1.1 并发控制
在集群环境中, 关键数据通常是共享存放的,比如放在共享磁盘上。 而各个节点的对数据有相同的访问权限, 这时就必须有某种机制能够控制节点对数据的访问。 Oracle RAC 是利用DLM(Distribute Lock Management) 机制来进行多个实例间的并发控制。
1.2 健忘症(Amnesia)
集群环境配置文件不是集中存放的,而是每个节点都有一个本地副本,在集群正常运行时,用户可以在任何节点更改集群的配置,并且这种更改会自动同步到其他节点。
有一种特殊情况: 节点A 正常关闭, 在节点B上修改配置, 关闭结点A,启动结点B。 这种情况下,修改的配置文件是丢失的, 就是所谓的健忘症。
1.3 脑裂(Split Brain)
在集群中,节点间通过某种机制(心跳)了解彼此的健康状态,以确保各节点协调工作。 假设只有"心跳"出现问题, 各个节点还在正常运行, 这时,每个节点都认为其他的节点宕机了, 自己是整个集群环境中的"唯一建在者",自己应该获得整个集群的"控制权"。 在集群环境中,存储设备都是共享的, 这就意味着数据灾难, 这种情况就是"脑裂"
解决这个问题的通常办法是使用投票算法(Quorum Algorithm). 它的算法机理如下:
集群中各个节点需要心跳机制来通报彼此的"健康状态",假设每收到一个节点的"通报"代表一票。对于三个节点的集群,正常运行时,每个节点都会有3票。 当结点A心跳出现故障但节点A还在运行,这时整个集群就会分裂成2个小的partition。 节点A是一个,剩下的2个是一个。 这是必须剔除一个partition才能保障集群的健康运行。
对于有3个节点的集群, A 心跳出现问题后, B 和 C 是一个partion,有2票, A只有1票。 按照投票算法, B 和C 组成的集群获得控制权, A 被剔除。
如果只有2个节点,投票算法就失效了。 因为每个节点上都只有1票。 这时就需要引入第三个设备:Quorum Device. Quorum Device 通常采用饿是共享磁盘,这个磁盘也叫作Quorum disk。 这个Quorum Disk 也代表一票。 当2个结点的心跳出现问题时, 2个节点同时去争取Quorum Disk 这一票, 最早到达的请求被最先满足。 故最先获得Quorum Disk的节点就获得2票。另一个节点就会被剔除。
1.4 IO 隔离(Fencing)
当集群系统出现"脑裂"问题的时候,我们可以通过"投票算法"来解决谁获得集群控制权的问题。 但是这样是不够的,我们还必须保证被赶出去的结点不能操作共享数据。 这就是IO Fencing 要解决的问题。
IO Fencing实现有硬件和软件2种方式:
软件方式:对于支持SCSI Reserve/Release 命令的存储设备, 可以用SG命令来实现。 正常的节点使用SCSI Reserve命令"锁住"存储设备, 故障节点发现存储设备被锁住后,就知道自己被赶出了集群,也就是说自己出现了异常情况, 就要自己进行重启,以恢复到正常状态。 这个机制也叫作 Sicide(自杀). Sun 和Veritas 使用的就是这种机制。
硬件方式:STONITH(Shoot The Other Node in the Head), 这种方式直接操作电源开关,当一个节点发生故障时,另一个节点如果能侦测到,就会通过串口发出命令,控制故障节点的电源开关,通过暂时断电,而又上电的方式使故障节点被重启动, 这种方式需要硬件支持。
二 RAC 集群
2.1 Clusterware
在单机环境下,Oracle是运行在OS Kernel 之上的。 OS Kernel负责管理硬件设备,并提供硬件访问接口。 Oracle 不会直接操作硬件,而是有OS Kernel代替它来完成对硬件的调用请求。
在集群环境下, 存储设备是共享的。OS Kernel 的设计都是针对单机的,只能控制单机上多个进程间的访问。 如果还依赖OS Kernel的服务,就无法保证多个主机间的协调工作。 这时就需要引入额外的控制机制,在RAC中,这个机制就是位于Oracle 和 OS Kernel 之间的Clusterware,它会在OS Kernel之前截获请求,然后和其他结点上的Clusterware协商,最终完成上层的请求。
在Oracle 10G之前,RAC 所需要的集群件依赖与硬件厂商,比如SUN,HP,Veritas. 从Oracle 10.1版本中,Oracle 推出了自己的集群产品. Cluster Ready Service(CRS),从此RAC 不在依赖与任何厂商的集群软件。 在Oracle 10.2版本中,这个产品改名为:Oracle Clusterware。
所以我们可以看出, 在整个RAC 集群中,实际上有2个集群环境的存在,一个是由Clusterware 软件组成的集群,另一个是由Database 组成的集群。
