`
lt200819
  • 浏览: 193079 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

mybatis与hibernate比较

 
阅读更多

最近做了一个Hibernate与MyBatis的对比总结,希望大家指出不对之处。

第一章     HibernateMyBatis

Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。

MyBatis 参考资料官网:http://mybatis.github.io/mybatis-3/

Hibernate参考资料: http://docs.jboss.org/hibernate/core/3.6/reference/zh-CN/html_single/

1.1 Hibernate 简介

Hibernate对数据库结构提供了较为完整的封装,HibernateO/R Mapping实现了POJO 和数据库表之间的映射,以及SQL 的自动生成和执行。程序员往往只需定义好了POJO 到数据库表的映射关系,即可通过Hibernate 提供的方法完成持久层操作。程序员甚至不需要对SQL 的熟练掌握, Hibernate/OJB 会根据制定的存储逻辑,自动生成对应的SQL 并调用JDBC 接口加以执行。

1.2 MyBatis简介

iBATIS 的着力点,则在于POJO SQL之间的映射关系。然后通过映射配置文件,将SQL所需的参数,以及返回的结果字段映射到指定POJO。 相对HibernateO/R”而言,iBATIS 是一种“Sql Mapping”的ORM实现。

第二章 开发对比

开发速度

Hibernate的真正掌握要比Mybatis来得难些。Mybatis框架相对简单很容易上手,但也相对简陋些。个人觉得要用好Mybatis还是首先要先理解好Hibernate

开发社区

Hibernate Mybatis都是流行的持久层开发框架,但Hibernate开发社区相对多热闹些,支持的工具也多,更新也快。而Mybatis相对平静,工具较少,但足够使用

开发工作量

HibernateMyBatis都有相应的代码生成工具。可以生成简单基本的DAO层方法。

针对高级查询,Mybatis需要手动编写SQL语句,以及ResultMap。而Hibernate有良好的映射机制,开发者无需关心SQL的生成与结果映射,可以更专注于业务流程。

第三章 系统调优对比

Hibernate的调优方案

  1. 制定合理的缓存策略;
  2. 尽量使用延迟加载特性;
  3. 采用合理的Session管理机制;
  4. 使用批量抓取,设定合理的批处理参数(batch_size;
  5. 进行合理的O/R映射设计

Mybatis调优方案

MyBatisSession方面和HibernateSession生命周期是一致的,同样需要合理的Session管理机制。MyBatis同样具有二级缓存机制。 MyBatis可以进行详细的SQL优化设计。

SQL优化方面

Hibernate的查询会将表中的所有字段查询出来,这一点会有性能消耗。Hibernate也可以自己写SQL来指定需要查询的字段,但这样就破坏了Hibernate开发的简洁性。而MybatisSQL是手动编写的,所以可以按需求指定查询的字段。

Hibernate HQL语句的调优需要将SQL打印出来,而HibernateSQL被很多人嫌弃因为太丑了。MyBatisSQL是自己手动写的所以调整方便。但Hibernate具有自己的日志统计。Mybatis本身不带日志统计,使用Log4j进行日志记录。

扩展性方面

Hibernate与具体数据库的关联只需在XML文件中配置即可,所有的HQL语句与具体使用的数据库无关,移植性很好。MyBatis项目中所有的SQL语句都是依赖所用的数据库的,所以对数据库移植的支持不好。

第四章 对象管理与抓取策略

对象管理

Hibernate 是完整的对象/关系映射解决方案,它提供了对象状态管理(state management的功能,使开发者不再需要理会底层数据库系统的细节。也就是说,相对于常见的 JDBC/SQL 持久层方案中需要管理 SQL 语句,Hibernate采用了更自然的面向对象的视角来持久化 Java 应用中的数据。

换句话说,使用 Hibernate 的开发者应该总是关注对象的状态(state,不必考虑 SQL 语句的执行。这部分细节已经由 Hibernate 掌管妥当,只有开发者在进行系统性能调优的时候才需要进行了解。

