`

RAID级别介绍(转载)

阅读更多
独立磁盘冗余数组(RAID, Redundant Array of Independent Disks)简称磁盘数组,其基本思想就是把多个相对便宜的硬盘组合起来,成为一个磁盘数组组,使性能达到甚至超过一个价格昂贵、容量巨大的硬盘。根据选择的版本不同,RAID比单颗硬盘有以下一个或多个方面的好处:增强数据集成度,增强容错功能,增加处理量或容量。另外,磁盘数组组对于电脑来说, 看起来就像一个单独的硬盘或逻辑存储单元。分为RAID-0,RAID-1,RAID-1E,RAID-5,RAID-6,RAID-7,RAID-10,RAID-50。


RAID 0
将多个磁盘合并成一个大的磁盘,不具有冗余,并行I/O,速度最快。RAID 0亦称为带区集。它是将多个磁盘并列起来,成为一个大磁盘。在存放数据时,其将数据按磁盘的个数来进行分段,然后同时将这些数据写进这些盘中。 所以,在所有的级别中,RAID 0的速度是最快的。但是RAID 0没有冗余功能,如果一个磁盘(物理)损坏,则所有的数据都会丢失。
理论上越多的磁盘效能就等于[单一磁盘效能]x[磁盘数],但实际上受限于总线I/O瓶颈及其它因素的影响,RAID 效能会随边际递减,也就是说,假设一个磁盘的效能是50MB/秒,两个磁盘的RAID 0效能约96MB/秒,三个磁盘的RAID 0也许是130MB/秒而不是150MB/秒。所以,两个磁盘的RAID 0最能明显感受到效能的提升。

但如果是以软件方式来实现RAID,则磁盘的空间则不见得受限于此(例如Linux Software RAID),通过软件实现可以经由不同的组合而善用所有的磁盘空间。

[编辑]RAID 1
两组以上的N个磁盘相互作镜像,在一些多线程操作系统中能有很好的读取速度,另外写入速度有微小的降低。除非拥有相同数据的主磁盘与镜像同时损坏,否则只要一个磁盘正常即可维持运作,可靠性最高。RAID 1就是镜像。其原理为在主硬盘上存放数据的同时也在镜像硬盘上写一样的数据。当主硬盘(物理)损坏时,镜像硬盘则代替主硬盘的工作。因为有镜像硬盘做数据备份,所以RAID 1的数据安全性在所有的RAID级别上来说是最好的。但无论用多少磁盘做RAID 1,仅算一个磁盘的容量,是所有RAID上磁盘利用率最低的一个级别。

[编辑]RAID 2
这是RAID 0的改良版,以汉明码(Hamming Code)的方式将数据进行编码后分区为独立的位,并将数据分别写入硬盘中。因为在数据中加入了错误修正码(ECC,Error Correction Code),所以数据整体的容量会比原始数据大一些,RAID2最少要三台磁盘驱动器方能运作。
[编辑]RAID 3
采用Bit-interleaving(数据交错存储)技术,它需要通过编码再将数据位分区后分别存在硬盘中,而将同位检查后单独存在一个硬盘中,但由于数据内的位分散在不同的硬盘上,因此就算要读取一小段数据资料都可能需要所有的硬盘进行工作,所以这种规格比较适于读取大量数据时使用。
[编辑]RAID 4
它与RAID 3不同的是它在分区时是以区块为单位分别存在硬盘中,但每次的数据访问都必须从同位检查的那个硬盘中取出对应的同位数据进行核对,由于过于频繁的使用,所以对硬盘的损耗可能会提高。(Block interleaving)
[编辑]RAID 5
RAID Level 5 是一种存储性能、数据安全和存储成本兼顾的存储解决方案。它使用的是Disk Striping(硬盘分区)技术。RAID 5 至少需要三颗硬盘, RAID 5不对存储的数据进行备份,而是把数据和相对应的奇偶校验信息存储到组成RAID5的各个磁盘上,并且奇偶校验信息和相对应的数据分别存储于不同的磁盘上。当RAID5的一个磁盘数据发生损坏后,利用剩下的数据和相应的奇偶校验信息去恢复被损坏的数据。 RAID 5可以理解为是RAID 0和RAID 1的折衷方案。RAID 5可以为系统提供数据安全保障,但保障程度要比镜像低而磁盘空间利用率要比镜像高。RAID 5具有和RAID 0相近似的数据读取速度,只是多了一个奇偶校验信息,写入数据的速度相当的慢,若使用“回写高速缓存”可以让效能改善不少。同时由于多个数据对应一个奇偶校验信息,RAID 5的磁盘空间利用率要比RAID 1高,存储成本相对较便宜。