2.2 Clusterware 组成
Oracle Cluster 是一个单独的安装包,安装后,在每个结点上的Oracle Clusterware 会自动启动。 Oracle Clusterware的运行环境由2个磁盘文件(OCR,Voting Disk),若干进程和网络元素组成。
2.2.1 磁盘文件:
Clusterware 在运行期间需要两个文件:OCR和Voting Disk. 这2个文件必须存放在共享存储上。 OCR 用于解决健忘问题,Voting Disk 用于解决健忘问题。 Oracle 建议使用裸设备来存放这2个文件,每个文件创建一个裸设备,每个裸设备分配100M左右的空间就够了。
2.2.1.1 OCR
健忘问题是由于每个节点都有配置信息的拷贝,修改节点的配置信息不同步引起的。 Oracle 采用的解决方法就是把这个配置文件放在共享的存储上, 这个文件就是OCR Disk。
OCR 中保存整个集群的配置信息,配置信息以"Key-Value" 的形式保存其中。 在Oracle 10g以前, 这个文件叫作Server Manageability Repository(SRVM). 在Oracle 10g, 这部分内容被重新设计,并重名为OCR.在Oracle Clusterware 安装的过程中, 安装程序会提示用户指定OCR位置。并且用户指定的这个位置会被记录在/etc/oracle/ocr.Loc(Linux System) 或者/var/opt/oracle/ocr.Loc(Solaris System)文件中。 而在Oracle 9i RAC中,对等的是srvConfig.Loc文件。 Oracle Clusterware在启动时会根据这里面的内容从指定位置读入OCR 内容。
1). OCR key
整个OCR 的信息是树形结构,有3个大分支。分别是SYSTEM,DATABASE 和CRS。每个分支下面又有许多小分支。这些记录的信息只能由root用户修改。
2) OCR process
Oracle Clusterware 在OCR中存放集群配置信息,故OCR 的内容非常的重要,所有对OCR的操作必须确保OCR 内容完整性,所以在ORACLE Clusterware运行过程中,并不是所有结点都能操作OCR Disk.
在每个节点的内存中都有一份OCR内容的拷贝,这份拷贝叫作OCR Cache。 每个结点都有一个OCR Process 来读写OCR Cache,但只有一个节点的OCR process能读写OCR Disk中的内容,这个节点叫作OCR Master结点。 这个节点的OCR process 负责更新本地和其他结点的OCR Cache内容。
所有需要OCR 内容的其他进程,比如OCSSD,EVM等都叫作Client Process, 这些进程不会直接访问OCR Cache,而是像OCR Process发送请求,借助OCR Process获得内容,如果想要修改OCR 内容,也要由该节点的OCR Process像Master node 的OCR process 提交申请,由Master OCR Process完成物理读写,并同步所有节点OCR Cache中的内容。
2.2.1.2 Voting Disk
Voting Disk 这个文件主要用于记录节点成员状态,在出现脑裂时,决定那个Partion获得控制权,其他的Partion必须从集群中剔除。在安装Clusterware时也会提示指定这个位置。 安装完成后可以通过如下命令来查看Voting Disk位置。
$Crsctl query css votedisk
2.2.2 Clusterware 后台进程
Clusterware 由若干进程组成,其中最重要的3个是:CRSD,CSSD,EVMD. 在安装clusterware的最后阶段,会要求在每个节点执行root.sh 脚本, 这个脚本会在/etc/inittab 文件的最后把这3个进程加入启动项,这样以后每次系统启动时,Clusterware 也会自动启动,其中EVMD和CRSD 两个进程如果出现异常,则系统会自动重启这两个进程,如果是CSSD 进程异常,系统会立即重启。
1). OCSSD
OCSSD 这个进程是Clusterware最关键的进程,如果这个进程出现异常,会导致系统重启,这个进程提供CSS(Cluster Synchronization Service)服务。 CSS 服务通过多种心跳机制实时监控集群状态,提供脑裂保护等基础集群服务功能。
CSS 服务有2种心跳机制: 一种是通过私有网络的Network Heartbeat,另一种是通过Voting Disk的Disk Heartbeat.
