 奇偶盘会成为写操作的瓶颈.
RAID 4: 同RAID 2, RAID 3一样, RAID 4, RAID 5也同样将数据条块化并分布于不同的磁盘上, 但条块单位为块或记
录. RAID 4使用一块磁盘作为奇偶校验盘, 每次写操作都需要访问奇偶盘, 成为写操作的瓶颈. 在商业应用
中很少使用.
RAID 5: RAID 5没有单独指定的奇偶盘, 而是交叉地存取数据及奇偶校验信息于所有磁盘上. 在RAID5 上, 读/写指针
可同时对阵列设备进行操作, 提供了更高的数据流量. RAID 5更适合于小数据块, 随机读写的数据.RAID 3
与RAID 5相比, 重要的区别在于RAID 3每进行一次数据传输,需涉及到所有的阵列盘.而对于RAID 5来说, 大部
分数据传输只对一块磁盘操作, 可进行并行操作.在RAID 5中有"写损失", 即每一次写操作,将产生四个实际的
读/写操作, 其中两次读旧的数据及奇偶信息, 两次写新的数据及奇偶信息.
RAID 6: RAID 6 与RAID 5相比,增加了第二个独立的奇偶校验信息块. 两个独立的奇偶系统使用不同的算法, 数据的可
靠性非常高. 即使两块磁盘同时失效,也不会影响数据的使用. 但需要分配给奇偶校验信息更大的磁盘空间,
相对于RAID 5有更大的"写损失". RAID 6 的写性能非常差, 较差的性能和复杂的实施使得RAID 6很少使用.
[精华] RAID技术基础知识
http://www.chinaunix.net 作者:好好先生 发表于:2006-12-04 22:02:40
【发表评论】【查看原文】【服务器及硬件技术讨论区】【关闭】
RAID,为Redundant Arrays of Independent Disks的简称,中文为廉价冗余磁盘阵列。在1987年由美国柏克莱大学提出RAID(Redundant Arrayof Inexpensive Disks)理论,作为高性能的存储系统,巳经得到了越来越广泛的应用。 RAID的级别从RAID概念的提出到现在,巳经发展了多个级别,有明确标准级别分别是0、1、2、3、4、5等。但是最常用的是0、1、3、5四个级别。其他还有6、7、10、30、50等。RAID为使用者降低了成本、增加了执行效率,并提供了系统运行的稳定性。
标准的RAID写操作,包括如:RAID4或RAID5中所必需的校验计算,需包括以下几个步骤:
(1)以校验盘中读取数据
(2)以目标数据盘中读取数据
(3)以旧校验数据,新数据及已存在数据,生成新的校验数据
(4)将新校验数据写入校验盘
(5)将新数据写入目标数据盘
当主机将一个待写入阵列RAID组中的数据发送到阵列时,阵列控制器将该数据保存在缓存中并立即报告主机该数据的写入工作已完成。该数据写入到阵列硬盘的工作由阵列控制器完成,该数据可继续存放在Cache中直到Cache满,而且要为新数据腾出空间而必须刷新时或阵列需停机时,控制器会及时将该数据从Cache写入阵列硬盘中。
这种缓存回写技术使得主机不必等待RAID校验计算过程的完成,即可处理下一个读写任务,这样,主机的读写效率大为增加。当主机命令将一个数据写入硬盘,则阵列控制器将该数据写入缓存最上面的位置,只有新数据才会被控制器按Write-Back Cache的方式最后写入硬盘。
RAID级别
NRAID:
硬盘连续使用。NRAID 意思是不使用RAID功能。它使用硬盘的总容量组成逻辑碟(不使用条块读写)。换句话说,它生成的逻辑碟容量就是物理碟容量的总和。此外,NRAID 不提供资料的备余。
JBOD:
JBOD 的含意是控制器将机器上每颗硬盘都当作单独的硬盘处理,因此每颗硬盘都被当作单颗独立的逻辑碟使用。此外,JBOD并不提供资料备余的功能。
RAID0:RAID 0 - Disk Stripping without parity (常用)
又称数据分块,即把数据分成若干相等大小的小块,并把它们写到阵列上不同的硬盘上,这种技术又称“Stripping”(即将数据条带化),这种把数据分布在多个盘上,在读写时是以并行的方式对各硬盘同时进行操作。从理论上讲,其容量和数据传输率是单个硬盘的N倍。N为构成RAID0的硬盘总数。当然,若阵列控制器有多个硬盘通道时,对多个通道上的硬盘进行RAID0操作,I/O性能会更高。因此常用于图象,视频等领域,RAID0 I/O传输率较高,但平均故障时间MTTF只有单盘的N分之一,因此RAID0可靠性最差。
RAID1:RAID 1 - Disk Mirroring(较常用)
