ArrayList就是传说中的动态数组,就是Array的复杂版本,它提供了如下一些好处:动态的增加和减少元素、灵活的设置数组的大小......
认真阅读本文,我相信一定会对你有帮助。比如为什么ArrayList里面提供了一个受保护的removeRange方法?提供了其他没有被调用过的私有方法?
首先看到对ArrayList的定义:
- public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess,
- Cloneable, java.io.Serializable
从ArrayList<E>可以看出它是支持泛型的,它继承自AbstractList,实现了List、RandomAccess、Cloneable、Java.io.Serializable接口。
AbstractList提供了List接口的默认实现(个别方法为抽象方法)。
List接口定义了列表必须实现的方法。
RandomAccess是一个标记接口,接口内没有定义任何内容。
实现了Cloneable接口的类,可以调用Object.clone方法返回该对象的浅拷贝。
通过实现 java.io.Serializable 接口以启用其序列化功能。未实现此接口的类将无法使其任何状态序列化或反序列化。序列化接口没有方法或字段,仅用于标识可序列化的语义。
ArrayList的属性
ArrayList定义只定义类两个私有属性:
- * The array buffer into which the elements of the ArrayList are stored.
- * The capacity of the ArrayList is the length of this array buffer.
- */
- private transient Object[] elementData;
- /**
- * The size of the ArrayList (the number of elements it contains).
- *
- * @serial
- */
- private int size;
- 很容易理解,elementData存储ArrayList内的元素,size表示它包含的元素的数量。
- 有个关键字需要解释:transient。
- Java的serialization提供了一种持久化对象实例的机制。当持久化对象时,可能有一个特殊的对象数据成员,我们不想用serialization机制来保存它。为了在一个特定对象的一个域上关闭serialization,可以在这个域前加上关键字transient。
- ansient是Java语言的关键字,用来表示一个域不是该对象串行化的一部分。当一个对象被串行化的时候,transient型变量的值不包括在串行化的表示中,然而非transient型的变量是被包括进去的。
- 有点抽象,看个例子应该能明白。
- public class UserInfo implements Serializable {
- private static final long serialVersionUID = 996890129747019948L;
- private String name;
- private transient String psw;
- public UserInfo(String name, String psw) {
- this.name = name;
- this.psw = psw;
- }
- public String toString() {
- return "name=" + name + ", psw=" + psw;
- }
- }
- public class TestTransient {
- public static void main(String[] args) {
- UserInfo userInfo = new UserInfo("张三", "123456");
- System.out.println(userInfo);
- try {
- // 序列化,被设置为transient的属性没有被序列化
- ObjectOutputStream o = new ObjectOutputStream(new FileOutputStream(
- "UserInfo.out"));
- o.writeObject(userInfo);
- o.close();
- } catch (Exception e) {
- // TODO: handle exception
- e.printStackTrace();
- }
- try {
- // 重新读取内容
- ObjectInputStream in = new ObjectInputStream(new FileInputStream(
- "UserInfo.out"));
- UserInfo readUserInfo = (UserInfo) in.readObject();
- //读取后psw的内容为null
- System.out.println(readUserInfo.toString());
- } catch (Exception e) {
- // TODO: handle exception
- e.printStackTrace();
- }
- }
- }
被标记为transient的属性在对象被序列化的时候不会被保存。
接着回到ArrayList的分析中......
ArrayList的构造方法
看完属性看构造方法。ArrayList提供了三个构造方法:
- /**
- * Constructs an empty list with the specified initial capacity.
- */
- public ArrayList(int initialCapacity) {
- super();
- if (initialCapacity < 0)
- throw new IllegalArgumentException("Illegal Capacity: "+
- initialCapacity);
- this.elementData = new Object[initialCapacity];
- }
- /**
- * Constructs an empty list with an initial capacity of ten.
- */
- public ArrayList() {
- this(10);
- }
- /**
- * Constructs a list containing the elements of the specified
- * collection, in the order they are returned by the collection's
- * iterator.
