`
liudaoru
  • 浏览: 1575943 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

Hadoop入门[z]

    博客分类:
  • java
阅读更多
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同java程序员可以不考虑内存泄露一样, MapReduce的run-time系统会解决输入数据的分布细节,跨越机器集群的程序执行调度,处理机器的失效,并且管理机器之间的通讯请求。这样的模式允许程序员可以不需要有什么并发处理或者分布式系统的经验,就可以处理超大的分布式系统得资源。

    一、概论

    作为Hadoop程序员,他要做的事情就是:
    1、定义Mapper,处理输入的Key-Value对,输出中间结果。
    2、定义Reducer,可选,对中间结果进行规约,输出最终结果。
    3、定义InputFormat 和OutputFormat,可选,InputFormat将每行输入文件的内容转换为Java类供Mapper函数使用,不定义时默认为String。
    4、定义main函数,在里面定义一个Job并运行它。
   

    然后的事情就交给系统了。
    1.基本概念:Hadoop的HDFS实现了google的GFS文件系统,NameNode作为文件系统的负责调度运行在master,DataNode运行在每个机器上。同时Hadoop实现了Google的MapReduce,JobTracker作为MapReduce的总调度运行在master,TaskTracker则运行在每个机器上执行Task。

    2.main()函数,创建JobConf,定义Mapper,Reducer,Input/OutputFormat 和输入输出文件目录,最后把Job提交給JobTracker,等待Job结束。

    3.JobTracker,创建一个InputFormat的实例,调用它的getSplits()方法,把输入目录的文件拆分成FileSplist作为Mapper task 的输入,生成Mapper task加入Queue。

    4.TaskTracker 向 JobTracker索求下一个Map/Reduce。
      
     Mapper Task先从InputFormat创建RecordReader,循环读入FileSplits的内容生成Key与Value,传给Mapper函数,处理完后中间结果写成SequenceFile.
     Reducer Task 从运行Mapper的TaskTracker的Jetty上使用http协议获取所需的中间内容(33%),Sort/Merge后(66%),执行Reducer函数,最后按照OutputFormat写入结果目录。

      TaskTracker 每10秒向JobTracker报告一次运行情况,每完成一个Task10秒后,就会向JobTracker索求下一个Task。

      Nutch项目的全部数据处理都构建在Hadoop之上,详见Scalable Computing with Hadoop


    二、程序员编写的代码

    我们做一个简单的分布式的Grep,简单对输入文件进行逐行的正则匹配,如果符合就将该行打印到输出文件。因为是简单的全部输出,所以我们只要写Mapper函数,不用写Reducer函数,也不用定义Input/Output Format。

package  demo.hadoop

public
  class  HadoopGrep {

 
public   static   class  RegMapper  extends  MapReduceBase  implements
 Mapper {

  
private
 Pattern pattern;

  
public   void
 configure(JobConf job) {
   pattern 
=  Pattern.compile(job.get( " mapred.mapper.regex "
));
  }

  
public   void
 map(WritableComparable key, Writable value, OutputCollector output, Reporter reporter)
    
throws
 IOException {
   String text 
=
 ((Text) value).toString();
   Matcher matcher 
=
 pattern.matcher(text);
   
if
 (matcher.find()) {
    output.collect(key, value);
   }
  }
 }

 
private
 HadoopGrep () {
 } 
//  singleton


 
public   static   void  main(String[] args)  throws  Exception {
  
  JobConf grepJob 
=   new  JobConf(HadoopGrep. class
);
  grepJob.setJobName(
" grep-search "
);
  grepJob.set(
" mapred.mapper.regex " , args[ 2
]);

  grepJob.setInputPath(
new  Path(args[ 0
]));
  grepJob.setOutputPath(
new  Path(args[ 1
]));
  grepJob.setMapperClass(RegMapper.
class
);
  grepJob.setReducerClass(IdentityReducer.
class
);
      
  JobClient.runJob(grepJob);
 }
}

        RegMapper类的configure()函数接受由main函数传入的查找字符串,map() 函数进行正则匹配,key是行数,value是文件行的内容,符合的文件行放入中间结果。
        main()函数定义由命令行参数传入的输入输出目录和匹配字符串,Mapper函数为RegMapper类,Reduce函数是什么都不做,直接把中间结果输出到最终结果的的IdentityReducer类,运行Job。


