1.关于hibernate缓存的问题:
1.1.基本的缓存原理
Hibernate缓存分为二级,第一级存放于session中称为一级缓存,默认带有且不能卸载。
第二级是由sessionFactory控制的进程级缓存。是全局共享的缓存,凡是会调用二级缓存的查询方法 都会从中受益。只有经正确的配置后二级缓存才会发挥作用。同时在进行条件查询时必须使用相应的方法才能从缓存中获取数据。比如Query.iterate()方法、load、get方法等。必须注意的是session.find方法永远是从数据库中获取数据,不会从二级缓存中获取数据,即便其中有其所需要的数据也是如此。
查询时使用缓存的实现过程为:首先查询一级缓存中是否具有需要的数据,如果没有,查询二级缓存,如果二级缓存中也没有,此时再执行查询数据库的工作。要注意的是:此3种方式的查询速度是依次降低的。
1.2.存在的问题
1.2.1. 一级缓存的问题以及使用二级缓存的原因
因为Session的生命期往往很短,存在于Session内部的第一级最快缓存的生命期当然也很短,所以第一级缓存的命中率是很低的。其对系统性能的改善也是很有限的。当然,这个Session内部缓存的主要作用是保持Session内部数据状态同步。并非是hibernate为了大幅提高系统性能所提供的。
为了提高使用hibernate的性能,除了常规的一些需要注意的方法比如:
使用延迟加载、迫切外连接、查询过滤等以外,还需要配置hibernate的二级缓存。其对系统整体性能的改善往往具有立竿见影的效果!
(经过自己以前作项目的经验,一般会有3~4倍的性能提高)
1.2.2.N+1次查询的问题
执行条件查询时,iterate()方法具有著名的 “n+1”次查询的问题,也就是说在第一次查询时iterate方法会执行满足条件的查询结果数再加一次(n+1)的查询。但是此问题只存在于第一次查询时,在后面执行相同查询时性能会得到极大的改善。此方法适合于查询数据量较大的业务数据。
但是注意:当数据量特别大时(比如流水线数据等)需要针对此持久化对象配置其具体的缓存策略,比如设置其存在于缓存中的最大记录数、缓存存在的时间等参数,以避免系统将大量的数据同时装载入内存中引起内存资源的迅速耗尽,反而降低系统的性能!!!
1.3.使用hibernate二级缓存的其他注意事项:
1.3.1.关于数据的有效性
另外,hibernate会自行维护二级缓存中的数据,以保证缓存中的数据和数据库中的真实数据的一致性!无论何时,当你调用save()、update()或 saveOrUpdate()方法传递一个对象时,或使用load()、 get()、list()、iterate() 或scroll()方法获得一个对象时, 该对象都将被加入到Session的内部缓存中。 当随后flush()方法被调用时,对象的状态会和数据库取得同步。
也就是说删除、更新、增加数据的时候,同时更新缓存。当然这也包括二级缓存!
只要是调用hibernate API执行数据库相关的工作。hibernate都会为你自动保证 缓存数据的有效性!!
但是,如果你使用了JDBC绕过hibernate直接执行对数据库的操作。此时,Hibernate不会/也不可能自行感知到数据库被进行的变化改动,也就不能再保证缓存中数据的有效性!!
这也是所有的ORM产品共同具有的问题。幸运的是,Hibernate为我们暴露了Cache的清除方法,这给我们提供了一个手动保证数据有效性的机会!!
