`
liujinmarshall
  • 浏览: 118210 次
  • 性别: Icon_minigender_1
社区版块
存档分类
最新评论
阅读更多
体系结构包括一组部件以及部件之间的联系。

      体系结构风格有9大:1. 数据流系统,包括顺序批处理、管道和过滤器;2. 调用-返回系统,包括主程序和子程序、面向对象系统、层次结构;3. 独立部件,包括通信进程、事件隐式调用;4. 虚拟机,包括解释器、规则基系统;5. 以数据为中心的系统(库),包括数据库、超文本系统、黑板系统;6. 特殊领域风格;例如过程控制、模拟器;7. 特殊结构的风格,例如分布式处理、状态转移系统;8. 不同风格合成建立的异构结构;9. 最初始、最基本的主程序/子程序。

      自1964年G. AMDAhl首次提出体系结构这个概念,人们对计算机系统开始有了统一而清晰的认识,为从此以后计算机系统的设计与开发奠定了良好的基础。近四十年来, 体系结构学科得到了长足的发展, 其内涵和外延得到了极大的丰富。特别是网络计算技术的发展,使得网络计算体系结构成为当今一种主要的计算模式结构。微电子技术的飞速发展使芯片级体系结构研究成为一个挑战性课题。体系结构与系统软件,应用软件,程序设计语言的紧密结合与相互作用也使今天的计算机与以往有很大的不同,并触发了大量的前沿技术、相关产品开发与基础研究课题。

      在传统的程序设计领域中,人们使用流程图来表达系统的基本功能和实现的具体逻辑,但是,流程图实际上仅仅是源程序的图形化表示,无法给系统的分析和开发者提供更多的信息,所以没有在实际的系统开发过程中得到广泛的应用。随着软件系统的规模和复杂性的增加,对软件系统的整体结构(数据和控制的逻辑)进行分析和描述成为大型系统开发的一个不可缺少的重要部分,显然,使用流程图是无法达到这个目标的,我们必须使用新的方法和概念来对系统的整体结构进行把握。

      系统分析实际上包括两个阶段的工作,首先是需求的 分析,也就是说,划分出系统和环境之间的界面,将所研究(或者是将要开发)的系统和周围的环境分离,这就是从使用者的观点,将整个系统作为一个整体来考 察。其次是系统的设计,根据系统的整体功能和数据,参考实际的物理系统或者类似的系统,设计实际运行的软件系统,这一步骤实际上就是体系结构的分析和确 定。

      从系统工程的观点看来,任何复杂的系统都是由相对简单的,在当前所分析的系统层次是原始的基本元素(虽然在更进一步的分析中,这些元素可能具有非常复杂的 内部结构)组成的,这些基本元素之间存在复杂的相互作用。所以,软件系统的分析和设计的基本任务是:确立系统中的基本元素(完成系统的功能所必不可少的成 分);确定这些元素之间相互作用的方式(这就是系统的体系结构)。

      我们在这里简单的介绍几种最基本的体系结构的范式,他们的特点、优点和缺点,最后给出实际开发中如何选择体系结构范式的一些指导性的意见。

一、基本的体系结构的范式

1. 管道和过滤器:

      每个组件具有输入和输出的集合,从流中读出数据作为输入,产生输出数据的流。整个系统可以看成多个过滤器复合形成的数据处理组件。


过滤器A
 
过滤器B
 
过滤器C
 
过滤器A
 
过滤器D
 
管道
 
管道

      特点:

      l 过滤器之间是相互独立的(不能共享状态),其中一个过滤器的操作和行为不能影响另外过滤器的操作和行为,流的传送没有副作用。

      l 过滤器对所输入流的来源和输出流的去向不关心,不需要知道流的来源和流的去向,来源和去向对于过滤器的数据处理没有任何影响。

      l 过滤和流的传送可以是并发的,可以同时有多个流的传送存在于系统之中。

      实例:

      一个最著名的实例是unix的shell编程,多个对数据进行处理的程序(组件)通过管道联结起来,产生总和的效果;还有传统的编译器,源代码经过词法分析、语法分析、中间代码生成、目标代码生成等步骤生成输出的目标代码。