[编辑]RAID 6
与RAID 5相比,RAID 6增加了第二个独立的奇偶校验信息块。两个独立的奇偶系统使用不同的算法,数据的可靠性非常高,即使两块磁盘同时失效也不会影响数据的使用。但RAID 6需要分配给奇偶校验信息更大的磁盘空间,相对于RAID 5有更大的“写损失”,因此“写性能”非常差。较差的性能和复杂的实作方式使得RAID 6很少得到实际应用。
同一数组中最多容许两个磁盘损坏。更换新磁盘后,数据将会重新算出并写入新的磁盘中。依照设计理论,RAID 6必须具备四个以上的磁盘才能生效。
[编辑]RAID 7
RAID 7并非公开的RAID标准,而是Storage Computer Corporation的专利硬体产品名称,RAID 7是以RAID 3及RAID 4为基础所开发,但是经过强化以解决原来的一些限制。另外,在实作中使用大量的高速缓存记忆体以及用以实现异步阵列管理的专用即时处理器,使得RAID 7可以同时处理大量的IO要求,所以效能甚至超越了许多其他RAID标准的实作产品。但也因为如此,在价格方面非常的高昂。[1]
[编辑]RAID 10/01
RAID 10/01其实可细分为RAID 1+0或RAID 0+1。
RAID 1+0是先镜射再分区数据。是将所有硬盘分为两组,视为是RAID 0的最低组合,然后将这两组各自视为RAID 1运作。RAID 1+0有着不错的读取速度,而且拥有比RAID 0更高的数据保护性。
RAID 0+1则是跟RAID 1+0的程序相反,是先分区再将数据镜射到两组硬盘。它将所有的硬盘分为两组,变成RAID 1的最低组合,而将两组硬盘各自视为RAID 0运作。RAID 0+1比起RAID 1+0有着更快的读写速度,不过也多了一些会让整个硬盘组停止运转的机率;因为只要同一组的硬盘全部损毁,RAID 0+1就会停止运作,而RAID 1+0则可以在牺牲RAID 0的优势下正常运作。
RAID 10巧妙的利用了RAID 0的速度以及RAID 1的保护两种特性,不过它的缺点是需要的硬盘数较多,因为至少必须拥有四个以上的偶数硬盘才能使用。
[编辑]RAID 50
RAID50也被称为镜象阵列条带,由至少六块硬盘组成,像RAID0一样,数据被分区成条带,在同一时间内向多块磁盘写入;像RAID5一样,也是以数据的校验位来保证数据的安全,且校验条带均匀分布在各个磁盘上。其目的在于提高RAID5的读写性能。
RAID 在市场上的的应用,已经不是新鲜的事儿了,很多人都大略了解RAID的基本观念,以及各个不同RAID LEVEL 的区分。但是在实际应用面,我们发现,有很多使用者对于选择一个合适的RAID LEVEL,仍然无法很确切的掌握,尤其是对于RAID 0+1 (10),RAID 3,RAID 5之间的选择取舍,更是举棋不定。
  本文将针对RAID 0+1/10、RAID 3以及RAID 5的工作原理和特性,作一些分析和比较,以列出这些不同RAID阶层所适合的应用,希望对各位能有原则性的帮助。
   RAID条切“striped”的存取模式
  在使用数据条切﹝Data Stripping﹞ 的RAID 系统之中,对成员磁盘驱动器的存取方式,可分为两种:
  并行存取﹝Paralleled Access﹞
  独立存取﹝Independent Access﹞
  RAID 2和RAID 3 是采取并行存取模式。
  RAID 0、RAID 4、RAID 5及RAID 6则是采用独立存取模式。
   平行存取模式
  并行存取模式支持里,是把所有磁盘驱动器的主轴马达作精密的控制,使每个磁盘的位置都彼此同步,然后对每一个磁盘驱动器作一个很短的I/O数据传送,如此一来,从主机来的每一个I/O 指令,都平均分布到每一个磁盘驱动器。
  为了达到并行存取的功能,RAID 中的每一个磁盘驱动器,都必须具备几乎完全相同的规格:转速必须一样;磁头搜寻速度﹝Access Time﹞必须相同;Buffer 或Cache的容量和存取速度要一致;CPU处理指令的速度要相同;I/O Channel 的速度也要一样。总而言之,要利用并行存取模式,RAID 中所有的成员磁盘驱动器,应该使用同一厂牌,相同型号的磁盘驱动器。