        整个代码非常简单,丝毫没有分布式编程的任何细节。


       三.运行Hadoop程序

        Hadoop这方面的文档写得不全面,综合参考GettingStartedWithHadoop 与Nutch Hadoop Tutorial 两篇后,再碰了很多钉子才终于完整的跑起来了,记录如下:      

3.1 local运行模式

       完全不进行任何分布式计算,不动用任何namenode,datanode的做法,适合一开始做调试代码。
       解压hadoop,其中conf目录是配置目录,hadoop的配置文件在hadoop-default.xml,如果要修改配置,不是直接修改该文件,而是修改hadoop-site.xml,将该属性在hadoop-site.xml里重新赋值。
       hadoop-default.xml的默认配置已经是local运行,不用任何修改,配置目录里唯一必须修改的是hadoop-env.sh 里JAVA_HOME的位置。


       将编译好的HadoopGrep与RegMapper.class 放入hadoop/build/classes/demo/hadoop/目录 找一个比较大的log文件放入一个目录,然后运行

       hadoop / bin / hadoop demo.hadoop.HadoopGrep log文件所在目录 任意的输出目录 grep的字符串


     查看输出目录的结果,查看hadoop/logs/里的运行日志。  
     在重新运行前,先删掉输出目录。
 

3.2 单机集群运行模式

       现在来搞一下只有单机的集群.假设以完成3.1中的设置,本机名为hadoopserver
       第1步.    然后修改hadoop-site.xml ,加入如下内容:

< property >
  
< name > fs.default.name </ name >
  
< value > hadoopserver:9000 </ value >
</ property >
< property >
  
< name > mapred.job.tracker </ name >
  
< value > hadoopserver:9001 </ value >
</ property >
< property >
  
< name > dfs.replication </ name >
  
< value > 1 </ value >
</ property >


    从此就将运行从local文件系统转向了hadoop的hdfs系统,mapreduce的jobtracker也从local的进程内操作变成了分布式的任务系统,9000,9001两个端口号是随便选择的两个空余端口号。
 
  另外,如果你的/tmp目录不够大,可能还要修改hadoop.tmp.dir属性。


  第2步. 增加ssh不输入密码即可登陆。

    因为Hadoop需要不用输入密码的ssh来进行调度,在不su的状态下,在自己的home目录运行ssh-keygen -t rsa ,然后一路回车生成密钥,再进入.ssh目录,cp id_rsa.pub authorized_keys
    详细可以man 一下ssh, 此时执行ssh hadoopserver,不需要输入任何密码就能进入了。

  3.格式化namenode,执行
  bin/hadoop namenode -format

  4.启动Hadoop
     执行hadoop/bin/start-all.sh, 在本机启动namenode,datanode,jobtracker,tasktracker
 
  5.现在将待查找的log文件放入hdfs,。
     执行hadoop/bin/hadoop dfs 可以看到它所支持的文件操作指令。
     执行hadoop/bin/hadoop dfs put log文件所在目录 in ,则log文件目录已放入hdfs的/user/user-name/in 目录中

  6.现在来执行Grep操作
      hadoop/bin/hadoop demo.hadoop.HadoopGrep in out
      查看hadoop/logs/里的运行日志,重新执行前。运行hadoop/bin/hadoop dfs rmr out 删除out目录。

  7.运行hadoop/bin/stop-all.sh 结束

  3.3 集群运行模式
  假设已执行完3.2的配置,假设第2台机器名是hadoopserver2
  1.创建与hadoopserver同样的执行用户,将hadoop解压到相同的目录。

  2.同样的修改haoop-env.sh中的JAVA_HOME 及修改与3.2同样的hadoop-site.xml

  3. 将hadoopserver中的/home/username/.ssh/authorized_keys 复制到hadoopserver2,保证hadoopserver可以无需密码登陆hadoopserver2
     scp /home/username/.ssh/authorized_keys 
username@hadoopserver2:/home/username/.ssh/authorized_keys
 
  4.修改hadoop-server的hadoop/conf/slaves文件, 增加集群的节点,将localhost改为
    hadoop-server
    hadoop-server2

  5.在hadoop-server执行hadoop/bin/start-all.sh
   将会在hadoop-server启动namenode,datanode,jobtracker,tasktracker
   在hadoop-server2启动datanode 和tasktracker
 
  6.现在来执行Grep操作
     hadoop/bin/hadoop demo.hadoop.HadoopGrep in out
    重新执行前,运行hadoop/bin/hadoop dfs rmr out 删除out目录