- */
- public ArrayList(Collection<? extends E> c) {
- elementData = c.toArray();
- size = elementData.length;
- // c.toArray might (incorrectly) not return Object[] (see 6260652)
- if (elementData.getClass() != Object[].class)
- elementData = Arrays.copyOf(elementData, size, Object[].class);
- }
第一个构造方法使用提供的initialCapacity来初始化elementData数组的大小。第二个构造方法调用第一个构造方法并传入参数10,即默认elementData数组的大小为10。第三个构造方法则将提供的集合转成数组返回给elementData(返回若不是Object[]将调用Arrays.copyOf方法将其转为Object[])。
ArrayList的其他方法
add(E e)
add(E e)都知道是在尾部添加一个元素,如何实现的呢?
- public boolean add(E e) {
- ensureCapacity(size + 1); // Increments modCount!!
- elementData[size++] = e;
- return true;
- }
书上都说ArrayList是基于数组实现的,属性中也看到了数组,具体是怎么实现的呢?比如就这个添加元素的方法,如果数组大,则在将某个位置的值设置为指定元素即可,如果数组容量不够了呢?
看到add(E e)中先调用了ensureCapacity(size+1)方法,之后将元素的索引赋给elementData[size],而后size自增。例如初次添加时,size为0,add将elementData[0]赋值为e,然后size设置为1(类似执行以下两条语句elementData[0]=e;size=1)。将元素的索引赋给elementData[size]不是会出现数组越界的情况吗?这里关键就在ensureCapacity(size+1)中了。
根据ensureCapacity的方法名可以知道是确保容量用的。ensureCapacity(size+1)后面的注释可以明白是增加modCount的值(加了俩感叹号,应该蛮重要的,来看看)。
- /**
- * Increases the capacity of this <tt>ArrayList</tt> instance, if
- * necessary, to ensure that it can hold at least the number of elements
- * specified by the minimum capacity argument.
- *
- * @param minCapacity the desired minimum capacity
- */
- public void ensureCapacity(int minCapacity) {
- modCount++;
- int oldCapacity = elementData.length;
- if (minCapacity > oldCapacity) {
- Object oldData[] = elementData;
- int newCapacity = (oldCapacity * 3)/2 + 1;
- if (newCapacity < minCapacity)
- newCapacity = minCapacity;
- // minCapacity is usually close to size, so this is a win:
- elementData = Arrays.copyOf(elementData, newCapacity);
- }
- }
The number of times this list has been structurally modified.
这是对modCount的解释,意为记录list结构被改变的次数(观察源码可以发现每次调用ensureCapacoty方法,modCount的值都将增加,但未必数组结构会改变,所以感觉对modCount的解释不是很到位)。
增加modCount之后,判断minCapacity(即size+1)是否大于oldCapacity(即elementData.length),若大于,则调整容量为max((oldCapacity*3)/2+1,minCapacity),调整elementData容量为新的容量,即将返回一个内容为原数组元素,大小为新容量的数组赋给elementData;否则不做操作。
所以调用ensureCapacity至少将elementData的容量增加的1,所以elementData[size]不会出现越界的情况。
容量的拓展将导致数组元素的复制,多次拓展容量将执行多次整个数组内容的复制。若提前能大致判断list的长度,调用ensureCapacity调整容量,将有效的提高运行速度。
可以理解提前分配好空间可以提高运行速度,但是测试发现提高的并不是很大,而且若list原本数据量就不会很大效果将更不明显。
add(int index, E element)
add(int index,E element)在指定位置插入元素。
- public void add(int index, E element) {
- if (index > size || index < 0)
- throw new IndexOutOfBoundsException(
- "Index: "+index+", Size: "+size);
- ensureCapacity(size+1); // Increments modCount!!