一级缓存,二级缓存都有相应的清除方法。
其中二级缓存提供的清除方法为:
按对象class清空缓存
按对象class和对象的主键id清空缓存
清空对象的集合中的缓存数据等。
1.3.2.适合使用的情况
并非所有的情况都适合于使用二级缓存,需要根据具体情况来决定。同时可以针对某一个持久化对象配置其具体的缓存策略。
适合于使用二级缓存的情况:
(1)数据不会被第三方修改;
一般情况下,会被hibernate以外修改的数据最好不要配置二级缓存,以免引起不一致的数据。但是如果此数据因为性能的原因需要被缓存,同时又有可能被第3方比如SQL修改,也可以为其配置二级缓存。只是此时需要在sql执行修改后手动调用cache的清除方法。以保证数据的一致性
(2)数据大小在可接收范围之内;
如果数据表数据量特别巨大,此时不适合于二级缓存。原因是缓存的数据量过大可能会引起内存资源紧张,反而降低性能。
如果数据表数据量特别巨大,但是经常使用的往往只是较新的那部分数据。此时,也可为其配置二级缓存。但是必须单独配置其持久化类的缓存策略,比如最大缓存数、缓存过期时间等,将这些参数降低至一个合理的范围(太高会引起内存资源紧张,太低了缓存的意义不大)。
(3)数据更新频率低;
对于数据更新频率过高的数据,频繁同步缓存中数据的代价可能和 查询缓存中的数据从中获得的好处相当,坏处益处相抵消。此时缓存的意义也不大。
(4)非关键数据(不是财务数据等)
财务数据等是非常重要的数据,绝对不允许出现或使用无效的数据,所以此时为了安全起见最好不要使用二级缓存。
因为此时 “正确性”的重要性远远大于 “高性能”的重要性。
2.目前系统中使用hibernate缓存的建议
1.1.目前情况
一般系统中有三种情况会绕开hibernate执行数据库操作:
(1)多个应用系统同时访问一个数据库
此种情况使用hibernate二级缓存会不可避免的造成数据不一致的问题,
此时要进行详细的设计。比如在设计上避免对同一数据表的同时的写入操作,
使用数据库各种级别的锁定机制等。
(2)动态表相关
所谓“动态表”是指在系统运行时根据用户的操作系统自动建立的数据表。
比如“自定义表单”等属于用户自定义扩展开发性质的功能模块,因为此时数据表是运行时建立的,所以不能进行hibernate的映射。因此对它的操作只能是绕开hibernate的直接数据库JDBC操作。
如果此时动态表中的数据没有设计缓存,就不存在数据不一致的问题。
如果此时自行设计了缓存机制,则调用自己的缓存同步方法即可。
(3)使用sql对hibernate持久化对象表进行批量删除时
此时执行批量删除后,缓存中会存在已被删除的数据。
分析:
当执行了第3条(sql批量删除)后,后续的查询只可能是以下三种方式:
a. session.find()方法:
根据前面的总结,find方法不会查询二级缓存的数据,而是直接查询数据库。
所以不存在数据有效性的问题。
b. 调用iterate方法执行条件查询时:
根据iterate查询方法的执行方式,其每次都会到数据库中查询满足条件的id值,然后再根据此id 到缓存中获取数据,当缓存中没有此id的数据才会执行数据库查询;
如果此记录已被sql直接删除,则iterate在执行id查询时不会将此id查询出来。所以,即便缓存中有此条记录也不会被客户获得,也就不存在不一致的情况。(此情况经过测试验证)
c. 用get或load方法按id执行查询:
客观上此时会查询得到已过期的数据。但是又因为系统中执行sql批量删除一般是
针对中间关联数据表,对于中间关联表的查询一般都是采用条件查询 ,按id来查询某一条关联关系的几率很低,所以此问题也不存在!
如果某个值对象确实需要按id查询一条关联关系,同时又因为数据量大使用 了sql执行批量删除。当满足此两个条件时,为了保证按id 的查询得到正确的结果,可以使用手动清楚二级缓存中此对象的数据的方法!!(此种情况出现的可能性较小)
1.2.建议
(1)建议不要使用sql直接执行数据持久化对象的数据的更新,但是可以执行 批量删除。(系统中需要批量更新的地方也较少)
(2)如果必须使用sql执行数据的更新,必须清空此对象的缓存数据。调用
SessionFactory.evict(class)
SessionFactory.evict(class,id)
等方法。
(3)在批量删除数据量不大的时候可以直接采用hibernate的批量删除,这样就不存在绕开hibernate执行sql产生的缓存数据一致性的问题。
(4)不推荐采用hibernate的批量删除方法来删除大批量的记录数据。
原因是hibernate的批量删除会执行1条查询语句外加 满足条件的n条删除语句。而不是一次执行一条条件删除语句!!