      优点:

      l 整个系统的功能是多个过滤器作用的总和,这样可以简化系统的分析和设计,可以经过需求的分析之后将整个系统作为一个过滤器处理,然后再逐步的细化成为多个相互连接的过滤器。

      l 支持组件的重用,同一个过滤器可以多次出现在系统的不同位置。

      l 易于维护和增强,过滤器可以被替换,可以增加新的过滤器到系统中而不改变原有的过滤器,不改变原来系统的基本功能。

      l 本质上的并发性支持,这种体系结构由于本质上是与各个独立的过滤器的状态无关的,与并行的流的通过次序也是无关的,所以并发是一个基本的体系结构自然具有的特性。

      缺点:

      l 由于过滤器之间本质上是独立的,所以设计者必须独立考虑每一个过滤器的输入、处理和输出的过程,对于过滤器逻辑上的共同点和相互关系无法在设计中加以体现。

      l 由于这种体系的批处理特性,所以不适合开发和用户交互的应用程序。

      l 系统的多个处理流之间的共同特性无法提取、多个过滤器之间的共同特性也无法提取,所以增加了设计的复杂性。


2. 数据抽象和面向对象的体系

      在这种体系中,数据和数据上的操作被封装成抽象数据类型或者对象。系统由大量的对象组成,在物理上,对象之间通过函数或者过程调用相互作用;在逻辑上,对象之间通过集成、复合等方式实现设计的复用。

对象D
 
对象B
 
对象A
 
对象E
 
对象C
 
对象调用
 
对象调用
 
对象调用
 
类A
 
类B
 
类C
 
类G
 
对象A
 
对象E
 
类F
 
复合
 
继承
 

       物理结构 逻辑结构

      特点:

      面向对象系统分析和设计的资料已经太多,这里就不再详细说明了。

      优点:

      由于封装,实现了灵活性和扩充性,隐藏了实现的细节,提高代码的质量;

      使用继承和多态、提高了软件的可重用性。

      缺点:

      最主要的缺点是,由于对象之间的交互是通过明确的对象函数调用进行的,所以当一个对象需要实现一个特定功能的时候,必须知道哪一个对象提供这种服务,这就降低了系统的灵活性。管道和过滤器模型不需要明确指明数据的来源和去向。

3. 事件驱动的体系

对象E
 
对象E
 
对象E
 
事件分发的总线
 
事件的创建
 
事件接收者的注册的创建
 
对象E
 
      这是面向对象和数据抽象体系的一种变形,系统同样是由大量的对象组成的,但是对象之间的交互不是通过明确指明对象的函数或者过程调用进行的,相反,系统提 供事件的创建和发布的机制,对象产生事件,一个或者多个对象通过向系统注册关注这个事件并由此触发出相应的行为或者产生新的事件。

      实例:

      一个最著名的例子是GUI的模型,鼠标、键盘或者其他输入设备产生各种事件,窗口、程序或者其他对象有这些事件所触发,产生新的事件、进行数据处理或者其他操作。

      优点:

      用于函数和过程的调用调用不需要指明特定的对象,所以系统具有非常好的灵活性和扩展性,新的组件只需要向系统的事件处理部分注册就可以立刻加入系统中,同 样,老的组件也可以方便的从系统中删除。对于动态性要求特别高的系统,特别是如果需要在运行时对系统进行扩充,应该采用该结构。

      缺点:

      由于函数调用是通过事件发送进行的,所以,发出事件的对象不能确认是否有对象处理了这个事件、是否是期望的对象处理了这个事件、是否获得期望的结果,同样也无法控制事件发生的次序,系统的逻辑和时序的正确性必须通过复杂的时序逻辑和前后条件的断言加以保证。

4. 分层次的体系

      将系统功能和组件分成不同的功能层次,一般而言,只有最上层的组件和功能可以被系统外的使用者访问,只有相邻的层次之间才能够有函数调用。

      下面是一个基本的商务处理系统的层次结构:


用户界面层
 
事务逻辑层
 
核心层
 
      实例:

      显然,ISO的OSI(开放系统互连)参考模型是最著名的层次模型的例子,通过将开放系统的功能和组件划分成7个层次,定义清晰的(很多时候是过于复杂的)层次之间的接口,实现复杂的互操作性。

      优点:

      l 系统的开发和设计可以逐步的分层次的进行,从底层的简单的功能逐步建立高层的复杂和抽象的功能。

      l 灵活性和扩展性,由于相邻层次之间通过清晰的接口交互,所以特定的层次可以被替换和增强,甚至可以增加新的层次。

      缺点:

      l 不是所有的系统都可以分解成为清楚的层次

      l 划分清晰、逻辑上一致的层次是非常困难的(OSI的失败和TCP/IP的成功说明了这一点)

      l 严格的层次调用结构会降低系统的性能。

5. 知识库体系

      使用一个中心数据结构表示系统的当前状态,一组相互独立的组件在中心数据库上进行操作。如果组件负责对中心数据进行选择、处理,这种体系就是传统的数据库模型;如果中心数据结构自主的引发一系列的行为,则这种体系可以看成一个黑板模型。

中心数据库(知识库)
 
客户组件A
 
客户组件B
 
客户组件C
 
      实例:

      大量的传统数据库应用程序实际上就是这一体系的具体实例。在很多研究系统中,使用的基于知识库的黑板模型,实际上也是这种体系

      优点:

