`

Android线程模型

 
阅读更多

Android 进程

在了解Android 线程之间得先了解一下Android 的进程。当一个程序第一次启动的时候,Android 会启动一个LINUX 进程和一个主线程。默认的情况下,所有该程序的组件都将在该进程和线程中运行。同时,Android 会为每个应用程序分配一个单独的LINUX 用户。Android 会劲量保留一个正在运行进程,只在内存资源出现不足时,Android 会参试停止一些进程从而释放足够的资源给其他新的进程使用, 也能保证用户正在访问的当前进程有足够的资源去及时的响应用户的事件。Android 会 根据进程中运行的组件类别以及组件的状态来判断该进程的重要性,Android 会 首先停止那些不重要的进程。按照重要性从高到低一共有五个级别:

  •      前台进程

前台进程是用户当前正在使用的进程。只有一些前台进程可以在任何时候都存在。他们是最后一个被结束的,当内存低到根本连他们都不能运行的时候。一般来说, 在这种情况下,设备会进行内存调度,中止一些前台进程来保持对用户交互的响应。

  •    可见进程

可见进程不包含前台的组件但是会在屏幕上显示一个可见的进程是的重要程度很高,除非前台进程需要获取它的资源,不然不会被中止。

  •     服务进程

运行着一个通过startService()  方法启动的service ,这个service 不属于上面提到的2 种更高重要性的。service 所在的进程虽然对用户不是直接可见的,但是他们执行了用户非常关注的任务(比如播放mp3 ,从网络下载数据)。只要前台进程和可见进程有足够的内存,系统不会 回收他们。

  •     后台进程

运行着一个对用户不可见的activity (调用过 onStop()  方法). 这些进程对用户体验没有直接的影响,可以在服务进程、可见进程、前台进 程需要内存的时候回收。通常,系统中会有很多不可见进程在运行,他们被保存在LRU (least recently used)  列表中,以便内存不足的时候被第一时间回收。如果一个activity 正 确的执行了它的生命周期,关闭这个进程对于用户体验没有太大的影响。

  •      空进程

未运行任何程序组件。运行这些进程的唯一原因是作为一个缓存,缩短下次程序需要重新使用的启动时间。系统经常中止这些进程,这样可以调节程序缓存和系统缓 存的平衡。

Android  对进程的重要性评级的时候,选取它最高的级别。另外,当被另外的一个进程依赖的时候,某个进程的级别可能会增高。一个为其他进程服务的进程永远不会比被服 务的进程重要级低。因为服务进程比后台activity 进程重 要级高,因此一个要进行耗时工作的activity 最好启动一 个service 来做这个工作,而不是开启一个子进程――特别 是这个操作需要的时间比activity 存在的时间还要长的时 候。例如,在后台播放音乐,向网上上传摄像头拍到的图片,使用service 可 以使进程最少获取到“服务进程”级别的重要级,而不用考虑activity 目 前是什么状态。broadcast receivers 做费时的工作的时候,也应该启用一个服务而不是开一个线程。

  2 单线程模型

     当一个程序第一次启动时,Android 会同时启动一个对应的 主线程(Main Thread ),主线程主要负责处理与UI 相关的事件,如:用户的按键事件,用户接触屏幕的事件以及屏幕绘图事 件,并把相关的事件分发到对应的组件进行处理。所以主线程通常又被叫做UI 线 程。在开发Android 应用时必须遵守单线程模型的原则: Android UI 操作并不是线程安全的并且这些操作必须在UI 线程中执行。

2.1  案例演示

如 果在没有理解这样的单线程模型的情况下,设计的程序可能会使程序性能低下,因为所有的动作都在同一个线 程中触发。例如当主线程正在做一些比较耗时的操作的时候,如正从网络上下载一个大图片,或者访问数据库,由于主线程被这些耗时的操作阻塞住,无法及时的响 应用户的事件,从用户的角度看会觉得程序已经死掉。如果程序长时间不响应,用户还可能得重启系统。为了避免这样的情况,Android 设 置了一个5 秒 的超时时间,一旦用户的事件由于主线程阻塞而超过5 秒 钟没有响应,Android 会 弹出一个应用程序没有响应的对话框。下面将通过一个案例来演示这种情况:

本程序将设计和实现查看指定城市的当天天气情况的功能,

1.   首先,需要选择一个天气查询的 服务接口,目前可供选择的接口很多,诸如YAHOO 的 天气APIGoogle 提 供的天气API 。 本文将选择GOOGLE  的 天气查询API 。 该接口提供了多种查询方式,可以通过指定具体城市的经纬度进行查询,也可以通过城市名称进行查询。

2.   用户在输入框内输入需要查询的 城市名称,然后点击查询按钮

3.   当用户点击查询按钮后,使用已 经内置在Android SDK 中的HttpClient API 来调用GOOGLE  的 天气查询API , 然后解析返回的指定城市的天气信息,并把该天气信息显示在Title

主要代码如下:

public   class  WeatherReport  extends  Activity  implements  OnClickListener {

     private   static   final  String  GOOGLE_API_URL  =  "http://www.google.com/ig/api?weather=" ;
     private   static   final  String  NETWORK_ERROR  =  " 网络异常 " ;
     private  EditText  editText ;

     @Override
     public   void  onCreate(Bundle savedInstanceState) {
         super .onCreate(savedInstanceState);
         setContentView(R.layout. main );
         editText  = (EditText) findViewById(R.id . weather_city_edit );
         Button button = (Button) findViewById(R.id . goQuery );
         button.setOnClickListener( this );
     }

     @Override
     public   void  onClick(View v) {
         // 获得用户输入的城市名称
         String city =  editText .getText().toString();
         // 调用 Google   天气 API 查询指定城市的当日天气 情况
         String weather = getWetherByCity(city);
         // 把天气信息显示在 title 上
         setTitle(weather);
     }

    

     public  String getWetherByCity(String city) {
         HttpClient httpClient =  new  DefaultHttpClient();
         HttpContext localContext =  new  BasicHttpContext();
         HttpGet httpGet =  new  HttpGet( GOOGLE_API_URL  + city);
         try  {
             HttpResponse response = httpClient.execute(httpGet, localContext);
             if  (response.getStatusLine().getStatusCode() != HttpStatus. SC_OK ) {
                 httpGet.abort();
             }  else  {
                 HttpEntity httpEntity = response.getEntity();
                 return  parseWeather(httpEntity.getContent());
             }
         }  catch  (Exception e) {
             Log.e ( "WeatherReport" ,  "Failed to get weather" , e);
         }  finally  {
             httpClient.getConnectionManager().shutdown();
         }

         return   NETWORK_ERROR ;
     }
} 
 

当用户输入城市名称,然后单击按钮进行查询后,程序会调用Google API 的接口获得指定城市的当日天气情况。由于需要访问网络,所以当网络出现异常或者服务繁忙的时候都会使访问网络的动作很耗时。本文为了 要演示超时的现象,只需要制造一种网络异常的状况,最简单的方式就是断开网络连接,然后启动该程序,同时触发一个用户事件,比如按一下MENU 键, 由于主线程因为网络异常而被长时间阻塞,所以用户的按键事件在5 秒 钟内得不到响应,Android 会 提示一个程序无法响应的异常.

弹出对话框会询问用户 是继续等待还是强行退出程序。当你的程序需要去访问未知的网络的时候都会可能会发生类似的超时的情况,用户的响应得不到及时的回应会大大的降低用户体验。 所以我们需要参试以别的方式来实现  