又称镜像。即每个工作盘都有一个镜像盘,每次写数据时必须同时写入镜像盘,读数据时只从工作盘读出,一旦工作盘发生故障立即转入镜像盘,从镜像盘中读出数据。当更换故障盘后,数据可以重构,恢复工作盘正确数据,这种阵列可靠性很高,但其有效容量减小到总容量一半以下,因此RAID1常用于对容错要求极严的应用场合,如财政、金融等领域。
RAID (0+1):
结合了RAID 0 和 RAID 1 — 条块化读写的同时使用镜像操作。 RAID (0+1) 允许多个硬盘损坏,因为它完全使用硬盘来实现资料备余。如果有超过两个硬盘做RAID 1,系统会自动实现RAID (0+1)。
RAID2:
又称位交叉,它采用汉明码作盘错校验,采用按位交叉存取,运用于大数据的读写,但冗余信息开销太大(校验盘为多个),已被淘汰。
RAID3:RAID 3 - Parallel Disk Array
为单盘容错并行传输。即采用Stripping技术将数据分块,对这些块进行异或校验,校验数据写到最后一个硬盘上。它的特点是有一个盘为校验盘,数据以位或字节的方式存于各盘(分散记录在组内相同扇区的各个硬盘上)。当一个硬盘发生故障,除故障盘外,写操作将继续对数据盘和校验盘进行操作。而读操作是通过对剩余数据盘和校验盘的异或计算重构故障盘上应有的数据来进行的。RAID3的优点是并行I/O传输和单盘容错,具有很高可靠性。缺点:每次读写要牵动整个组,每次只能完成一次I/O。
RAID4:
与RAID3相似,区别是:RAID3是按位或字节交叉存取,而RAID4是按块(扇区)存取,可以单独地对某个盘进行操作,无须像RAID3那样,哪怕每一次小I/O操作也要涉及全组,只需涉及组中两块硬盘(一块数据盘,一块校验盘)即可,从而提高了小量数据I/O速度。缺点:对于随机分散的小数据量I/O,固定的校验盘又成为I/O瓶颈,例如:事务处理。作两个很小的写操作,一个写在drive2的stripe1 上,一个写在drive3的 stripe2上,它们都要往校验盘上写,所以发生争用校验盘的问题。
RAID5:RAID 5 - Striping with floating parity drive(最常用)
是一种旋转奇偶校验独立存取的阵列方式,它与RAID3,RAID4不同的是没有固定的校验盘,而是按某种规则把奇偶校验信息均匀地分布在阵列所属的硬盘上,所以在每块硬盘上,既有数据信息也有校验信息。这一改变解决了争用校验盘的问题,使得在同一组内并发进行多个写操作。所以RAID5即适用于大数据量的操作,也适用于各种事务处理,它是一种快速、大容量和容错分布合理的磁盘阵列。当有N块阵列盘时,用户空间为N-1块盘容量。
RAID3、RAID5中,在一块硬盘发生故障后,RAID组从ONLINE变为DEGRADED方式,但I/O读写不受影响,直到故障盘恢复。但如果DEGRADED状态下,又有第二块盘故障,整个RAID组的数据将丢失。
RAID技术的应用
DAS --direct access storage device直接访问存储设备
DAS是磁盘存储设备的术语,以前被用在大、中型机上。使用在PC机上还包括硬盘设备DAS的最新形式是RAID。“直接访问”指访问所有数据的时间是相同的。
NAS --Network Attached Storage 网络附加存储设备
一种特殊目的的服务器,它具有嵌入式的软件系统,可以通过网络对个种的系统平台提供文件共享服务
SAN --Storage Area Networks 存储区域网
一种高速的专用网络,用于建立服务器、磁盘阵列和磁带库之间的一种直接联接。它如同扩展的存储器总线,将专用的集线器、交换器以及网关或桥路互相连接在一起。 SAN 常使用光纤通道。一个 SAN 可以是本地的或者是远程的,也可以是共享的或者是专用的。SAN 打破了存储器与服务器之间的束缚,允许你独立地选择最佳的存储器或者是最佳的服务器,从而提高可扩性和灵活性
RAID翻译成中文意思是“独立磁盘冗余阵列”,实际上也是我们经常所说的“磁盘阵列”。这种技术可以让多个独立的硬盘通过不同方式组合成一个硬盘组,硬盘组的性能较单个硬盘在性能上有大幅度的提升,并且硬盘组里还提供了数据恢复功能,当硬盘组内的硬盘出现故障时,其他硬盘会将这些数据进行恢复,极大保护了数据的安全。
通过RAID技术实现的硬盘组我们可以将它看成一个硬盘,可以对它进行分区,格式化等操作。因此,RAID技术出现后,在服务器和存储行业得到广泛应用,并且有一些简单的RAID功能也逐步进入了家用市场。
相关推荐
使用RAID磁盘阵列模拟器,可以在不实际操作硬件的情况下学习和实践这些过程。模拟器提供了虚拟环境,可以模拟不同RAID级别的创建、故障恢复等场景。通过模拟器,你可以安全地试验各种配置,理解它们的工作原理和优...