      以数据为中心的体系结构,可以自然的表示大量的数据和事务处理的逻辑,适合表达以数据为重新的应用程序。

      缺点:

      只有很少一部分简单的数据库存储应用可以完全采用这种体系结构表示,在大量实际的商业应用中,完成师傅处理和其他逻辑的应用程序必须采用其他的体系结构表达

6. 解释器体系


用户
 
      如果应用程序的逻辑非常复杂,例如,AutoCAD的各种绘图指令,而且,用户可能以非常复杂的方式使用这个系统,一个较好的体系就是提供面向领域的一组指令(语言),系统解释这种语言,产生相应的行为,用户使用这种指令(语言)完成复杂的操作。


使用虚拟机语言描述的业务逻辑
 
虚拟机解释器
 
完成实际操作任务的基本指令
 
实际的问题领域
 
      实例:

      大量的开发工具、二次开发工具体现了这一思想:微软在其产品中大量使用的Visual BASic for Application,以及在AutoDESk产品中大量使用的AutoLisp语言,实际上就是给用户提供了一种面向领域的语言,然后核心解释执行这一语言的指令和指令序列。从而扩充产品的功能,方便用户按照自己的需要定制系统。

      优点:

      非常好的扩展性,用户可以实现对软件系统的二次开发

      缺点:

      软件开发复杂,特别是这种指令集的设计非常困难。

      是否可以采用一种成熟的语言作为二次开发的基础(例如,基于Java)

二、实际系统开发的观点

      在实际开发过程中,简单的判断某一个具体的应用应该采取何种体系结构是非常困难的。从目前的趋势来看:简单的管道、过滤器体系已经非常少见,面向对象的思 想已经融合在几乎所有的体系结构之中,而层次化的思想同样也被广泛使用,所以,一个基本的系统分析方法应该是功能和复杂性的分解,也就是说,从横向分解 (分模块、子系统),纵向分解中得到系统的基本组件(分类、分层次的功能和对象)。然后根据问题领域的特性选择系统的行为模式(具体的体系结构)。

三、目前最常见的体系结构

      l 严格的层次结构(系统可以清楚的分解成为不同的功能层次,例如基本的图形库,提供不同层次的绘图接口)

      这种体系结构适合于系统的功能相对简单,并且可以按照复杂的程度、抽象的程度、和硬件平台的关系等方面的特性加以分层的软件中。

      l 事件驱动的体系:

      对互操作性、特别是异构环境下的互操作性要求非常高的情况下,可以采用这种体系,当整个系统中存在大量的并发的,相互之间没有逻辑联系的组件的时候(例如操作系统或者图形用户界面)可以使用这种体系结构。现代软件技术中微软的COM和ISO的CORBA实际上都是这种体系结构的例子。

      l 知识库的体系:

      以大量数据为核心的系统采用这种体系,一些人工智能的应用同样需要这种体系结构,面向对象的知识库是这种体系结构的一个发展方向。将面向对象和层次化的思想引入知识库系统中,将得到一种非常强大的体系结构。

      l 基于解释器的体系:

      如果应用系统和用户的交互非常复杂,采用这种体系结构是最适合的方案,只有将系统的基本操作以指令的形式提供给用户,同时,提供一种简单明了的语法和基本 的数据操作、处理的功能,才能得到功能最强大、最灵活、具有最佳扩充新的应用系统;一个非常合适的例子是浏览器,一开始,浏览器只是简单的下载和显示 HTML的页面,随着用户对界面交互要求的发展,开发出javasCRipt,提供一种语言和基本的界面元素操纵的指令来得到扩充性和强大的功能。

      绝大多数实际运行的系统都是上面几种体系结构的复合:在系统的某些部分采用一种体系结构而在其他的部分采用另外的体系,我们可以将复合几种基本体系结构的 系统称作复合体系结构。在实际的系统分析和设计中,可能首先将整个系统作为一个功能体进行分析和权衡,得到适宜的、最上层的体系结构,如果该体系结构中的 元素较为复杂,可以继续进行分解,得到某一部分的,局部的体系。分析的层次应该在可以清晰的使用简单的功能和界面描述表达结束,这样,可以将我们在分析和 设计的这一阶段将焦点集中在系统的总体结构上,而避免引入和所使用的语言、实现所具体需要的技术等实现的细节上。



分享到:
评论

相关推荐

    软件体系结构实用教程

    《软件体系结构实用教程》共分10章。第1章简单介绍了软件重用和构件技术的一些基本概念,它们是学习软件体系结构有关知识的基础;第2章介绍了软件体系结构的概念;发展和研究现状;第3章对软件体系结构的风格进行了...

    软件设计模式与体系结构

    本书系统介绍了软件体系结构的基本原理、方法和实践,全面反映了软件体系结构研究和应用的最新进展。既讨论了软件体系结构的基本理论知识,又介绍了软件体系结构的设计和工业界应用实例,强调理论与实践相结合。 ...