 并行存取的基本工作原理
  假设RAID中共有四部相同规格的磁盘驱动器,分别为磁盘驱动器A、B、C和D,我们在把时间轴略分为T0、T1、T2、T3和T4:
T0: RAID控制器将第一笔数据传送到A的Buffer,磁盘驱动器B、C和D的Buffer都是空的,在等待中
T1: RAID控制器将第二笔数据传送到B的Buffer,A开始把Buffer中的数据写入扇区,磁盘驱动器C和D的Buffer都是空的,在等待中
T2: RAID控制器将第三笔数据传送到C的Buffer,B开始把Buffer中的数据写入扇区,A已经完成写入动作,磁盘驱动器D和A的Buffer都是空的,在等待中
T3: RAID控制器将第四笔数据传送到D的Buffer,C开始把Buffer中的数据写入扇区,B已经完成写入动作,磁盘驱动器A和B的Buffer都是空的,在等待中
T4: RAID控制器将第五笔数据传送到A的Buffer,D开始把Buffer中的数据写入扇区,C已经完成写入动作,磁盘驱动器B和C的Buffer都是空的,在等待中
如此一直循环,一直到把从主机来的这个I/O 指令处理完毕,RAID控制器才会受处理下一个I/O 指令。重点是在任何一个磁盘驱动器准备好把数据写入扇区时,该目的扇区必须刚刚好转到磁头下。同时RAID控制器每依次传给一个磁盘驱动器的数据长度,也必须刚刚好,配合磁盘驱动器的转速,否则一旦发生miss,RAID 性能就大打折扣
  并行存取RAID的最佳应用
  并行存取RAID之架构,以其精细的马达控制和分布之数据传输,将数组中每一个磁盘驱动器的性能发挥到最大,同时充分利用Storage Bus的频宽,因此特别适合应用在大型、数据连续的档案存取应用,例如:
  影像、视讯档案服务器
  数据仓储系统
  多媒体数据库
  电子图书馆
  印前或底片输出档案服务器
  其它大型且连续性档案服务器
  由于并行存取RAID架构之特性,RAID 控制器一次只能处理一个I/O要求,无法执行Overlapping 的多任务,因此非常不适合应用在I/O次数频繁、数据随机存取、每笔数据传输量小的环境。同时,因为并行存取无法执行Overlapping 的多任务,因此没有办法"隐藏"磁盘驱动器搜寻﹝seek﹞的时间,而且在每一个I/O的第一笔数据传输,都要等待第一个磁盘驱动器旋转延迟﹝rotational latency﹞,平均为旋转半圈的时间,如果使用一万转的磁盘驱动器,平均就需要等待50 usec。所以机械延迟时间,是并行存取架构的最大问题。
   独立存取模式
  相对于并行存取模式,独立存取模式并不对成员磁盘驱动器作同步转动控制,其对每个磁盘驱动器的存取,都是独立且没有顺序和时间间格的限制,同时每笔传输的数据量都比较大。因此,独立存取模式可以尽量地利用overlapping 多任务、Tagged Command Queuing等等高阶功能,来"隐藏"上述磁盘驱动器的机械时间延迟﹝Seek 和Rotational Latency﹞。
  由于独立存取模式可以做overlapping 多任务,而且可以同时处理来自多个主机不同的I/O Requests,在多主机环境﹝如Clustering﹞,更可发挥最大的性能。
  独立存取RAID的最佳应用
  由于独立存取模式可以同时接受多个I/O Requests,因此特别适合应用在数据存取频繁、每笔数据量较小的系统。例如:
  在线交易系统或电子商务应用
  多使用者数据库
  ERM及MRP 系统
  小文件之文件服务器
一般常用的RAID阶层,分别是RAID 0、RAID1、RAID 3、RAID 4以及RAID 5,再加上二合一型 RAID 0+1﹝或称RAID 10﹞。我们先把这些RAID级别的优、缺点做个比较:
 