当待删除的数据很多时会有很大的性能瓶颈!!!如果批量删除数据量较大,比如超过50条,可以采用JDBC直接删除。这样作的好处是只执行一条sql删除语句,性能会有很大的改善。同时,缓存数据同步的问题,可以采用 hibernate清除二级缓存中的相关数据的方法。
调用 SessionFactory.evict(class) ;SessionFactory.evict(class,id)等方法。
所以说,对于一般的应用系统开发而言(不涉及到集群,分布式数据同步问题等),因为只在中间关联表执行批量删除时调用了sql执行,同时中间关联表一般是执行条件查询不太可能执行按id查询。所以,此时可以直接执行sql删除,甚至不需要调用缓存的清除方法。这样做不会导致以后配置了二级缓存引起数据有效性的问题。
退一步说,即使以后真的调用了按id查询中间表对象的方法,也可以通过调用清除缓存的方法来解决。
3、具体的配置方法
根据我了解的很多hibernate的使用者在调用其相应方法时都迷信的相信“hibernate会自行为我们处理性能的问题”,或者“hibernate 会自动为我们的所有操作调用缓存”,实际的情况是hibernate虽然为我们提供了很好的缓存机制和扩展缓存框架的支持,但是必须经过正确的调用其才有可能发挥作用!!所以造成很多使用hibernate的系统的性能问题,实际上并不是hibernate不行或者不好,而是因为使用者没有正确的了解其使用方法造成的。相反,如果配置得当hibernate的性能表现会让你有相当“惊喜的”发现。下面我讲解具体的配置方法.
hibernate提供了二级缓存的接口:
net.sf.hibernate.cache.Provider,
同时提供了一个默认的 实现net.sf.hibernate.cache.HashtableCacheProvider,
也可以配置 其他的实现 比如ehcache,jbosscache等。
具体的配置位置位于hibernate.cfg.xml文件中
<property name="hibernate.cache.use_query_cache">true</property>
<property name="hibernate.cache.provider_class">
net.sf.hibernate.cache.HashtableCacheProvider
</property>
很多的hibernate使用者在 配置到 这一步 就以为 完事了,
注意:其实光这样配,根本就没有使用hibernate的二级缓存。同时因为他们在使用hibernate时大多时候是马上关闭session,所以,一级缓存也没有起到任何作用。结果就是没有使用任何缓存,所有的hibernate操作都是直接操作的数据库!!性能可以想见。
正确的办法是除了以上的配置外还应该配置每一个vo对象的具体缓存策略,在影射文件中配置。例如:
<hibernate-mapping>
<class name="com.sobey.sbm.model.entitySystem.vo.DataTypeVO" table="dcm_datatype">
<cache usage="read-write"/>
<id name="id" column="TYPEID" type="java.lang.Long">
<generator class="sequence"/>
</id>
<property name="name" column="NAME" type="java.lang.String"/>
<property name="dbType" column="DBTYPE" type="java.lang.String"/>
</class>
</hibernate-mapping>
关键就是这个<cache usage="read-write"/>,其有几个选择
read-only,read-write,transactional,等
然后在执行查询时 注意了 ,如果是条件查询,或者返回所有结果的查询,此时session.find()方法 不会获取缓存中的数据。只有调用query.iterate()方法时才会调缓存的数据。
同时 get 和 load方法 是都会查询缓存中的数据 .
对于不同的缓存框架具体的配置方法会有不同,但是大体是以上的配置
(另外,对于支持事务型,以及支持集群的环境的配置我会争取在后续的文章中发表出来)
http://blog.csdn.net/woshichenxu/archive/2006/01/22/586361.aspx
分享到:
相关推荐
qt 一个基于Qt Creator(qt,C++)实现中国象棋人机对战.
热带雨林自驾游自然奇观探索
冰川湖自驾游冰雪交融景象
C51 单片机数码管使用 Keil项目C语言源码
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
前端分析-2023071100789s12
Laz_制作了一些窗体和对话框样式.7z
1、文件内容:ocaml-docs-4.05.0-6.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/ocaml-docs-4.05.0-6.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊
学习笔记-沁恒第六讲-米醋
工业机器人技术讲解【36页】
内容概要:本文档详细介绍了在 CentOS 7 上利用 Docker 容器化环境来部署和配置 Elasticsearch 数据库的过程。首先概述了 Elasticsearch 的特点及其主要应用场景如全文检索、日志和数据分析等,并强调了其分布式架构带来的高性能与可扩展性。之后针对具体的安装流程进行了讲解,涉及创建所需的工作目录,准备docker-compose.yml文件以及通过docker-compose工具自动化完成镜像下载和服务启动的一系列命令;同时对可能出现的问题提供了应对策略并附带解决了分词功能出现的问题。 适合人群:从事IT运维工作的技术人员或对NoSQL数据库感兴趣的开发者。 使用场景及目标:该教程旨在帮助读者掌握如何在一个Linux系统中使用现代化的应用交付方式搭建企业级搜索引擎解决方案,特别适用于希望深入了解Elastic Stack生态体系的个人研究与团队项目实践中。 阅读建议:建议按照文中给出的具体步骤进行实验验证,尤其是要注意调整相关参数配置适配自身环境。对于初次接触此话题的朋友来说,应该提前熟悉一下Linux操作系统的基础命令行知识和Docker的相关基础知识
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
网络小说的类型创新、情节设计与角色塑造
毕业设计_基于springboot+vue开发的学生考勤管理系统【源码+sql+可运行】【50311】.zip 全部代码均可运行,亲测可用,尽我所能,为你服务; 1.代码压缩包内容 代码:springboo后端代码+vue前端页面代码 脚本:数据库SQL脚本 效果图:运行结果请看资源详情效果图 2.环境准备: - JDK1.8+ - maven3.6+ - nodejs14+ - mysql5.6+ - redis 3.技术栈 - 后台:springboot+mybatisPlus+Shiro - 前台:vue+iview+Vuex+Axios - 开发工具: idea、navicate 4.功能列表 - 系统设置:用户管理、角色管理、资源管理、系统日志 - 业务管理:班级信息、学生信息、课程信息、考勤记录、假期信息、公告信息 3.运行步骤: 步骤一:修改数据库连接信息(ip、port修改) 步骤二:找到启动类xxxApplication启动 4.若不会,可私信博主!!!