    ARM体系结构版本.pdf

    "ARM 体系结构版本.pdf" ARM 体系结构版本是指 ARM 指令集体系结构从最初开发至今的演变过程。ARM 体系结构版本共定义了 8 个版本,以版本号 v1~v8 表示。每个版本都有其特点和改进。 ARM 体系结构版本的发展可以...

    软件体系结构 PDF版

    《软件体系结构》PDF版是一本深入探讨软件系统构建核心概念和最佳实践的专业书籍。它旨在帮助读者理解和掌握软件设计的高级构造,从而能够创建高效、可维护且可扩展的软件解决方案。 软件体系结构是软件开发过程中...

    计算机体系结构试题及答案

    计算机体系结构是计算机科学的核心部分,它涉及到计算机硬件和软件之间的接口设计,以及如何通过硬件实现来提升系统性能。在第一章中,我们了解到计算机体系结构的基本概念,包括计算机的层次概念,从微程序机器级到...

    软件体系结构参考论文

    在IT行业中,软件体系结构是构建复杂软件系统的基础框架,它定义了系统的组件、这些组件之间的相互作用以及指导系统设计的约束。这两篇名为“[大家网]论文:软件体系结构进展[www.TopSage.com].pdf”和“软件体系...

    软件体系结构(ppt版)

    软件体系结构是解决软件危机的关键手段之一,它涉及到软件开发的全局性设计和组织方式。软件体系结构(Software Architecture)是指一个软件系统的高级构造和组织,包括其主要组件、组件之间的交互方式、指导系统...

    体系结构设计说明书

    "体系结构设计说明书" 作为软件开发的高层设计文档,软件体系结构设计说明书扮演着非常重要的角色。下面是对标题、描述、标签和部分内容中所涉及的知识点的详细解释。 首先,软件体系结构设计说明书的主要目的是...

    计算机体系结构—量化研究方法(第5版)_体系结构_

    《计算机体系结构—量化研究方法(第5版)》是一本深入探讨计算机体系结构的经典教材,专注于通过量化分析来理解计算机系统的设计与性能优化。在本书中,作者以清晰的逻辑和丰富的实例,引领读者探索计算机硬件与...

    山大体系结构实验及报告

    在“山大体系结构实验及报告”中,我们可以深入探讨计算机体系结构这一关键领域,它在信息技术科学中占据着核心地位。山东大学的这门课程旨在让学生理解和掌握计算机硬件与软件之间的交互,以及如何优化系统性能。...

    计算机体系结构 英文原版第四版

    《计算机体系结构:定量方法》第四版,由John L. Hennessy与David A. Patterson共同编著,是计算机科学领域内的一部经典教材。本书深入探讨了计算机体系结构的基本概念、设计原则以及其实现技术,尤其在多核处理器...

    软件体系结构课件下载

    在IT行业中,软件体系结构是构建复杂软件系统的基础框架,它定义了系统的组件、这些组件之间的相互作用以及指导系统设计的原则。"软件体系结构"这一主题涵盖了多种关键知识点,包括但不限于设计模式、架构风格、质量...

    计算机体系结构-量化研究方法_计算机体系结构量化研究方法pdf_

    《计算机体系结构——量化研究方法》是一本深入探讨计算机硬件设计和优化的权威书籍,它在计算机科学领域具有极高的地位。这本书详细阐述了构建高效、高性能计算机系统的基础理论和实践方法,对于理解和掌握计算机...

    计算机体系结构第四版

    《计算机体系结构第四版》是IT领域内一部极具影响力的经典之作,由John L. Hennessy和David A. Patterson两位计算机科学领域的权威专家撰写。本书不仅深入浅出地阐述了计算机体系结构的基本概念,还涵盖了新兴领域的...

    合肥工业大学计算机体系结构试卷.zip

    【标题】"合肥工业大学计算机体系结构试卷.zip"揭示了这是一份来自合肥工业大学关于计算机体系结构的考试资料,其中包含了历年或特定年份的试题。计算机体系结构是计算机科学与技术的重要组成部分,它研究计算机系统...

    统一体系结构框架UAF标准

    统一体系结构框架(Unified Architecture Framework,简称UAF)是一种用于设计、分析、描述和管理复杂系统体系结构的工具。该框架标准由对象管理组织(Object Management Group,简称OMG)开发,旨在为企业体系结构...

    软件体系结构可靠性分析

    软件体系结构可靠性分析是软件开发过程中至关重要的一环,它涉及到软件设计的质量度量和系统性能的优化。软件体系结构(Software Architecture, SA)是软件设计的基础框架,它定义了软件系统的组件、它们之间的交互...

Global site tag (gtag.js) - Google Analytics