这2种心跳都有最大延时,对于Disk Heartbeat, 这个延时叫作IOT (I/O Timeout);对于Network Heartbeat, 这个延时叫MC(Misscount)。 这2个参数都以秒为单位,缺省时IOT大于MC,在默认情况下,这2个参数是Oracle 自动判定的,并且不建议调整。可以通过如下命令来查看参数值:
$crsctl get css disktimeout
$crsctl get css misscount
注:除了Clusterware 需要这个进程,在单节点环境中如果使用了ASM,也需要这个进程;这个进程用于支持ASM Instance 和RDBMS Instance之间的通信。 如果在使用了ASM的节点上安装RAC,会遇到一个问题:RAC节点要求只有一个OCSSD进程,并且应该是运行$CRS_HOME目录下的,这时就需要先停止ASM,并通过$ORACLE_HOME/bin/localcfig.Sh delete 删除之前的inittab 条目。 之前安装ASM时,也使用这个脚本来启动OCSSD: $ORACLE_HOME/bin/localconfig.Sh add.
2). CRSD
CRSD是实现"高可用性(HA)"的主要进程,它提供的服务叫作CRS(Cluster Ready Service) 服务。
Oracle Clusterware是位于集群层的组件,它要为应用层资源(CRS Resource) 提供"高可用性服务",所以, Oracle Clusterware 必须监控这些资源,并在这些资源运行异常时进行干预,包括关闭,重启进程或者转移服务。CRSD进程提供的就是这些服务。
所有需要 高可用性 的组件,都会在安装配置的时候,以CRS Resource的形式登记到OCR中,而CRSD 进程就是根据OCR中的内容,决定监控哪些进程,如何监控,出现问题时又如何解决。也就是说,CRSD 进程负责监控CRS Resource 的运行状态,并要启动,停止,监控,Failover这些资源。 默认情况下,CRS 会自动尝试重启资源5次,如果还是失败,则放弃尝试。
CRS Resource 包括GSD(Global Serveice Daemon),ONS(Oracle Notification Service),VIP, Database, Instance 和 Service. 这些资源被分成2类:
GSD,ONS,VIP 和 Listener 属于Noteapps类
Database,Instance 和Service 属于 Database-Related Resource 类。
我们可以这样理解: Nodeapps 就是说每个节点只需要一个就够了,比如每个节点只有一个Listener,而Database-Related Resource 就是说这些资源和数据库有关,不受节点的限制,比如一个节点可以有多个实例,每个实例可以有多个Service。
GSD,ONS,VIP 这3个服务是在安装Clusterware的最后,执行VIPCA 时创建并登记到OCR中的。 而Database, Listener, Instance 和Service 是在各自的配置过程中自动或者手动登记到OCR中的。
3). EVMD
EVMD 这个进程负责发布CRS 产生的各种事件(Event). 这些Event可以通过2种方式发布给客户:ONS 和 Callout Script. 用户可以自定义回调脚本,放在特定的目录下,这样当有某些事件发生时,EVMD会自动扫描该目录,并调用用户的脚本,这种调用是通过racgevt进程来完成的。
EVMD 进程除了复杂发布事件之外,它还是CRSD 和CSSD 两个进程之间的桥梁。 CRS 和CSS 两个服务之前的通信就是通过EVMD 进程完成的。
4). RACGIMON
RACGIMON 这个进程负责检查数据库健康状态,负责Service的启动,停止,故障转移(Failover)。 这个进程会建立到数据库的持久连接,定期检查SGA中的特定信息,该信息由PMON 进程定时更新。
5). OPROCD
OPROCD 这个进程也叫作 Process Monitor Daemon. 如果在非Linux 平台上,并且没有使用第三方的集群软件时,就会看到这个进程。 这个进程用来检查节点的Processor Hang(CPU 挂起), 如果调度时间超过1.5秒, 就会认为CPU 工作异常,会重启节点。 也就是说这个进程提供 "IO 隔离" 的功能。 从其在Windows 平台上的服务名: OraFnceService 也可以看出它的功能。 而在Linux 平台上, 是利用Hangcheck-timer 模块来实现"IO 隔离"的。
2.3 VIP 原理和特点
Oracle 的TAF 就是建立在VIP 技术之上的。 IP 和VIP 区别在与: IP 是利用TCP层超时, VIP 利用的是应用层的立即响应。VIP 它是浮动的IP. 当一个节点出现问题时会自动的转到另一个节点上。
假设有一个2个节点的RAC,正常运行时每个节点上都有一个VIP。 VIP1 和VIP2. 当节点2发生故障,比如异常关系。 RAC 会做如下操作:
1). CRS 在检测到rac2节点异常后,会触发Clusterware 重构,最后把rac2节点剔除集群,由节点1组成新的集群。
2). RAC的Failover 机制会把节点2的VIP转移到节点1上,这时节点1的PUBLIC 网卡上就有3个IP 地址: VIP1,VIP2, PUBLIC IP1.