MyBatis在这一块没有文档说明,用户需要对对象自己进行详细的管理。

抓取策略

Hibernate对实体关联对象的抓取有着良好的机制。对于每一个关联关系都可以详细地设置是否延迟加载,并且提供关联抓取、查询抓取、子查询抓取、批量抓取四种模式。 它是详细配置和处理的。

Mybatis的延迟加载是全局配置的。

第五章 缓存机制对比

Hibernate缓存

Hibernate一级缓存是Session缓存,利用好一级缓存就需要对Session的生命周期进行管理好。建议在一个Action操作中使用一个Session。一级缓存需要对Session进行严格管理。

Hibernate二级缓存是SessionFactory级的缓存。 SessionFactory的缓存分为内置缓存和外置缓存。内置缓存中存放的是SessionFactory对象的一些集合属性包含的数据(映射元素据及预定SQL语句等),对于应用程序来说,它是只读的。外置缓存中存放的是数据库数据的副本,其作用和一级缓存类似.二级缓存除了以内存作为存储介质外,还可以选用硬盘等外部存储设备。二级缓存称为进程级缓存或SessionFactory级缓存,它可以被所有session共享,它的生命周期伴随着SessionFactory的生命周期存在和消亡。

MyBatis缓存

MyBatis 包含一个非常强大的查询缓存特性,它可以非常方便地配置和定制。MyBatis 3 中的缓存实现的很多改进都已经实现了,使得它更加强大而且易于配置。

默认情况下是没有开启缓存的,除了局部的 session 缓存,可以增强变现而且处理循环 依赖也是必须的。要开启二级缓存,你需要在你的 SQL 映射文件中添加一行:  <cache/>

字面上看就是这样。这个简单语句的效果如下:

  1. 映射语句文件中的所有 select 语句将会被缓存。
  2. 映射语句文件中的所有 insert,update  delete 语句会刷新缓存。
  3. 缓存会使用 Least Recently Used(LRU,最近最少使用的)算法来收回。
  4. 根据时间表(比如 no Flush Interval,没有刷新间隔), 缓存不会以任何时间顺序 来刷新。
  5. 缓存会存储列表集合或对象(无论查询方法返回什么) 1024 个引用。
  6. 缓存会被视为是 read/write(可读/可写)的缓存,意味着对象检索不是共享的,而 且可以安全地被调用者修改,而不干扰其他调用者或线程所做的潜在修改。

所有的这些属性都可以通过缓存元素的属性来修改。

比如: <cache  eviction="FIFO"  flushInterval="60000"  size="512"  readOnly="true"/>

这个更高级的配置创建了一个 FIFO 缓存,并每隔 60 秒刷新,存数结果对象或列表的 512 个引用,而且返回的对象被认为是只读的,因此在不同线程中的调用者之间修改它们会 导致冲突。可用的收回策略有默认的是 LRU:

  1. LRU – 最近最少使用的:移除最长时间不被使用的对象。
  2. FIFO – 先进先出:按对象进入缓存的顺序来移除它们。
  3. SOFT – 软引用:移除基于垃圾回收器状态和软引用规则的对象。
  4. WEAK – 弱引用:更积极地移除基于垃圾收集器状态和弱引用规则的对象。

flushInterval(刷新间隔)可以被设置为任意的正整数,而且它们代表一个合理的毫秒 形式的时间段。默认情况是不设置,也就是没有刷新间隔,缓存仅仅调用语句时刷新。

size(引用数目)可以被设置为任意正整数,要记住你缓存的对象数目和你运行环境的 可用内存资源数目。默认值是1024

readOnly(只读)属性可以被设置为 true  false。只读的缓存会给所有调用者返回缓 存对象的相同实例。因此这些对象不能被修改。这提供了很重要的性能优势。可读写的缓存 会返回缓存对象的拷贝(通过序列化。这会慢一些,但是安全,因此默认是 false