- System.arraycopy(elementData, index, elementData, index + 1,
- size - index);
- elementData[index] = element;
- size++;
- }
首先判断指定位置index是否超出elementData的界限,之后调用ensureCapacity调整容量(若容量足够则不会拓展),调用System.arraycopy将elementData从index开始的size-index个元素复制到index+1至size+1的位置(即index开始的元素都向后移动一个位置),然后将index位置的值指向element。
addAll(Collection<? extends E> c)
- public boolean addAll(Collection<? extends E> c) {
- Object[] a = c.toArray();
- int numNew = a.length;
- ensureCapacity(size + numNew); // Increments modCount
- System.arraycopy(a, 0, elementData, size, numNew);
- size += numNew;
- return numNew != 0;
- }
先将集合c转换成数组,根据转换后数组的程度和ArrayList的size拓展容量,之后调用System.arraycopy方法复制元素到elementData的尾部,调整size。根据返回的内容分析,只要集合c的大小不为空,即转换后的数组长度不为0则返回true。
addAll(int index,Collection<? extends E> c)
- public boolean addAll(int index, Collection<? extends E> c) {
- if (index > size || index < 0)
- throw new IndexOutOfBoundsException(
- "Index: " + index + ", Size: " + size);
- Object[] a = c.toArray();
- int numNew = a.length;
- ensureCapacity(size + numNew); // Increments modCount
- int numMoved = size - index;
- if (numMoved > 0)
- System.arraycopy(elementData, index, elementData, index + numNew,
- numMoved);
- System.arraycopy(a, 0, elementData, index, numNew);
- size += numNew;
- return numNew != 0;
- }
先判断index是否越界。其他内容与addAll(Collection<? extends E> c)基本一致,只是复制的时候先将index开始的元素向后移动X(c转为数组后的长度)个位置(也是一个复制的过程),之后将数组内容复制到elementData的index位置至index+X。
clear()
- public void clear() {
- modCount++;
- // Let gc do its work
- for (int i = 0; i < size; i++)
- elementData[i] = null;
- size = 0;
- }
clear的时候并没有修改elementData的长度(好不容易申请、拓展来的,凭什么释放,留着搞不好还有用呢。这使得确定不再修改list内容之后最好调用trimToSize来释放掉一些空间),只是将所有元素置为null,size设置为0。
clone()
返回此 ArrayList 实例的浅表副本。(不复制这些元素本身。)
- public Object clone() {
- try {
- ArrayList<E> v = (ArrayList<E>) super.clone();
- v.elementData = Arrays.copyOf(elementData, size);
- v.modCount = 0;
- return v;
- } catch (CloneNotSupportedException e) {
- // this shouldn't happen, since we are Cloneable
- throw new InternalError();
- }
- }
调用父类的clone方法返回一个对象的副本,将返回对象的elementData数组的内容赋值为原对象elementData数组的内容,将副本的modCount设置为0。
contains(Object)
- public boolean contains(Object o) {
- return indexOf(o) >= 0;
- }
indexOf方法返回值与0比较来判断对象是否在list中。接着看indexOf。
indexOf(Object)
- public int indexOf(Object o) {
- if (o == null) {
- for (int i = 0; i < size; i++)
- if (elementData[i]==null)
- return i;
- } else {
- for (int i = 0; i < size; i++)
- if (o.equals(elementData[i]))
- return i;
- }
- return -1;
- }
通过遍历elementData数组来判断对象是否在list中,若存在,返回index([0,size-1]),若不存在则返回-1。所以contains方法可以通过indexOf(Object)方法的返回值来判断对象是否被包含在list中。
既然看了indexOf(Object)方法,接着就看lastIndexOf,光看名字应该就明白了返回的是传入对象在elementData数组中最后出现的index值。
- public int lastIndexOf(Object o) {
- if (o == null) {
- for (int i = size-1; i >= 0; i--)
- if (elementData[i]==null)
- return i;
- } else {
- for (int i = size-1; i >= 0; i--)
- if (o.equals(elementData[i]))
- return i;
- }
- return -1;
- }
采用了从后向前遍历element数组,若遇到Object则返回index值,若没有遇到,返回-1。
get(int index)
这个方法看着很简单,应该是返回elementData[index]就完了。
- public E get(int index) {
- RangeCheck(index);
- return (E) elementData[index];
- }
但看代码的时候看到调用了RangeCheck方法,而且还是大写的方法,看看究竟有什么内容吧。
- /**
- * Checks if the given index is in range.