3). 用户对VIP2的连接请求会被IP层路由转到节点1
4). 因为在节点1上有VIP2的地址,所有数据包会顺利通过路由层,网络层,传输层。
5). 但是,节点1上只监听VIP1和public IP1的两个IP地址。并没有监听VIP2,故应用层没有对应的程序接收这个数据包,这个错误立即被捕获。
6). 客户段能够立即接收到这个错误,然后客户段会重新发起向VIP1的连接请求。
VIP 特点:
1). VIP 是通过VIPCA脚本创建的
2). VIP 作为Nodeapps类型的CRS Resource 注册到OCR中,并由CRS 维护状态。
3). VIP 会绑定到节点的public 网卡上,故public 网卡有2个地址。
4). 当某个节点发生故障时,CRS 会把故障节点的VIP 转移到其他节点上。
5). 每个节点的Listener 会同时监听public 网卡上的 public ip 和VIP
6). 客户端的tnsnames.Ora 一般会配置指向节点的VIP.
2.4 Clusterware 的日志体系
Oracle Clusterware的辅助诊断,只能从log 和trace 进行。 而且它的日志体系比较复杂。
alert.log:
$ORA_CRS_HOME\log\hostname\alert.Log, 这是首选的查看文件。
Clusterware后台进程日志:
crsd.Log: $ORA_CRS_HOME\log\hostname\crsd\crsd.Log
ocssd.Log: $ORA_CRS_HOME\log\hostname\cssd\ocsd.Log
evmd.Log: $ORA_CRS_HOME\log\hostname\evmd\evmd.Log
Nodeapp日志位置:
$ORA_CRS_HOME\log\hostname\racg\
这里面放的是nodeapp的日志,包括ONS和VIP,比如:ora.Rac1.ons.Log
工具执行日志:
$ORA_CRS_HOME\log\hostname\client\
Clusterware 提供了许多命令行工具:
比如ocrcheck, ocrconfig,ocrdump,oifcfg和clscfg, 这些工具产生的日志就放在这个目录下
还有$ORACLE_HOME\log\hostname\client\ 和
$ORACLE_HOME\log\hostname\racg 也有相关的日志。
注: 本片文章整理子张晓明的《大话 Oracle RAC》
本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/tianlesoftware/archive/2010/02/27/5331067.aspx
分享到:
相关推荐
**易用性**:RAC 支持多个数据库实例加入同一个集群,这样可以简化管理和维护工作。 **低成本**:RAC 可以部署在普通的商用硬件上,这有助于降低总体拥有成本。 #### 二、RACOneNode 功能 Oracle 11g RAC 引入了...
Oracle RAC 学习笔记基本概念及入门 Oracle RAC 是一个软件,可以使你通过运行多个依赖相同 Database...RAC 是一个强大的工具,可以提高 Database 的可用性和可扩展性。但是,需要仔细的规划和设计来实现 RAC 的优势。
Oracle 10G单机转RAC的过程是一个复杂的操作,涉及到数据库架构的转换、网络配置、存储设置等多个方面。在进行这种转换时,首先要确保原始单机环境的稳定性和数据完整性,然后再逐步构建RAC环境。 1. **单机环境...
Oracle RAC,全称Real Application Clusters,是Oracle数据库的一个重要特性,允许数据库在一个集群环境中运行,提供高可用性和负载均衡。在RAC环境中,关键数据的共享存储和多节点并发访问是其核心挑战。 并发控制...
