`

数据仓库技术简介2(下)

阅读更多
数据仓库的第三个问题是针对决策支持查询的优化。这个问题主要针对关系数据库而言,因为其它数据管理环境连基本的通用查询能力都还不完善。在技术上,针对决策支持的优化涉及数据库系统的索引机制、查询优化器、连接策略、数据排序和采样等诸多部分。普通关系数据库采用B树类的索引,对于性别、年龄、地区等具有大量重复值的字段几乎没有效果。而扩充的关系数据库则引入了位图索引的机制,以二进制位表示字段的状态,将查询过程变为筛选过程,单个计算机的基本操作便可筛选多条记录。由于数据仓库中各数据表的数据量往往极不均匀,普通查询优化器所得出得最佳查询路径可能不是最优的。因此,面向决策支持的关系数据库在查询优化器上也作了改进,同时根据索引的使用特性增加了多重索引扫描的能力。

以关系数据库建立的数据仓库在应用时会遇到大量的表间连接操作,而连接操作对于关系数据库来说是一件耗时的操作。扩充的关系数据库中对连接操作可以做预先的定义,我们称之为连接索引,使得数据库在执行查询时可直接获取数据而不必实施具体的连接操作。数据仓库的查询常常只需要数据库中的部分记录,如最大的前50家客户,等等。普通关系数据库没有提供这样的查询能力,只好将整个表的记录进行排序,从而耗费了大量的时间。决策支持的关系数据库在此做了改进,提供了这一功能。此外,数据仓库的查询并不需要像事务处理系统那样精确,但在大容量数据环境中需要有足够短的系统响应时间。因此,一些数据库系统增加了采样数据的查询能力,在精确度允许的范围内,大幅度提高系统查询效率。

总之,将普通关系数据库改造成适合担当数据仓库的服务器有许多工作可以做,它已成为关系数据库技术的一个重要研究课题和发展方向。可见,对于决策支持的扩充是传统关系数据库进入数据仓库市场的重要技术措施。

数据仓库的第四个问题是支持多维分析的查询模式,这也是关系数据库在数据仓库领域遇到的最严峻的挑战之一。用户在使用数据仓库时的访问方式与传统的关系数据库有很大的不同。对于数据仓库的访问往往不是简单的表和记录的查询,而是基于用户业务的分析模式,即联机分析。如图1.3所示,它的特点是将数据想象成多维的立方体,用户的查询便相当于在其中的部分维(棱)上施加条件,对立方体进行切片、分割,得到的结果则是数值的矩阵或向量,并将其制成图表或输入数理统计的算法。




图 1.3 联机分析数据处理示意图
分享到:
评论

相关推荐

Global site tag (gtag.js) - Google Analytics