2.1  子线程更新UI

     显然如果你的程序需要执行耗时的操作的话,如果像上例一样由主线程来负责执行 该操作是错误的。所以我们需要在onClick 方 法中创建一个新的子线程来负责调用GOOGLE API 来获得天气数据。刚接触Android 的 开发者最容易想到的方式就是如下:

public   void  onClick(View v) {

        // 创建一个子线程执行耗时的从网络上获取天气信息的操作
        new  Thread() {
            @Override
            public   void  run() {
               // 获得用户输入的城市名称
               String city =  editText .getText().toString();
               // 调用 Google   天气 API 查询指定城市的当日天气 情况
               String weather = getWetherByCity(city);
               // 把天气信息显示在 title 上
               setTitle(weather);
            }
        }.start();
     } 
 

但是很不幸,你会发 现Android 会 提示程序由于异常而终止。为什么在其他平台上看起来很简单的代码在Android 上运行的时候依然会出错呢?如果你观察LogCat 中打印的日志信息就会发现这样的错误日志:

android.view.ViewRoot$CalledFromWrongThreadException: Only the original thread that created a view hierarchy can touch its views.

从错误信息不难看出Android 禁 止其他子线程来更新由UI thread 创建的试图。本例中显示天气信息的title 实际是就是一个由UI thread 所创建的TextView ,所以参试在一个子线程中去更改TextView 的时候就出错了。这显示违背了单线程模型的原则:Android UI 操作并不是线程安全的并且这些操作必须在UI 线 程中执行  

2.2 Message Queue

在单线程模型下,为 了解决类似的问题,Android 设 计了一个Message Queue( 消息队列) , 线程间可以通过该Message Queue 并结合HandlerLooper 组 件进行信息交换。下面将对它们进行分别介绍:

  •    Message Queue

Message Queue 是一个消息队列,用来存放通过Handler 发 布的消息。消息队列通常附属于某一个创建它的线程,可以通过Looper.myQueue() 得 到当前线程的消息队列。Android 在 第一启动程序时会默认会为UI thread 创建一个关联的消息队列,用来管理程序的一些上层组件,activitiesbroadcast receivers  等等。你可以在自己的子线程中创建HandlerUI thread 通讯。

  •    Handler

通过Handler 你 可以发布或者处理一个消息或者是一个Runnable 的 实例。没个Handler 都 会与唯一的一个线程以及该线程的消息队列管理。当你创建一个新的Handler 时候,默认情况下,它将关联到创建它的这个线程和该线程的消息队列。也就是说,如果你通过Handler 发 布消息的话,消息将只会发送到与它关联的这个消息队列,当然也只能处理该消息队列中的消息。

主要的方法有:

1)    public final boolean sendMessage(Message msg)

把消息放入该Handler 所 关联的消息队列,放置在所有当前时间前未被处理的消息后。

2)    public void handleMessage(Message msg)

关联该消息队列的线 程将通过调用HandlerhandleMessage 方 法来接收和处理消息,通常需要子类化Handler 来 实现handleMessage

  •   Looper

Looper 扮演着一个Handler 和 消息队列之间通讯桥梁的角色。程序组件首先通过Handler 把 消息传递给LooperLooper 把 消息放入队列。Looper 也 把消息队列里的消息广播给所有的HandlerHandler 接 受到消息后调用handleMessage 进 行处理。

1)    可以通过Looper 类 的静态方法Looper.myLooper 得 到当前线程的Looper 实 例,如果当前线程未关联一个Looper 实 例,该方法将返回空。

2)    可以通过静态方法Looper.   getMainLooper 方法得到主线程的Looper 实 例

线程,消息队列,HandlerLooper 之 间的关系可以通过一个图来展示:

在了解了消息队列及 其相关组件的设计思想后,我们将把天气预报的案例通过消息队列来重新实现:

在了解了消息队列及其相关组件的设计思想后,我们将把天气预报的案例通过消息队列来重新实现:


     private  EditText  editText ;
     private  Handler  messageHandler ;