RAID级别 相对优点 相对缺点
RAID 0 存取速度最快 没有容错
RAID 1 完全容错 成本高 
RAID 3 写入性能最好 没有多任务功能
RAID 4 具备多任务及容错功能 Parity 磁盘驱动器造成性能瓶颈
RAID 5 具备多任务及容错功能 写入时有overhead
RAID 0+1/RAID 10 速度快、完全容错 成本高


  接下来,我们分别针对RAID 3、RAID 5以及RAID 0+1/RAID 10作深入的讨论。

  RAID 3特点与应用

  RAID 3 是将数据先做XOR 运算,产生Parity Data后,在将数据和Parity Data以并行存取模式写入成员磁盘驱动器中,因此具备并行存取模式的优点和缺点。进一步来说,RAID 3每一笔数据传输,都更新整个Stripe﹝即每一个成员磁盘驱动器相对位置的数据都一起更新﹞,因此不会发生需要把部分磁盘驱动器现有的数据读出来,与新数据作XOR运算,再写入的情况发生﹝这个情况在RAID 4和RAID 5会发生,一般称之为Read、Modify、Write Process,我们姑且译为为读、改、写过程﹞。因此,在所有RAID级别中,RAID 3的写入性能是最好的。

  RAID 3的 Parity Data 一般都是存放在一个专属的Parity Disk,但是由于每笔数据都更新整个Stripe,因此,RAID 3的 Parity Disk 并不会如RAID 4的 Parity Disk,会造成存取的瓶颈。

  RAID 3的并行存取模式,需要RAID 控制器特别功能的支持,才能达到磁盘驱动器同步控制,而且上述写入性能的优点,以目前的Caching 技术,都可以将之取代,因此一般认为RAID 3的应用,将逐渐淡出市场。

  RAID 3 以其优越的写入性能,特别适合用在大型、连续性档案写入为主的应用,例如绘图、影像、视讯编辑、多媒体、数据仓储、高速数据撷取等等。

  RAID 4特点与应用

  RAID 4 是采取独立存取模式,同时以单一专属的Parity Disk 来存放Parity Data。RAID 4的每一笔传输﹝Strip﹞资料较长,而且可以执行Overlapped I/O,因此其读取的性能很好。

  但是由于使用单一专属的Parity Disk 来存放Parity Data,因此在写入时,就会造成很大的瓶颈。因此,RAID 4并没有被广泛地应用。

  RAID 5特点与应用

  RAID 5也是采取独立存取模式,但是其Parity Data 则是分散写入到各个成员磁盘驱动器,因此,除了具备Overlapped I/O 多任务性能之外,同时也脱离如RAID 4单一专属Parity Disk的写入瓶颈。但是,RAI?D 5在座资料写入时,仍然稍微受到"读、改、写过程"的拖累。

  由于RAID 5 可以执行Overlapped I/O 多任务,因此当RAID 5的成员磁盘驱动器数目越多,其性能也就越高,因为一个磁盘驱动器再一个时间只能执行一个 Thread,所以磁盘驱动器越多,可以Overlapped 的Thread 就越多,当然性能就越高。但是反过来说,磁盘驱动器越多,数组中可能有磁盘驱动器故障的机率就越高,整个数组的可靠度,或MTDL (Mean Time to Data Loss) 就会降低。

  由于RAID 5将Parity Data 分散存在各个磁盘驱动器,因此很符合XOR技术的特性。例如,当同时有好几个写入要求发生时,这些要写入的数据以及Parity Data 可能都分散在不同的成员磁盘驱动器,因此RAID 控制器可以充分利用Overlapped I/O,同时让好几个磁盘驱动器分别作存取工作,如此,数组的整体性能就会提高很多。