相同点

HibernateMybatis的二级缓存除了采用系统默认的缓存机制外,都可以通过实现你自己的缓存或为其他第三方缓存方案,创建适配器来完全覆盖缓存行为。

不同点

Hibernate的二级缓存配置在SessionFactory生成的配置文件中进行详细配置,然后再在具体的表-对象映射中配置是那种缓存。

MyBatis的二级缓存配置都是在每个具体的表-对象映射中进行详细配置,这样针对不同的表可以自定义不同的缓存机制。并且Mybatis可以在命名空间中共享相同的缓存配置和实例,通过Cache-ref来实现。

两者比较

因为Hibernate对查询对象有着良好的管理机制,用户无需关心SQL。所以在使用二级缓存时如果出现脏数据,系统会报出错误并提示。

MyBatis在这一方面,使用二级缓存时需要特别小心。如果不能完全确定数据更新操作的波及范围,避免Cache的盲目使用。否则,脏数据的出现会给系统的正常运行带来很大的隐患。

第六章 HibernateMybatis对比总结

两者相同点

  • HibernateMyBatis都可以是通过SessionFactoryBuiderXML配置文件生成SessionFactory,然后由SessionFactory 生成Session,最后由Session来开启执行事务和SQL语句。其中SessionFactoryBuiderSessionFactorySession的生命周期都是差不多的。
  • HibernateMyBatis都支持JDBCJTA事务处理。
  • Hibernate和MyBatis,可以使用第三方缓存

Mybatis优势

  • MyBatis可以进行更为细致的SQL优化,可以减少查询字段。
  • MyBatis容易掌握,而Hibernate门槛较高。

Hibernate优势

  • Hibernate对对象的维护和缓存要比MyBatis好,对增删改查的对象的维护要方便。
  • Hibernate数据库移植性很好,MyBatis的数据库移植性不好,不同的数据库需要写不同SQL。


分享到:
评论

相关推荐

    Delphi 12.3控件之TraeSetup-stable-1.0.12120.exe

    Delphi 12.3控件之TraeSetup-stable-1.0.12120.exe

    基于GPRS,GPS的电动汽车远程监控系统的设计与实现.pdf

    基于GPRS,GPS的电动汽车远程监控系统的设计与实现.pdf

    基于MATLAB/Simulink 2018a的单机无穷大系统暂态稳定性仿真与故障分析

    内容概要:本文详细介绍了如何利用MATLAB/Simulink 2018a进行单机无穷大系统的暂态稳定性仿真。主要内容包括搭建同步发电机模型、设置无穷大系统等效电源、配置故障模块及其控制信号、优化求解器设置以及绘制和分析转速波形和摇摆曲线。文中还提供了多个实用脚本,如故障类型切换、摇摆曲线计算和极限切除角的求解方法。此外,作者分享了一些实践经验,如避免常见错误和提高仿真效率的小技巧。 适合人群:从事电力系统研究和仿真的工程师和技术人员,尤其是对MATLAB/Simulink有一定基础的用户。 使用场景及目标:适用于需要进行电力系统暂态稳定性分析的研究项目或工程应用。主要目标是帮助用户掌握单机无穷大系统的建模和仿真方法,理解故障对系统稳定性的影响,并能够通过仿真结果评估系统的性能。 其他说明:文中提到的一些具体操作和脚本代码对于初学者来说可能会有一定的难度,建议结合官方文档或其他教程一起学习。同时,部分技巧和经验来自于作者的实际操作,具有一定的实用性。