     @Override
     public  void  onCreate(Bundle savedInstanceState) {
         super .onCreate(savedInstanceState);
         setContentView(R.layout. main );
         editText  = (EditText) findViewById(R.id. weather_city_edit );
         Button button = (Button) findViewById(R.id. goQuery );
         button.setOnClickListener( this );
         // 得到当前线程 的 Looper 实例,由于 当前线程是 UI 线程也可以 通过 Looper.getMainLooper() 得到
         Looper looper = Looper. myLooper ();
         // 此处甚至可以 不需要设置 Looper ,因为  Handler 默认就使用当 前线程的 Looper
         messageHandler  =  new  MessageHandler(looper);
     }
     @Override
     public  void  onClick(View v) {
         // 创建一个子线 程去做耗时的网络连接工作
         new  Thread() {

             @Override
             public  void  run() {
                 // 活动用户输入 的城市名称
                 String city =  editText .getText().toString();
                 // 调用 Google  天气 API 查询指定城 市的当日天气情况
                 String weather = getWetherByCity(city);
                 // 创建一个 Message 对象,并把得 到的天气信息赋值给 Message 对象
                 Message message = Message. obtain ();
                 message. obj  = weather;
                 // 通过 Handler 发布携带有天 气情况的消息
                 messageHandler .sendMessage(message);
             }
         }.start();
     }

     // 子类化一个 Handler
     class  MessageHandler  extends  Handler {
         public  MessageHandler(Looper looper) {
             super (looper);
         }

         @Override
         public  void  handleMessage(Message msg) {
             // 处理收到的消 息,把天气信息显示在 title 上
             setTitle((String) msg. obj );
         }
     } 
 

通过消息队列改写过后的天气预报程序已经可以成功运行,因为 Handler handleMessage 方法实 际是由关联有该消息队列的 UI thread 调用,而在 UI thread 中更新 title 并没有违背 Android 的单线程模型的原 则。

2.3 AsyncTask

虽然借助消息队列已经可以较为完美的实现了天气预报的功能,但是你还是不得不自己管理子线程,尤其当你的需要有一些复杂的逻辑以及需要频繁的更新UI 的时候,这样的方式使得你的代码难以阅读和理解。

幸运的是Android 另外提供了一个工具类:AsyncTask 。它使得UI thread 的使用变得异常简单。它使创建需要与用户界面交互的长时间运行的任务变得更简单,不需要借助线程和Handler 即可实现。

1)    子类化AsyncTask

2)    实现AsyncTask 中定义的下面一个或几个方法

  •      onPreExecute(),  该方法将在执行实际的后台操作前被UI thread 调用。可以在该方法中做一些准备工作,如在界面上显示一个进度条。
  •      doInBackground(Params...),  将在onPreExecute  方法执行后马上执行,该方法运行在后台线程中。这里将主要负责执行那些很耗时的后台计算工作。可以调用publishProgress 方法来更新实时的任务进度。该方法是抽象方法,子类必须实现。
  •  onProgressUpdate(Progress...), publishProgress 方 法被调用后,UI thread 将调用这个方法从而在界面上展示任务的进展情况,例如通过一个进度条进行展示。
  •   onPostExecute(Result),  doInBackground  执行完成后,onPostExecute  方法将被UI thread 调用,后台的计算结果将通过该方法传递到UI thread.

为了正确的使用AsyncTask 类,以下是几条必须遵守的准 则:

1)    Task 的实例 必须在UI thread 中创建

2)    execute 方 法必须在UI thread 中调用

3)    不要手动的调用onPreExecute(), onPostExecute(Result)doInBackground(Params...), onProgressUpdate(Progress...) 这几个方法

4)    task 只能被执行一次,否则多次调用时将会出现异常

下面我们将通过AsyncTask 并且严格遵守上面的4 条准则来改写天气预报的例子:

public  void  onCreate(Bundle savedInstanceState) {

        super .onCreate(savedInstanceState);
        setContentView(R.layout. main );
        editText  = (EditText) findViewById(R.id. weather_city_edit );
        Button button = (Button) findViewById(R.id. goQuery );
        button.setOnClickListener( this );
     }

