一、java的内存模型
1、内存模型简介
(1)不同的平台,内存模型是不一样的,但是jvm的内存模型规范是统一的
(2)线程安全无非是要控制多个线程对某个资源的有序访问或修改。总结java的内存模型,要解决两个主要的问题:可见性和有序性。
(3)我们都知道计算机有高速缓存的存在,处理器并不是每次处理数据都是取内存的。JVM定义了自己的内存模型,屏蔽了底层平台内存管理细节
2、可见性
前提:Java内存模型(JMM)规定了jvm有主内存,主内存是多个线程共享的。当new一个对象的时候,也是被分配在主内存中,每个线程都有自己的工作内存,工作内存存储了主存的某些对象的副本。
当线程操作某个对象时,执行顺序如下:
(1) 从主存复制变量到当前工作内存 (read and load)
(2) 执行代码,改变共享变量值 (use and assign)
(3) 用工作内存数据刷新主存相关内容 (store and write)
3、有序性
如果线程工作内存中没有该变量,则直接从主存中拷贝过来一个副本,即read-load,同一线程对该字段又再次引用时候,有两种情况,一是从主存中取(即read-load-use),二是直接从副本中取(use)。
对于一个多次引用该字段,并且进行asign,它会将值指定给工作内存中的变量副本(assign),完成后这个变量副本会同步到主存储区(store-write),至于何时同步过去,根据JVM实现系统决定。
二、synchronize和valotile
(1)synchronize
一个线程执行临界区代码过程如下:
1 获得同步锁
2 清空工作内存
3 从主存拷贝变量副本到工作内存
4 对这些变量计算
5 将变量从工作内存写回到主存
6 释放锁
可见,synchronized既保证了多线程的并发有序性,又保证了多线程的内存可见性。
(2)valotile
是轻量级的同步,为什么这么说,因为volatile只能保证多线程的内存可见性,不能保证多线程的执行有序性。任何被volatile修饰的变量,都不拷贝副本到工作内存,任何修改都及时写在主存。因此对于Valatile修饰的变量的修改,所有线程马上就能看到。
相关推荐
`volatile` 关键字告诉编译器,某个变量的值可能会在编译器不可见的情况下发生变化,因此不应对其进行优化。而 `const` 关键字则指示变量的值在声明后不应被程序修改。 当 `volatile` 和 `const` 同时出现在一个...
maxwell simplorer simulink 永磁同步电机矢量控制联合仿真,电机为分数槽绕组,使用pi控制SVPWM调制,修改文件路径后可使用,软件版本matlab 2017b, Maxwell electronics 2021b 共包含两个文件, Maxwell和Simplorer联合仿真文件,以及Maxwell Simplorer simulink 三者联合仿真文件。
基于springboot的网上图书商城--论文.zip
门板边挡板分离喂料机sw19全套技术资料100%好用.zip
信号与系统matlab仿真实验报告2024(学生提交).docx
洗砂机stp全套技术资料100%好用.zip
用句子记忆单词带背版本,适合时间比较充足想打好基础的同学
电子PCB板龙门铣自动化生产线sw17可编辑全套技术资料100%好用.zip
最新紧固件标准型号对照表.docx
【创新无忧】基于matlab遗传算法GA优化极限学习机KELM故障诊断【含Matlab源码 10735期】.zip
【创新无忧】基于matlab极光算法PLO优化极限学习机KELM故障诊断【含Matlab源码 10707期】.zip
java面向对象程序设计实验报告
展示PRD文档的关键要素编写具体示例。同时提供了一份模板,方便撰写PRD文档。
内容概要:本文详细介绍了一个基于广义变分同步优化(GVSAO)的时间序列预测模型项目。该项目涵盖了从项目背景到最终部署的整个流程,包括数据预处理、模型构建、训练、优化、GUI界面设计、实时预测及系统部署等方面。GVSAO作为一种新型优化方法,能更好地处理非线性关系和高维数据的特点,在预测股票价格、电力负荷、天气变化等方面显示出优越性能。文中提供的MATLAB代码和可视化工具使模型实现和评估更为便捷。 适合人群:对时间序列预测感兴趣的科研工作者、学生和工程师,特别是那些想要深入了解同步优化技术及其应用场景的人。 使用场景及目标:①适用于金融、能源、气象和制造业等多个领域的时间序列预测;②提升模型预测精度;③提供一个完整的项目实施模板供学习模仿。使用该模型可以更有效地挖掘时间序列数据背后隐含的趋势和规律,辅助商业决策和社会管理。 其他说明:本文档不仅包含理论概念和技术细节,还有丰富的实例演示,可以帮助读者全面掌握基于GVSAO的时间序列预测技巧。同时,附带完整的程序代码使得研究成果可以直接应用于实际工作中。
DSP芯片程序读取 DSP28德州仪器28系列DSP反汇编,定点器件和浮点器件均支持,能够根据out、hex或bin文件建立可以编译的CCS汇编语言工程,并且编译后可生成二进制完全相同的bin文件,方便进行研究软件设计思路,二次开发,器件迁移,混淆再链接,研究通信协议,解除ID限制,提取算法等,小批量的代码转C。
内容概要:本文介绍了一种基于对比学习的图异常检测算法,涵盖数据预处理、对比样本构建、模型设计(含选择适当的GNN架构及设计对比学习模块)、异常检测流程、结果评估方法和代码实例六个主要环节。文章特别强调在常规数据集(如Cora、PubMed)的应用上力求获得较高的AUC分数,超过80%,并且提供了详细的操作指导和Python源代码示例供开发者学习。 适用人群:主要面向有一定机器学习、深度学习理论基础,尤其关注图结构数据处理的研究人员、数据科学家和技术专家。对于有志于从事网络安全监控、金融风控等领域工作的专业人士尤为有用。 使用场景及目标:①针对具有大量节点关系的数据结构进行高效的异常识别;②利用先进的AI技术和工具箱快速搭建并迭代优化系统性能,达成高效准确的预测;③为后续研究提供参考和启示。 其他说明:文中不仅深入解析了每一阶段的技术细节,而且通过具体的Python实现片段帮助读者更好地理解和实践这一复杂的过程。对于期望深入挖掘对比学习在非传统数据格式下应用可能性的人而言是个宝贵的参考资料。
MIPI-DPU platform TCL
【JavaScrip】一个傻妞机器人插件库_pgj
comsol锂离子电池组充放电循环强制液冷散热仿真。 模型为SolidWorks导入,可以提供原模型。 电池模型:一维电化学(p2d)模型耦合三维热模型
饼干分包sw20可编辑全套技术资料100%好用.zip