本文将详细介绍 RAID 磁盘阵列的配置方法和相关理论知识,为读者提供一个全面的 RAID 磁盘阵列概述。 一、磁盘阵列实现方式 磁盘阵列有两种实现方式:软件阵列和硬件阵列。软件阵列是通过网络操作系统自身提供的...
本文将详细介绍 DELL 服务器 RAID 磁盘阵列配置图解,涵盖 RAID 的种类、应用、软件 RAID、硬件 RAID、外置 RAID、配置 RAID 磁盘阵列等方面的知识点。 RAID(Redundant Array of Independent Disks,独立磁盘冗余...
### RAID磁盘阵列基础知识与配置详解 #### 一、磁盘阵列实现方式 磁盘阵列(RAID)的实现方式主要分为两大类:软件阵列与硬件阵列。 1. **软件阵列**: - **定义**:通过网络操作系统自身提供的磁盘管理功能,将...
总之,通过学习“RAID磁盘阵列高级教学课件”,你将能够深入了解RAID技术的核心原理,掌握如何根据业务需求选择和配置适当的RAID级别,以及如何管理和维护RAID系统,以确保数据的安全性和系统的稳定性。
### RAID磁盘阵列知识点详解 #### 一、RAID磁盘阵列概述 RAID(Redundant Array of Independent Disks,独立冗余磁盘阵列)是一种将多个独立的物理磁盘驱动器组合成一个逻辑单元的技术,旨在通过数据冗余、负载...
"RAID磁盘阵列配置详解" 磁盘阵列(RAID,Redundant Array of Independent Disks)是当前数据备份的主要方案之一,特别是在中小型企业中应用非常广泛。然而,许多网管员只是在各种媒体上看到相关的理论知识介绍,却...
【服务器RAID磁盘阵列恢复知识详解】 服务器RAID磁盘阵列的恢复是一个复杂且关键的过程,尤其当涉及到企业的重要数据时。本篇主要介绍了一次针对IBM服务器RAID5阵列恢复的任务,该阵列由三块SAS接口硬盘构成,因两...
本压缩包文件聚焦于H3C的存储知识,特别是RAID(冗余磁盘阵列)技术和磁盘阵列的配置与管理。以下是基于这些主题的详细知识解析: 1. **RAID(冗余磁盘阵列)**:RAID是一种通过将数据分布在多个硬盘上来提高性能和...
本文档主要介绍了DELL服务器的RAID5磁盘阵列配置教程,涵盖了磁盘阵列的基本概念、RAID的种类、软件RAID和硬件RAID的区别、外置RAID的概念、配置RAID磁盘阵列的步骤等知识点。 一、磁盘阵列的概念 磁盘阵列是一种...
组装 RAID 5 及 RAID 1 磁盘阵列服务器知识点 一、引言 RAID(Redundant Array of Independent Disks)磁盘阵列技术是当前服务器存储解决方案中的热门话题。RAID 技术可以将多个物理硬盘组合在一起,以提高存储...
### RAID磁盘阵列数据恢复的关键知识点 #### 一、RAID概述 - **定义**:RAID(Redundant Array of Independent Disks)是一种通过将多个独立的磁盘组合成一个逻辑单元来提高存储性能和可靠性的技术。 - **优势**:...
磁盘阵列的不同实现方式被称为RAID级别,常见的RAID级别包括RAID 0、RAID 1、RAID 2、RAID 3、RAID 4、RAID 5以及一些扩展级别如RAID 6和RAID 10等。 - **RAID 0**:数据条带化,无冗余,提供高速度,但无容错能力...
RAID(Redundant Array of Inexpensive Disks)磁盘阵列技术是一种通过组合多个独立的硬盘驱动器来提供更高性能、数据安全性和存储容量的技术。它将数据分散存储在多个磁盘上,从而实现了速度提升、容错能力和容量...
### 磁盘阵列基础知识详解 #### 一、磁盘阵列的必要性 随着计算机技术的发展,CPU处理能力和内存访问速度得到了显著提升,但数据存储设备——尤其是磁盘的存取速度却没有同步增长,这导致磁盘成为了整个系统的性能...
以下是关于“P2000磁盘阵列硬盘更换”的详细步骤和相关知识点: 1. **网络连接与登录**: - 在进行磁盘阵列维护时,首先要确保通过网线连接到控制器A或B的管理口。将主机IP设置为10.0.0.X(X为除1,2,3外的任何数字...