     public  void  onClick(View v) {
        // 获得用户输 入的城市名称
        String city =  editText .getText().toString();
     // 必须每次都 重新创建一个新的 task 实例进行 查询,否则将提示如下异常信息
     //the task has already been executed (a task can be executed only once)
        new  GetWeatherTask().execute(city);
     }

     class  GetWeatherTask  extends  AsyncTask<String, Integer, String> {

        @Override
        protected  String doInBackground(String... params) {
            String city = params[0];
            // 调用 Google  天气 API 查询指定 城市的当日天气情况
            return  getWetherByCity(city);
        }

        protected  void  onPostExecute(String result) {
            // 把 doInBackground 处理的结果 即天气信息显示在 title 上
            setTitle(result);
        }
     }  

注意这行代 码: new  GetWeatherTask().execute(city);  值得一提的是必须每次都重新创建一个新的 GetWeatherTask 来执行后台任务,否则 Android 会提示“ a task can be executed only once” 的错误信息。  

经过改写后的 程序不仅显得非常的简洁,而且还减少了代码量,大大增强了可读性和可维护性。因为负责更新UIonPostExecute 方 法是由UI thread 调用,所以没有违背单线程模型的原则。良好的AsyncTask 设计大大降低了我们犯错误的几率。  

5 综述

     本文首先大致介绍了Android 的单线程模型及其原则。然后通过一个真实案例展示刚接触Android 的 开发人员在不理解Android 的 单线程模型下容易犯的错误。最后通过几种正确的方式实现该案例,进一步认识和理解Android 的单线程模型及其原则。由于更多地关注线程模型,本文或许不足以帮助读者全面的认识Android 技 术,关于文中提到的其他技术细节以及Android 的 其他相关技术可以访问Android 的 官方网站进行进一步的了解和学习。

分享到:
评论

相关推荐

    受激拉曼散射计量【Stimulated-Raman-Scattering Metrology】 附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    MMC整流器技术解析:基于Matlab的双闭环控制策略与环流抑制性能研究,Matlab下的MMC整流器技术文档:18个子模块,双闭环控制稳定直流电压,环流抑制与最近电平逼近调制,优化桥臂电流波形,高效

    MMC整流器技术解析:基于Matlab的双闭环控制策略与环流抑制性能研究,Matlab下的MMC整流器技术文档:18个子模块,双闭环控制稳定直流电压,环流抑制与最近电平逼近调制,优化桥臂电流波形,高效并网运行。,MMC整流器(Matlab),技术文档 1.MMC工作在整流侧,子模块个数N=18,直流侧电压Udc=25.2kV,交流侧电压6.6kV 2.控制器采用双闭环控制,外环控制直流电压,采用PI调节器,电流内环采用PI+前馈解耦; 3.环流抑制采用PI控制,能够抑制环流二倍频分量; 4.采用最近电平逼近调制(NLM), 5.均压排序:电容电压排序采用冒泡排序,判断桥臂电流方向确定投入切除; 结果: 1.输出的直流电压能够稳定在25.2kV; 2.有功功率,无功功率稳态时波形稳定,有功功率为3.2MW,无功稳定在0Var; 3.网侧电压电流波形均为对称的三相电压和三相电流波形,网侧电流THD=1.47%<2%,符合并网要求; 4.环流抑制后桥臂电流的波形得到改善,桥臂电流THD由9.57%降至1.93%,环流波形也可以看到得到抑制; 5.电容电压能够稳定变化 ,工作点关键词:MMC

    Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基

    Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构,Simulink建模,MPPT最大功率点追踪,扰动观察法采用功率反馈方式,若ΔP>0,说明电压调整的方向正确,可以继续按原方向进行“干扰”;若ΔP<0,说明电压调整的方向错误,需要对“干扰”的方向进行改变。 ,Boost升压;光伏并网结构;Simulink建模;MPPT最大功率点追踪;扰动观察法;功率反馈;电压调整方向。,光伏并网结构中Boost升压MPPT控制策略的Simulink建模与功率反馈扰动观察法