    【KUKA 机器人资料】:KUKA机器人剑指未来——访库卡自动化设备(上海)有限公司销售部经理邹涛.pdf

    KUKA机器人相关资料

    基于DLR模型的PM10–能见度–湿度相关性 研究.pdf

    基于DLR模型的PM10–能见度–湿度相关性 研究.pdf

    MATLAB/Simulink中基于电导增量法的光伏并网系统MPPT仿真及其环境适应性分析

    内容概要:本文详细介绍了如何使用MATLAB/Simulink进行光伏并网系统的最大功率点跟踪(MPPT)仿真,重点讨论了电导增量法的应用。首先阐述了电导增量法的基本原理,接着展示了如何在Simulink中构建光伏电池模型和MPPT控制系统,包括Boost升压电路的设计和PI控制参数的设定。随后,通过仿真分析了不同光照强度和温度条件对光伏系统性能的影响,验证了电导增量法的有效性,并提出了针对特定工况的优化措施。 适合人群:从事光伏系统研究和技术开发的专业人士,尤其是那些希望通过仿真工具深入理解MPPT控制机制的人群。 使用场景及目标:适用于需要评估和优化光伏并网系统性能的研发项目,旨在提高系统在各种环境条件下的最大功率点跟踪效率。 其他说明:文中提供了详细的代码片段和仿真结果图表,帮助读者更好地理解和复现实验过程。此外,还提到了一些常见的仿真陷阱及解决方案,如变步长求解器的问题和PI参数整定技巧。

    【KUKA 机器人坐标的建立】:mo2_base_en.ppt

    KUKA机器人相关文档

    风力发电领域双馈风力发电机(DFIG)Simulink模型的构建与电流电压波形分析

    内容概要:本文详细探讨了双馈风力发电机(DFIG)在Simulink环境下的建模方法及其在不同风速条件下的电流与电压波形特征。首先介绍了DFIG的基本原理,即定子直接接入电网,转子通过双向变流器连接电网的特点。接着阐述了Simulink模型的具体搭建步骤,包括风力机模型、传动系统模型、DFIG本体模型和变流器模型的建立。文中强调了变流器控制算法的重要性,特别是在应对风速变化时,通过实时调整转子侧的电压和电流,确保电流和电压波形的良好特性。此外,文章还讨论了模型中的关键技术和挑战,如转子电流环控制策略、低电压穿越性能、直流母线电压脉动等问题,并提供了具体的解决方案和技术细节。最终,通过对故障工况的仿真测试,验证了所建模型的有效性和优越性。 适用人群:从事风力发电研究的技术人员、高校相关专业师生、对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:适用于希望深入了解DFIG工作原理、掌握Simulink建模技能的研究人员;旨在帮助读者理解DFIG在不同风速条件下的动态响应机制,为优化风力发电系统的控制策略提供理论依据和技术支持。 其他说明:文章不仅提供了详细的理论解释,还附有大量Matlab/Simulink代码片段,便于读者进行实践操作。同时,针对一些常见问题给出了实用的调试技巧,有助于提高仿真的准确性和可靠性。

    linux之用户管理教程.md

    linux之用户管理教程.md

    三菱PLC与组态王构建3x3书架式堆垛立体库:IO分配、梯形图编程及组态画面设计

    内容概要:本文详细介绍了利用三菱PLC(特别是FX系列)和组态王软件构建3x3书架式堆垛式立体库的方法。首先阐述了IO分配的原则,明确了输入输出信号的功能,如仓位检测、堆垛机运动控制等。接着深入解析了梯形图编程的具体实现,包括基本的左右移动控制、复杂的自动寻址逻辑,以及确保安全性的限位保护措施。还展示了接线图和原理图的作用,强调了正确的电气连接方式。最后讲解了组态王的画面设计技巧,通过图形化界面实现对立体库的操作和监控。 适用人群:从事自动化仓储系统设计、安装、调试的技术人员,尤其是熟悉三菱PLC和组态王的工程师。 使用场景及目标:适用于需要提高仓库空间利用率的小型仓储环境,旨在帮助技术人员掌握从硬件选型、电路设计到软件编程的全流程技能,最终实现高效稳定的自动化仓储管理。 其他说明:文中提供了多个实用的编程技巧和注意事项,如避免常见错误、优化性能参数等,有助于减少实际应用中的故障率并提升系统的可靠性。

    基于STM32的循迹避障小车仿真20250426(带讲解视频)