  基本上来说,多人多任务的环境,存取频繁,数据量不是很大的应用,都适合选用RAID 5 架构,例如企业档案服务器、WEB 服务器、在线交易系统、电子商务等应用,都是数据量小,存取频繁的应用。

  RAID 0+1﹝RAID 10﹞

  RAID 0+1/RAID 10,综合了RAID 0 和 RAID 1的优点,适合用在速度需求高,又要完全容错,当然经费也很多的应用。RAID 0和RAID 1的原理很简单,合起来之后还是很简单,我们不打算详细介绍,倒是要谈谈,RAID 0+1到底应该是RAID 0 over RAID 1,还是RAID 1 over RAID 0,也就是说,是把多个RAID 1 做成RAID 0,还是把多个RAID 0 做成RAID 1?

RAID 0 over RAID 1

  假设我们有四台磁盘驱动器,每两台磁盘驱动器先做成RAID 1,再把两个RAID 1做成RAID 0,这就是RAID 0 over RAID 1:

  (RAID 1) A = Drive A1 + Drive A2 (Mirrored)
  (RAID 1) B = Drive B1 + Drive B2 (Mirrored)
  RAID 0 = (RAID 1) A + (RAID 1) B (Striped)

  RAID 1 over RAID 0

  假设我们有六台磁盘驱动器,每两台磁盘驱动器先做成RAID 0,再把两个RAID 0做成RAID 1,这就是RAID 0 over RAID 1:

  (RAID 0) A = Drive A1 + Drive A2 (Striped)
  (RAID 0) B = Drive B1 + Drive B2 (Striped)
  RAID 1 = (RAID 1) A + (RAID 1) B (Mirrored)

  在这种架构之下,如果 (RAID 0) A有一台磁盘驱动器故障,(RAID 0) A就算毁了,当然RAID 1仍然可以正常工作;如果这时 (RAID 0) B也有一台磁盘驱动器故障,(RAID 0) B也就算毁了,此时RAID 1的两磁盘驱动器都算故障,整个RAID 1资料就毁了。

  因此,RAID 0 OVER RAID 1应该比RAID 1 OVER RAID 0具备比较高的可靠度。所以我们建议,当采用RAID 0+1/RAID 10架构时,要先作RAID 1,再把数个RAID 1做成RAID 0。

分享到:
评论

相关推荐

    RAID级别的介绍与选择依据

    不同的RAID级别提供了不同的特性和性能,选择合适的RAID级别对于系统的稳定性和效率至关重要。 首先,我们要了解RAID的两种基本存取模式:并行存取和独立存取。 1. **并行存取模式**(Paralleled Access): 并行...

    如何选择最合适的RAID级别

    选择最合适的RAID级别需要考虑速度、保护程度和成本等因素。本文主要讨论了三种常见的RAID配置:RAID-0、RAID-1和RAID-5。 RAID-0是最基本的条带化存储,它将数据分割并均匀分配到多个磁盘上,从而提升了读写速度,...

    基本的RAID介绍(各个级别的RAID介绍)

    不同的RAID级别提供了不同特性和性能,适用于各种场景。 RAID0,称为条带化(Stripe),不提供冗余,而是通过在多个磁盘间分散数据来提升读写速度。数据被分割成多个块,然后分别存储在不同的磁盘上,从而实现高速...

    RAID级别详解,创建RAID实践

    不同的RAID级别提供了不同的功能和特性,下面将详细介绍常见的RAID级别,并通过创建RAID的实践来说明其应用。 RAID级别详解: 1. RAID 0(条带化):将数据分散写入多个硬盘中,每个硬盘都存放数据的一部分。这种...

    RAID级别对磁盘数的要求

    RAID级别对磁盘数的要求.

    不同RAID级别的性能和安全性浅析

    "RAID级别性能和安全性浅析" RAID(Redundant Array of Independent Disks,独立磁盘冗余阵列)技术是一种将多个独立磁盘组合成一个逻辑磁盘的方法,以提高存储系统的性能、容量和可靠性。不同RAID级别对应于不同的...