  7.运行hadoop/bin/stop-all.sh 结束。
   

四、效率

    经测试,Hadoop并不是万用灵丹,很取决于文件的大小和数量,处理的复杂度以及群集机器的数量,相连的带宽,当以上四者并不大时,hadoop优势并不明显。
    比如,不用hadoop用java写的简单grep函数处理100M的log文件只要4秒,用了hadoop local的方式运行是14秒,用了hadoop单机集群的方式是30秒,用双机集群10M网口的话更慢,慢到不好意思说出来的地步。

分享到:
评论

相关推荐

    hadoop入门(2)CentOS安装和Shell安装

    ### Hadoop入门(2):CentOS安装与Shell基础 #### 概述 本文档将指导您通过一系列基本步骤在CentOS系统上安装Hadoop,并介绍必要的Shell命令以完成安装过程。适合初学者跟随本教程从零开始学习如何在CentOS环境中...

    Introduction_to_Hadoop

    例如,使用`./bin/hadoop fs -ls`列出文件,`./bin/hadoop fs -put`上传文件,`./bin/hadoop jar hadoop-*-examples.jar grep input output 'dfs[a-z.]+’`运行grep示例,以及`cat output/*`查看输出结果。...

    Hadoop简介以及配置文件

    - **Apache Hadoop**:最原始的基础版本,非常适合入门学习者深入了解内部细节。 - **Cloudera Distribution Including Hadoop (CDH)**: - **CDH**:由Cloudera提供的Hadoop发行版,相较于Apache Hadoop,在兼容...

    【课件资料】大数据必备入门技能-linux.7z

    【大数据必备入门技能-Linux】课程是针对想要进入大数据领域学习者的重要教程,它涵盖了Linux操作系统的基础知识,因为Linux在大数据处理中扮演着至关重要的角色。Linux系统以其开源、稳定和高效的特点,成为了...

    MapReduce入门程序

    这个入门程序将帮助初学者理解Hadoop的WordCount应用,这是一个基础且经典的例子,用于演示MapReduce的工作原理。 首先,我们要理解MapReduce的两个核心部分:Map阶段和Reduce阶段。在Map阶段,原始数据被分成多个...

    apache-hive-2.3.3-bin.7z

    Apache Hive 是一个基于Hadoop...综上所述,"apache-hive-2.3.3-bin.7z"包含了完整的Apache Hive 2.3.3版本,提供了高效的数据仓库解决方案,适用于大数据的分析和查询,尤其适合大数据初学者和开发者快速入门和实践。

    大数据入门指南v1.0

    【大数据入门指南】是针对初学者的一份详细教程,涵盖了大数据技术栈中的多个重要组件,包括Hadoop、Hive、Spark、Storm、Flink、HBase、Kafka、Zookeeper和Flume等。以下是各部分的主要知识点: 1. **Hadoop**: ...

    A Guide to Porting C C++ to Rust 等53本

    devops-collective-inc PowerShell.7z Docker Swarm 源码分析.epub Docker简明教程.epub FreeBSD 101 Hacks.epub Golang 101 hacks.epub Hadoop The Definitive Guide 4e 中文版.epub InfluxDB简明手册.epub ...

    Spark_SQL大数据实例开发教程.pdf by Spark_SQL大数据实例开发教程.pdf (z-lib.org)1

    《Spark SQL大数据实例开发教程》是一本专注于...本书适合Spark初学者和进阶者,不仅作为入门教材,也可以作为开发过程中的参考手册。通过这本书,读者将能够全面理解Spark SQL的内部工作原理,提升大数据处理的技能。

    hbase 开源数据库的安装和基本操作.zip

    本教程将详细讲解HBase的安装过程以及基本操作,帮助你快速入门。 **一、HBase简介** HBase是NoSQL数据库的一种,采用列族存储模式,提供实时读写能力,支持大数据量存储。它利用Hadoop的HDFS作为底层存储,...

    hbase简介共8页.pdf.zip

    【标签】:“hbase简介共8页.pdf.z”的标签暗示了文件的性质,即它是关于HBase的入门资料,可能是会议演讲稿、教程或研究笔记。标签中可能由于误操作缺少了“p”字母,实际应为“hbase简介共8页.pdf”。 【压缩包子...

    Spark学习笔记

    - **Hadoop生态融合**: 在大数据处理领域,Hadoop是事实上的标准,而Scala作为Spark的主要开发语言,能够更好地融入Hadoop生态系统,为大数据处理提供强大的支持。 #### 二、Scala基本语法 **2.1 入门程序示例** ...

Global site tag (gtag.js) - Google Analytics