Oracle 9i 单实例转换为 RAC (Real Application Clusters) 是一个复杂的过程,涉及到多个步骤,确保将现有的单节点数据库转变为高可用性和负载均衡的集群环境。下面将详细介绍这个过程中的关键知识点: 1. **RMAN ...
Oracle Real Application Clusters(简称RAC)是一种由Oracle公司开发的数据库集群技术,它能够使多个数据库服务器共同管理同一个数据库,为用户提供高度可用、高性能以及高扩展性的服务。在RAC环境中,多个互连的...
Oracle Real Application Clusters (RAC) 是一种高级数据库技术,旨在实现高可用性和可扩展性,尤其适用于大规模事务处理。RAC允许一个数据库在多台服务器上同时运行,确保即使在硬件故障或维护期间也能保持服务连续...
在IT领域,Oracle Real Application Clusters (RAC) 是一种高度可扩展的数据库解决方案,用于构建高可用性和高性能的企业级数据库系统。小布老师的RAC实验图文指导文章旨在帮助学习者掌握如何在Oracle Linux 4 (OEL)...
Oracle 11g RAC (Real Application Clusters) 和 Data Guard (DG) 是两种关键的高可用性和灾难恢复解决方案,广泛应用于大型企业级数据库环境中。本文将深入探讨这两种技术的原理、实施步骤以及配置方法。 **Oracle...
1. **Oracle RAC 11gR2**:Oracle 11g Release 2 (11.2.0.3) 是一个高可用性和可扩展性的数据库解决方案,允许多个实例同时访问同一数据库,提供故障切换和负载均衡能力。 2. **Red Hat Enterprise Linux 6.3 x64**...
在现代企业级应用环境中,Oracle Real Application Clusters (RAC) 提供了一种高效且可靠的解决方案,用于实现高性能、高可用性和可伸缩性的数据库服务。由于RAC环境下的数据库结构更加复杂,因此对数据库的备份和...
根据提供的信息,《Oracle Database 11g RAC手册 原书第2版》是一部针对Oracle Database 11g Real Application Clusters (RAC) 的专业指导书籍。尽管部分内容重复提及了一个与本书主题无关的Linux系统门户网站,我们...
Oracle RAC (Real Application Clusters) 是Oracle数据库的一个高级特性,它允许多个实例同时访问同一个物理数据库,从而实现高可用性和负载均衡。而DataGuard是Oracle提供的另一个关键功能,用于构建灾难恢复和高...
Oracle RAC,全称Real Application Clusters,是Oracle数据库的一项高级特性,旨在提供高可用性和可伸缩性。Oracle RAC允许多台服务器共享同一数据库,分担工作负载,提高系统的整体性能和容错能力。 一、Oracle ...
《大话Oracle RAC完整版》是一本专为对数据库有基础的读者设计的书籍,主要探讨了Oracle Real Application Clusters(RAC)技术,这是一个关键的Oracle数据库高可用性和性能优化解决方案。在第一部分中,这本书涵盖...
全书分为两个部分,共14章,第一部分是集群理论篇,这部分从集群基础知识入手,通过分析集群环境和单机环境的不同,介绍了集群环境的各个组件及其作用,以及集群环境的一些专有技术,包括oracle clusterware、oracle...
Oracle 12C RAC 主库配置单实例 ADG 是一种高可用性和灾难恢复解决方案,旨在提供高可用性和数据保护。下面将详细介绍 ORACLE 12C RAC 主库配置单实例 ADG 的知识点。 一、ORACLE RAC 概述 ORACLE RAC(Real ...
Oracle RAC(Real Application Clusters)是Oracle数据库的一个高级特性,它允许多个实例同时访问同一个物理数据库,提供高可用性和负载均衡。RMAN(Recovery Manager)是Oracle数据库提供的一个强大工具,用于...
Oracle数据库的高可用性解决方案之一是Real Application Clusters(RAC),它允许多个实例共享同一个物理数据库,提供故障转移和负载均衡的能力。本文将详细介绍如何在Red Hat Enterprise Linux Advanced Server 4 ...
Oracle RAC提供了一种全新的思路来解决传统高可用性架构中存在的问题,通过水平扩展的硬件、全活动组件、数据为中心的恢复机制以及组件整合等一系列技术创新,实现了既具有高可用性又能有效控制成本的目标。...