    基于STM32的循迹避障小车 主控:STM32 显示:OLED 电源模块 舵机云台 超声波测距 红外循迹模块(3个,左中右) 蓝牙模块 按键(6个,模式和手动控制小车状态) TB6612驱动的双电机 功能: 该小车共有3种模式: 自动模式:根据红外循迹和超声波测距模块决定小车的状态 手动模式:根据按键的状态来决定小车的状态 蓝牙模式:根据蓝牙指令来决定小车的状态 自动模式: 自动模式下,检测距离低于5cm小车后退 未检测到任何黑线,小车停止 检测到左边或左边+中间黑线,小车左转 检测到右边或右边+中间黑线,小车右转 检测到中边或左边+中间+右边黑线,小车前进 手动模式:根据按键的状态来决定小车的状态 蓝牙模式: //需切换为蓝牙模式才能指令控制 *StatusX X取值为0-4 0:小车停止 1:小车前进 2:小车后退 3:小车左转 4:小车右转

    海西蒙古族藏族自治州乡镇边界,矢量边界,shp格式

    矢量边界,行政区域边界,精确到乡镇街道,可直接导入arcgis使用

    基于IEEE33节点的主动配电网优化:含风光储柴燃多源调度模型的经济运行研究

    内容概要:本文探讨了基于IEEE33节点的主动配电网优化方法,旨在通过合理的调度模型降低配电网的总运行成本。文中详细介绍了模型的构建,包括风光发电、储能装置、柴油发电机和燃气轮机等多种分布式电源的集成。为了实现这一目标,作者提出了具体的约束条件,如储能充放电功率限制和潮流约束,并采用了粒子群算法进行求解。通过一系列实验验证,最终得到了优化的分布式电源运行计划,显著降低了总成本并提高了系统的稳定性。 适合人群:从事电力系统优化、智能电网研究的专业人士和技术爱好者。 使用场景及目标:适用于需要优化配电网运行成本的研究机构和企业。主要目标是在满足各种约束条件下,通过合理的调度策略使配电网更加经济高效地运行。 其他说明:文章不仅提供了详细的理论推导和算法实现,还分享了许多实用的经验技巧,如储能充放电策略、粒子群算法参数选择等。此外,通过具体案例展示了不同电源之间的协同作用及其经济效益。

    【KUKA 机器人资料】:KUKA 机器人初级培训教材.pdf

    KUKA机器人相关文档

    基于MATLAB的CSP电站与ORC综合能源系统优化建模及应用

    内容概要:本文详细介绍了将光热电站(CSP)和有机朗肯循环(ORC)集成到综合能源系统中的优化建模方法。主要内容涵盖系统的目标函数设计、关键设备的约束条件(如CSP储热罐、ORC热电耦合)、以及具体实现的技术细节。文中通过MATLAB和YALMIP工具进行建模,采用CPLEX求解器解决混合整数规划问题,确保系统在经济性和环境效益方面的最优表现。此外,文章还讨论了碳排放惩罚机制、风光弃能处理等实际应用场景中的挑战及其解决方案。 适合人群:从事综合能源系统研究的专业人士,尤其是对光热发电、余热利用感兴趣的科研工作者和技术开发者。 使用场景及目标:适用于需要评估和优化包含多种能源形式(如光伏、风电、燃气锅炉等)在内的复杂能源系统的项目。目标是在满足供电供热需求的同时,最小化运行成本并减少碳排放。 其他说明:文中提供了大量具体的MATLAB代码片段作为实例,帮助读者更好地理解和复现所提出的优化模型。对于初学者而言,建议从简单的确定性模型入手,逐渐过渡到更复杂的随机规划和鲁棒优化。