- */
- private void RangeCheck(int index) {
- if (index >= size)
- throw new IndexOutOfBoundsException(
- "Index: "+index+", Size: "+size);
- }
就是检查一下是不是超出数组界限了,超出了就抛出IndexOutBoundsException异常。为什么要大写呢???
isEmpty()
直接返回size是否等于0。
remove(int index)
- public E remove(int index) {
- RangeCheck(index);
- modCount++;
- E oldValue = (E) elementData[index];
- int numMoved = size - index - 1;
- if (numMoved > 0)
- System.arraycopy(elementData, index+1, elementData, index,
- numMoved);
- elementData[--size] = null; // Let gc do its work
- return oldValue;
- }
首先是检查范围,修改modCount,保留将要被移除的元素,将移除位置之后的元素向前挪动一个位置,将list末尾元素置空(null),返回被移除的元素。
remove(Object o)
- public boolean remove(Object o) {
- if (o == null) {
- for (int index = 0; index < size; index++)
- if (elementData[index] == null) {
- fastRemove(index);
- return true;
- }
- } else {
- for (int index = 0; index < size; index++)
- if (o.equals(elementData[index])) {
- fastRemove(index);
- return true;
- }
- }
- return false;
- }
首先通过代码可以看到,当移除成功后返回true,否则返回false。remove(Object o)中通过遍历element寻找是否存在传入对象,一旦找到就调用fastRemove移除对象。为什么找到了元素就知道了index,不通过remove(index)来移除元素呢?因为fastRemove跳过了判断边界的处理,因为找到元素就相当于确定了index不会超过边界,而且fastRemove并不返回被移除的元素。下面是fastRemove的代码,基本和remove(index)一致。
- private void fastRemove(int index) {
- modCount++;
- int numMoved = size - index - 1;
- if (numMoved > 0)
- System.arraycopy(elementData, index+1, elementData, index,
- numMoved);
- elementData[--size] = null; // Let gc do its work
- }
removeRange(int fromIndex,int toIndex)
- protected void removeRange(int fromIndex, int toIndex) {
- modCount++;
- int numMoved = size - toIndex;
- System.arraycopy(elementData, toIndex, elementData, fromIndex,
- numMoved);
- // Let gc do its work
- int newSize = size - (toIndex-fromIndex);
- while (size != newSize)
- elementData[--size] = null;
- }
执行过程是将elementData从toIndex位置开始的元素向前移动到fromIndex,然后将toIndex位置之后的元素全部置空顺便修改size。
这个方法是protected,及受保护的方法,为什么这个方法被定义为protected呢?
这是一个解释,但是可能不容易看明白。http://stackoverflow.com/questions/2289183/why-is-javas-abstractlists-removerange-method-protected
先看下面这个例子
- ArrayList<Integer> ints = new ArrayList<Integer>(Arrays.asList(0, 1, 2,
- 3, 4, 5, 6));
- // fromIndex low endpoint (inclusive) of the subList
- // toIndex high endpoint (exclusive) of the subList
- ints.subList(2, 4).clear();
- System.out.println(ints);
输出结果是[0, 1, 4, 5, 6],结果是不是像调用了removeRange(int fromIndex,int toIndex)!哈哈哈,就是这样的。但是为什么效果相同呢?是不是调用了removeRange(int fromIndex,int toIndex)呢?
set(int index,E element)
- public E set(int index, E element) {
- RangeCheck(index);
- E oldValue = (E) elementData[index];
- elementData[index] = element;
- return oldValue;
- }
首先检查范围,用新元素替换旧元素并返回旧元素。
size()
size()方法直接返回size。
toArray()
- public Object[] toArray() {
- return Arrays.copyOf(elementData, size);
- }
调用Arrays.copyOf将返回一个数组,数组内容是size个elementData的元素,即拷贝elementData从0至size-1位置的元素到新数组并返回。
toArray(T[] a)
- public <T> T[] toArray(T[] a) {
- if (a.length < size)
- // Make a new array of a's runtime type, but my contents:
- return (T[]) Arrays.copyOf(elementData, size, a.getClass());
- System.arraycopy(elementData, 0, a, 0, size);
- if (a.length > size)
- a[size] = null;
- return a;
- }
如果传入数组的长度小于size,返回一个新的数组,大小为size,类型与传入数组相同。所传入数组长度与size相等,则将elementData复制到传入数组中并返回传入的数组。若传入数组长度大于size,除了复制elementData外,还将把返回数组的第size个元素置为空。
trimToSize()
- public void trimToSize() {
- modCount++;
- int oldCapacity = elementData.length;
- if (size < oldCapacity) {
- elementData = Arrays.copyOf(elementData, size);
- }
- }
由于elementData的长度会被拓展,size标记的是其中包含的元素的个数。所以会出现size很小但elementData.length很大的情况,将出现空间的浪费。trimToSize将返回一个新的数组给elementData,元素内容保持不变,length很size相同,节省空间。
学习Java最好的方式还必须是读源码。读完源码你才会发现这东西为什么是这么玩的,有哪些限制,关键点在哪里等等。而且这些源码都是大牛们写的,你能从中学习到很多。
相关推荐
在了解ArrayList的源码分析时,我们主要探讨其在Java Development Kit (JDK) 1.8中的实现。ArrayList是一个非常重要的集合框架,用于动态数组的实现,其功能类似于数组,但可以在运行时动态调整大小。它是一个非线程...