    磁盘阵列-RAID级别简介.pdf

    "磁盘阵列-RAID级别简介" RAID(磁盘阵列)是一种把多块独立的硬盘(物理硬盘)按不同的方式组合起来形成一个硬盘组(逻辑硬盘),从而提供比单个硬盘更高的存储性能和提供数据备份技术。组成磁盘阵列的不同方式...

    高级别磁盘RAID技术全程图解

    ### 高级别磁盘RAID技术全程图解 #### 一、RAID技术概述 **RAID(Redundant Array of Independent Disks)**,即独立磁盘冗余阵列,是一种通过将多个物理硬盘驱动器以不同方式组合起来形成一个逻辑硬盘组的技术。...

    raid级别区分

    在实际应用中,还可能需要考虑RAID 2、RAID 4、RAID 6以及更高级别的RAID配置,如RAID 100、RAID 50等,这些更复杂的组合提供了更高级别的容错性和性能优化。如果遇到RAID数据丢失的情况,可以寻求专业的数据恢复...

    RAID级别综述及实现原理

    RAID级别是根据不同的数据分布和冗余策略来分类的,每种级别都有其特定的性能、优点和应用场景。 1. RAID 0(条带化,Striping): RAID 0是最基础的级别,它不提供数据冗余,而是将数据分割成块并分布在多个硬盘上...

    RAID模拟器 RAID虚拟机

    使用RAID模拟器,你可以尝试不同的RAID级别(如RAID 0、RAID 1、RAID 5、RAID 6和RAID 10),了解它们各自的数据分布、性能特点和冗余策略。 RAID虚拟机则是在虚拟化环境中实现的RAID系统。它可以是宿主机操作系统...

    RAID基本原理动画介绍演示

    本动画演示将详细介绍RAID的基本原理,并通过生动的动画展示RAID0、RAID1、RAID5以及RAID10的工作过程。 首先,让我们来看看RAID0,也称为带区集。在这种模式下,数据被条带化地分散在多个硬盘上,实现了数据读写...

    RAID 级别概念

    ### RAID级别概念详解 #### 一、RAID基础概念 RAID(Redundant Array of Independent Disks)即独立磁盘冗余阵列,是一种通过将多个物理硬盘组合成一个逻辑单元来提高存储性能和数据可靠性的技术。RAID级别是指在...

    RAID0、RAID1、RAID0 1、RAID5原理介绍

    ### RAID0、RAID1、RAID0+1、RAID5原理详细介绍 #### RAID0:数据条带化(Stripe) - **定义**:RAID0并非真正意义上的冗余技术,它通过数据条带化(Striping)的方式,将连续的数据分散到多个磁盘上进行并行读写...

    RAID全面介绍

    而对于需要极强数据安全性的场合,则可能选择RAID-1或RAID-6等提供更高数据冗余的级别。 RAID技术的发展,使得它不再是高端存储系统特有的配置,而是成为了一种普通服务器和工作站都可利用的技术。通过合理的配置和...

    RAID 5EE 阵列级别简介

    在本文中,我们将深入探讨 RAID 5EE 这一特殊的阵列级别,同时对比其他常见的 RAID 级别,包括 RAID 0、RAID 1、RAID 3 和 RAID 5。 首先,RAID 0 是一种分条式存储,它将数据分割并并行写入多个硬盘,从而显著提升...

    RAID系列分类介绍

    ### RAID系列分类详细介绍 #### 一、RAID概述 RAID(Redundant Array of Independent Disks),即独立磁盘冗余阵列,是一种通过在多个磁盘单元(物理硬盘)上分配数据来改善存取性能的技术。它可以提高数据的安全...

    RAID0、RAID1、RAID0+1、RAID5原理介绍.pdf

    "RAID0、RAID1、RAID0+1、RAID5原理介绍" RAID(Redundant Array of Independent Disks,...RAID技术可以提高存储性能和数据安全性,但不同的RAID级别有其强项和弱项,选择合适的RAID级别需要根据实际情况进行考虑。

    raid 技术详细介绍

    RAID技术分为多个级别,每个级别都有其特定的特性和应用场景: 1. **RAID 0**:条带化(Striping)无冗余。RAID 0将数据分割成块并分布在多个硬盘上,显著提高读写速度。但因为没有冗余,一旦一个硬盘故障,所有...

Global site tag (gtag.js) - Google Analytics