    网站设计与管理作业一.ppt

    网站设计与管理作业一.ppt

    基于MATLAB的双闭环Buck电路仿真模型设计与优化

    内容概要:本文详细介绍了如何使用MATLAB搭建双闭环Buck电路的仿真模型。首先定义了主电路的关键参数,如输入电压、电感、电容等,并解释了这些参数的选择依据。接着分别对电压外环和电流内环进行了PI控制器的设计,强调了电流环响应速度需要显著高于电压环以确保系统的稳定性。文中还讨论了仿真过程中的一些关键技术细节,如PWM死区时间的设置、低通滤波器的应用以及参数调整的方法。通过对比单闭环和双闭环系统的性能,展示了双闭环方案在应对负载突变时的优势。最后分享了一些调试经验和常见问题的解决方案。 适合人群:从事电力电子、电源设计领域的工程师和技术人员,尤其是有一定MATLAB基础的读者。 使用场景及目标:适用于需要进行电源管理芯片设计验证、电源系统性能评估的研究人员和工程师。主要目标是提高电源系统的稳定性和响应速度,特别是在负载变化剧烈的情况下。 其他说明:文章不仅提供了详细的理论分析,还包括了大量的代码片段和具体的调试步骤,帮助读者更好地理解和应用所学知识。同时提醒读者注意仿真与实际情况之间的差异,鼓励在实践中不断探索和改进。

    MATLAB实现冷热电气多能互补微能源网的鲁棒优化调度模型

    内容概要:本文详细探讨了MATLAB环境下冷热电气多能互补微能源网的鲁棒优化调度模型。首先介绍了多能耦合元件(如风电、光伏、P2G、燃气轮机等)的运行特性模型,展示了如何通过MATLAB代码模拟这些元件的实际运行情况。接着阐述了电、热、冷、气四者的稳态能流模型及其相互关系,特别是热电联产过程中能流的转换和流动。然后重点讨论了考虑经济成本和碳排放最优的优化调度模型,利用MATLAB优化工具箱求解多目标优化问题,确保各能源设备在合理范围内运行并保持能流平衡。最后分享了一些实际应用中的经验和技巧,如处理风光出力预测误差、非线性约束、多能流耦合等。 适合人群:从事能源系统研究、优化调度、MATLAB编程的专业人士和技术爱好者。 使用场景及目标:适用于希望深入了解综合能源系统优化调度的研究人员和工程师。目标是掌握如何在MATLAB中构建和求解复杂的多能互补优化调度模型,提高能源利用效率,降低碳排放。 其他说明:文中提供了大量MATLAB代码片段,帮助读者更好地理解和实践所介绍的内容。此外,还提及了一些有趣的发现和挑战,如多能流耦合的复杂性、鲁棒优化的应用等。

    Simulink与Carsim联合仿真:基于PID与MPC的自适应巡航控制系统设计与实现

    内容概要:本文详细介绍了如何利用Simulink和Carsim进行联合仿真,实现基于PID(比例-积分-微分)和MPC(模型预测控制)的自适应巡航控制系统。首先阐述了Carsim参数设置的关键步骤,特别是cpar文件的配置,包括车辆基本参数、悬架系统参数和转向系统参数的设定。接着展示了Matlab S函数的编写方法,分别针对PID控制和MPC控制提供了详细的代码示例。随后讨论了Simulink中车辆动力学模型的搭建,强调了模块间的正确连接和参数设置的重要性。最后探讨了远程指导的方式,帮助解决仿真过程中可能出现的问题。 适合人群:从事汽车自动驾驶领域的研究人员和技术人员,尤其是对Simulink和Carsim有一定了解并希望深入学习联合仿真的从业者。 使用场景及目标:适用于需要验证和优化自适应巡航控制、定速巡航及紧急避撞等功能的研究和开发项目。目标是提高车辆行驶的安全性和舒适性,确保控制算法的有效性和可靠性。 其他说明:文中不仅提供了理论知识,还有大量实用的代码示例和避坑指南,有助于读者快速上手并应用于实际工作中。此外,还提到了远程调试技巧,进一步提升了仿真的成功率。

    02.第18讲一、三重积分02.mp4

    02.第18讲一、三重积分02.mp4

Global site tag (gtag.js) - Google Analytics