在智慧城市建设的大潮中,智慧园区作为其中的璀璨明珠,正以其独特的魅力引领着产业园区的新一轮变革。想象一下,一个集绿色、高端、智能、创新于一体的未来园区,它不仅融合了科技研发、商业居住、办公文创等多种功能,更通过深度应用信息技术,实现了从传统到智慧的华丽转身。 智慧园区通过“四化”建设——即园区运营精细化、园区体验智能化、园区服务专业化和园区设施信息化,彻底颠覆了传统园区的管理模式。在这里,基础设施的数据收集与分析让管理变得更加主动和高效,从温湿度监控到烟雾报警,从消防水箱液位监测到消防栓防盗水装置,每一处细节都彰显着智能的力量。而远程抄表、空调和变配电的智能化管控,更是在节能降耗的同时,极大地提升了园区的运维效率。更令人兴奋的是,通过智慧监控、人流统计和自动访客系统等高科技手段,园区的安全防范能力得到了质的飞跃,让每一位入驻企业和个人都能享受到“拎包入住”般的便捷与安心。 更令人瞩目的是,智慧园区还构建了集信息服务、企业服务、物业服务于一体的综合服务体系。无论是通过园区门户进行信息查询、投诉反馈,还是享受便捷的电商服务、法律咨询和融资支持,亦或是利用云ERP和云OA系统提升企业的管理水平和运营效率,智慧园区都以其全面、专业、高效的服务,为企业的发展插上了腾飞的翅膀。而这一切的背后,是大数据、云计算、人工智能等前沿技术的深度融合与应用,它们如同智慧的大脑,让园区的管理和服务变得更加聪明、更加贴心。走进智慧园区,就像踏入了一个充满无限可能的未来世界,这里不仅有科技的魅力,更有生活的温度,让人不禁对未来充满了无限的憧憬与期待。
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
内容概要:本文介绍了使用 Matlab 实现基于 BO(贝叶斯优化)的 Transformer 结合 GRU 门控循环单元时间序列预测的具体项目案例。文章首先介绍了时间序列预测的重要性及其现有方法存在的限制,随后深入阐述了该项目的目标、挑战与特色。重点描述了项目中采用的技术手段——结合 Transformer 和 GRU 模型的优点,通过贝叶斯优化进行超参数调整。文中给出了模型的具体实现步骤、代码示例以及完整的项目流程。同时强调了数据预处理、特征提取、窗口化分割、超参数搜索等关键技术点,并讨论了系统的设计部署细节、可视化界面制作等内容。 适合人群:具有一定机器学习基础,尤其是熟悉时间序列预测与深度学习的科研工作者或从业者。 使用场景及目标:适用于金融、医疗、能源等多个行业的高精度时间序列预测。该模型可通过捕捉长时间跨度下的复杂模式,提供更为精准的趋势预判,辅助相关机构作出合理的前瞻规划。 其他说明:此项目还涵盖了从数据采集到模型发布的全流程讲解,以及GUI图形用户界面的设计实现,有助于用户友好性提升和技术应用落地。此外,文档包含了详尽的操作指南和丰富的附录资料,包括完整的程序清单、性能评价指标等,便于读者动手实践。
漫画与青少年教育关系
励志图书的成功案例分享、人生智慧提炼与自我提升策略
人工智能在食品安全与检测中的应用