《硬核ArrayList源码分析——深入理解Java集合框架》 ArrayList是Java集合框架中的一个重要组成部分,它是基于动态数组实现的列表。在Java 1.8版本中,ArrayList的实现细节和内部工作原理对于理解其性能和行为至关...
转换为其内部数组 `elementData`,然后根据转换后的数组长度设置 `size`。这里需要注意的是,如果 `c.toArray()` ...在面试中,深入理解 ArrayList 的源码和其与其他数据结构的区别是展示 Java 基础技能的重要方面。
ArrayList是Java集合框架中的一种重要实现,它是List接口的一个具体类,提供了动态数组的功能。ArrayList在内部使用一个Object类型的数组来存储元素,因此它支持快速的随机访问,这是由其实现了RandomAccess接口所...
Java编程中ArrayList源码分析 Java编程中ArrayList源码分析是Java编程中一个重要的知识点,对于Java开发者来说,了解ArrayList的源码可以帮助他们更好地理解Java集合框架的实现机制,从而提高自己的编程水平。 ...
《深入剖析Java集合框架ArrayList源码》 Java集合框架中的ArrayList是开发者常用的数据结构,它是一种基于动态数组实现的列表。ArrayList的特点在于它的内部结构、性能优化以及在并发环境下的处理方式。本文将深入...
ArrayList 源码深度解析 一、重新认识ArrayList 什么是ArrayList? ArrayList是基于数组实现的List类,封装了一个动态再分配的Object数组,以达到可以动态增长和缩减的索引序列。 长啥样? 如图,是一个长度为6,...
源码分析中,我们还可以看到ArrayList是如何实现迭代器(Iterator)的。迭代器是Java集合框架的重要组成部分,允许我们遍历ArrayList的元素而不需要暴露底层的实现细节。ArrayList的迭代器实现了hasNext()和next()...
本文将深入ArrayList的源码,探讨其内部实现、构造方法以及增删改查操作。 1. **内部结构与构造方法** ArrayList的核心成员变量是一个Object类型的数组`elementData`,用于存储元素。数组的初始容量默认为10,可以...
二、ArrayList源码分析 ArrayList是一种基于数组实现的List,提供了快速的随机访问和插入删除元素的能力。ArrayList的继承体系中,它继承了AbstractList,实现了List接口。 ArrayList的主要属性包括元素数组...
ArrayList 源码分析: ArrayList 底层采用数组实现,所以它的操作基本上都是基于对数组的操作。ArrayList 提供了三个构造函数: 1. ArrayList():默认构造函数,提供初始容量为 10 的空列表。 2. ArrayList(int ...
ArrayList源码和多线程安全问题分析 在 Java 编程语言中,ArrayList 是一个常用的集合类,它提供了动态数组的实现,能够存储大量的数据。但是,在多线程环境下,ArrayList 并不是线程安全的。这篇文章主要介绍了 ...
第二章 ArrayList源码解析 ArrayList是Java集合框架中的一种动态数组,它继承自AbstractList,并实现了List接口。ArrayList主要用于存储可变大小的对象列表,它的核心是通过一个Object类型的数组elementData来实现...
史上最全ArrayList源码分析
源码分析见我博文:http://blog.csdn.net/wabiaozia/article/details/50684556