    STM32F103C8T6 USB寄存器开发详解(12)-键盘设备

    STM32F103C8T6 USB寄存器开发详解(12)-键盘设备

    2011-2020广东21市科技活动人员数

    科技活动人员数专指直接从事科技活动以及专门从事科技活动管理和为科技活动提供直接服务的人员数量

    Matlab Simulink仿真探究Flyback反激式开关电源性能表现与优化策略,Matlab Simulink仿真探究Flyback反激式开关电源的工作机制,Matlab Simulimk仿真

    Matlab Simulink仿真探究Flyback反激式开关电源性能表现与优化策略,Matlab Simulink仿真探究Flyback反激式开关电源的工作机制,Matlab Simulimk仿真,Flyback反激式开关电源仿真 ,Matlab; Simulink仿真; Flyback反激式; 开关电源仿真,Matlab Simulink在Flyback反激式开关电源仿真中的应用

    基于Comsol的埋地电缆电磁加热计算模型:深度解析温度场与电磁场分布学习资料与服务,COMSOL埋地电缆电磁加热计算模型:温度场与电磁场分布的解析与学习资源,comsol 埋地电缆电磁加热计算模型

    基于Comsol的埋地电缆电磁加热计算模型:深度解析温度场与电磁场分布学习资料与服务,COMSOL埋地电缆电磁加热计算模型:温度场与电磁场分布的解析与学习资源,comsol 埋地电缆电磁加热计算模型,可以得到埋地电缆温度场及电磁场分布,提供学习资料和服务, ,comsol;埋地电缆电磁加热计算模型;温度场分布;电磁场分布;学习资料;服务,Comsol埋地电缆电磁加热模型:温度场与电磁场分布学习资料及服务

    ibus-table-chinese-yong-1.4.6-3.el7.x64-86.rpm.tar.gz

    1、文件内容:ibus-table-chinese-yong-1.4.6-3.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/ibus-table-chinese-yong-1.4.6-3.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊

    基于51单片机protues仿真的汽车智能灯光控制系统设计(仿真图、源代码)

    基于51单片机protues仿真的汽车智能灯光控制系统设计(仿真图、源代码) 一、设计项目 根据本次设计的要求,设计出一款基于51单片机的自动切换远近光灯的设计。 技术条件与说明: 1. 设计硬件部分,中央处理器采用了STC89C51RC单片机; 2. 使用两个灯珠代表远近光灯,感光部分采用了光敏电阻,因为光敏电阻输出的是电压模拟信号,单片机不能直接处理模拟信号,所以经过ADC0832进行转化成数字信号; 3. 显示部分采用了LCD1602液晶,还增加按键部分电路,可以选择手自动切换远近光灯; 4. 用超声模块进行检测距离;

    altermanager的企业微信告警服务

    altermanager的企业微信告警服务

    MyAgent测试版本在线下载

    MyAgent测试版本在线下载

    Comsol技术:可调BIC应用的二氧化钒VO2材料探索,Comsol模拟二氧化钒VO2的可调BIC特性研究,Comsol二氧化钒VO2可调BIC ,Comsol; 二氧化钒VO2; 可调BIC

    Comsol技术:可调BIC应用的二氧化钒VO2材料探索,Comsol模拟二氧化钒VO2的可调BIC特性研究,Comsol二氧化钒VO2可调BIC。 ,Comsol; 二氧化钒VO2; 可调BIC,Comsol二氧化钒VO2材料:可调BIC技术的关键应用

    C++学生成绩管理系统源码.zip

    C++学生成绩管理系统源码

    基于Matlab与Cplex的激励型需求响应模式:负荷转移与电价响应的差异化目标函数解析,基于Matlab与CPLEX的激励型需求响应负荷转移策略探索,激励型需求响应 matlab +cplex 激励

    基于Matlab与Cplex的激励型需求响应模式:负荷转移与电价响应的差异化目标函数解析,基于Matlab与CPLEX的激励型需求响应负荷转移策略探索,激励型需求响应 matlab +cplex 激励型需求响应采用激励型需求响应方式对负荷进行转移,和电价响应模式不同,具体的目标函数如下 ,激励型需求响应; matlab + cplex; 负荷转移; 目标函数。,Matlab与Cplex结合的激励型需求响应模型及其负荷转移策略

    scratch介绍(scratch说明).zip

    scratch介绍(scratch说明).zip

    深度学习模型的发展历程及其关键技术在人工智能领域的应用

    内容概要:本文全面介绍了深度学习模型的概念、工作机制和发展历程,详细探讨了神经网络的构建和训练过程,包括反向传播算法和梯度下降方法。文中还列举了深度学习在图像识别、自然语言处理、医疗和金融等多个领域的应用实例,并讨论了当前面临的挑战,如数据依赖、计算资源需求、可解释性和对抗攻击等问题。最后,文章展望了未来的发展趋势,如与量子计算和区块链的融合,以及在更多领域的应用前景。 适合人群:对该领域有兴趣的技术人员、研究人员和学者,尤其适合那些希望深入了解深度学习原理和技术细节的读者。 使用场景及目标:①理解深度学习模型的基本原理和结构;②了解深度学习模型的具体应用案例;③掌握应对当前技术挑战的方向。 阅读建议:文章内容详尽丰富,读者应在阅读过程中注意理解各个关键技术的概念和原理,尤其是神经网络的构成及训练过程。同时也建议对比不同模型的特点及其在具体应用中的表现。

    day02供应链管理系统-补充.zip

    该文档提供了一个关于供应链管理系统开发的详细指南,重点介绍了项目安排、技术实现和框架搭建的相关内容。 文档分为以下几个关键部分: 项目安排:主要步骤包括搭建框架(1天),基础数据模块和权限管理(4天),以及应收应付和销售管理(5天)。 供应链概念:供应链系统的核心流程是通过采购商品放入仓库,并在销售时从仓库提取商品,涉及三个主要订单:采购订单、销售订单和调拨订单。 大数据的应用:介绍了数据挖掘、ETL(数据抽取)和BI(商业智能)在供应链管理中的应用。 技术实现:讲述了DAO(数据访问对象)的重用、服务层的重用、以及前端JS的继承机制、jQuery插件开发等技术细节。 系统框架搭建:包括Maven环境的配置、Web工程的创建、持久化类和映射文件的编写,以及Spring配置文件的实现。 DAO的需求和功能:供应链管理系统的各个模块都涉及分页查询、条件查询、删除、增加、修改操作等需求。 泛型的应用:通过示例说明了在Java语言中如何使用泛型来实现模块化和可扩展性。 文档非常技术导向,适合开发人员参考,用于构建供应链管理系统的架构和功能模块。

    清华大学104页《Deepseek:从入门到精通》

    这份长达104页的手册由清华大学新闻与传播学院新媒体研究中心元宇宙文化实验室的余梦珑博士后及其团队精心编撰,内容详尽,覆盖了从基础概念、技术原理到实战案例的全方位指导。它不仅适合初学者快速了解DeepSeek的基本操作,也为有经验的用户提供了高级技巧和优化策略。

    MXTU MAX仿毒舌自适应主题源码 苹果CMSv10模板.zip

    主题说明: 1、将mxtheme目录放置根目录 | 将mxpro目录放置template文件夹中 2、苹果cms后台-系统-网站参数配置-网站模板-选择mxpro 模板目录填写html 3、网站模板选择好之后一定要先访问前台,然后再进入后台设置 4、主题后台地址: MXTU MAX图图主题,/admin.php/admin/mxpro/mxproset admin.php改成你登录后台的xxx.php 5、首页幻灯片设置视频推荐9,自行后台设置 6、追剧周表在视频数据中,节目周期添加周一至周日自行添加,格式:一,二,三,四,五,六,日

    基于matlab平台的数字信号处理GUI设计.zip

    运行GUI版本,可二开

Global site tag (gtag.js) - Google Analytics