- 浏览: 554310 次
- 性别:
- 来自: 杭州
-
文章分类
最新评论
-
wa114d:
楼主工作几年了,好厉害
一个面试官对面试问题的分析 -
wobuxiaole:
Good,非常好
30岁前男人需要完成的事 -
小逗逗:
Good,非常好
30岁前男人需要完成的事 -
invincibleLiu:
好帖,要顶!(别投我隐藏啊,这是对BBS最原始一种支持)
Java:synchronized修饰符在静态方法与非静态方法上的区别 -
fayedShih:
第三题,不知道对不对
import java.util.con ...
企业牛逼面试题目 高手进来讨论答题
最近想将java基础的一些东西都整理整理,写下来,这是对知识的总结,也是一种乐趣。已经拟好了提纲,大概分为这几个主题: java线程安全,java垃圾收集,java并发包详细介绍,java profile和jvm性能调优 。慢慢写吧。本人jameswxx原创文章,转载请注明出处,我费了很多心血,多谢了。关于java线程安全,网上有很多资料,我只想从自己的角度总结对这方面的考虑,有时候写东西是很痛苦的,知道一些东西,但想用文字说清楚,却不是那么容易。我认为要认识java线程安全,必须了解两个主要的点:java的内存模型,java的线程同步机制。特别是内存模型,java的线程同步机制很大程度上都是基于内存模型而设定的。后面我还会写java并发包的文章,详细总结如何利用java并发包编写高效安全的多线程并发程序。暂时写得比较仓促,后面会慢慢补充完善。
浅谈java内存模型
不同的平台,内存模型是不一样的,但是jvm的内存模型规范是统一的。其实java的多线程并发问题最终都会反映在java的内存模型上,所谓线程安全无非是要控制多个线程对某个资源的有序访问或修改。总结java的内存模型,要解决两个主要的问题:可见性和有序性。我们都知道计算机有高速缓存的存在,处理器并不是每次处理数据都是取内存的。JVM定义了自己的内存模型,屏蔽了底层平台内存管理细节,对于java开发人员,要清楚在jvm内存模型的基础上,如果解决多线程的可见性和有序性。
那么,何谓可见性? 多个线程之间是不能互相传递数据通信的,它们之间的沟通只能通过共享变量来进行。Java内存模型(JMM)规定了jvm有主内存,主内存是多个线程共享的。当new一个对象的时候,也是被分配在主内存中,每个线程都有自己的工作内存,工作内存存储了主存的某些对象的副本,当然线程的工作内存大小是有限制的。当线程操作某个对象时,执行顺序如下:
(1) 从主存复制变量到当前工作内存 (read and load)
(2) 执行代码,改变共享变量值 (use and assign)
(3) 用工作内存数据刷新主存相关内容 (store and write)
JVM规范定义了线程对主存的操作指令:read,load,use,assign,store,write。当一个共享变量在多个线程的工作内存中都有副本时,如果一个线程修改了这个共享变量,那么其他线程应该能够看到这个被修改后的值,这就是多线程的可见性问题。
那么,什么是有序性呢 ?线程在引用变量时不能直接从主内存中引用,如果线程工作内存中没有该变量,则会从主内存中拷贝一个副本到工作内存中,这个过程为read-load,完成后线程会引用该副本。当同一线程再度引用该字段时,有可能重新从主存中获取变量副本(read-load-use),也有可能直接引用原来的副本(use),也就是说 read,load,use顺序可以由JVM实现系统决定。
线程不能直接为主存中中字段赋值,它会将值指定给工作内存中的变量副本(assign),完成后这个变量副本会同步到主存储区(store-write),至于何时同步过去,根据JVM实现系统决定.有该字段,则会从主内存中将该字段赋值到工作内存中,这个过程为read-load,完成后线程会引用该变量副本,当同一线程多次重复对字段赋值时,比如:
线程有可能只对工作内存中的副本进行赋值,只到最后一次赋值后才同步到主存储区,所以assign,store,weite顺序可以由JVM实现系统决定。假设有一个共享变量x,线程a执行x=x+1。从上面的描述中可以知道x=x+1并不是一个原子操作,它的执行过程如下:
1 从主存中读取变量x副本到工作内存
2 给x加1
3 将x加1后的值写回主 存
如果另外一个线程b执行x=x-1,执行过程如下:
1 从主存中读取变量x副本到工作内存
2 给x减1
3 将x减1后的值写回主存
那么显然,最终的x的值是不可靠的。假设x现在为10,线程a加1,线程b减1,从表面上看,似乎最终x还是为10,但是多线程情况下会有这种情况发生:
1:线程a从主存读取x副本到工作内存,工作内存中x值为10
2:线程b从主存读取x副本到工作内存,工作内存中x值为10
3:线程a将工作内存中x加1,工作内存中x值为11
4:线程a将x提交主存中,主存中x为11
5:线程b将工作内存中x值减1,工作内存中x值为9
6:线程b将x提交到中主存中,主存中x为9
同样,x有可能为11,如果x是一个银行账户,线程a存款,线程b扣款,显然这样是有严重问题的,要解决这个问题,必须保证线程a和线程b是有序执行的,并且每个线程执行的加1或减1是一个原子操作。看看下面代码:
第一次执行结果为10200,第二次执行结果为1060,每次执行的结果都是不确定的,因为线程的执行顺序是不可预见的。这是java同步产生的根源,synchronized关键字保证了多个线程对于同步块是互斥的,synchronized作为一种同步手段,解决java多线程的执行有序性和内存可见性,而volatile关键字之解决多线程的内存可见性问题。后面将会详细介绍。
synchronized关键字
上面说了,java用synchronized关键字做为多线程并发环境的执行有序性的保证手段之一。当一段代码会修改共享变量,这一段代码成为互斥区或临界区,为了保证共享变量的正确性,synchronized标示了临界区。典型的用法如下:
为了保证银行账户的安全,可以操作账户的方法如下:
刚才不是说了synchronized的用法是这样的吗:
那么对于public synchronized void add(int num)这种情况,意味着什么呢?其实这种情况,锁就是这个方法所在的对象。同理,如果方法是public static synchronized void add(int num),那么锁就是这个方法所在的class。
理论上,每个对象都可以做为锁,但一个对象做为锁时,应该被多个线程共享,这样才显得有意义,在并发环境下,一个没有共享的对象作为锁是没有意义的。假如有这样的代码:
lock变量作为一个锁存在根本没有意义,因为它根本不是共享对象,每个线程进来都会执行Object lock=new Object();每个线程都有自己的lock,根本不存在锁竞争。
每个锁对象都有两个队列,一个是就绪队列,一个是阻塞队列,就绪队列存储了将要获得锁的线程,阻塞队列存储了被阻塞的线程,当一个被线程被唤醒(notify)后,才会进入到就绪队列,等待cpu的调度。当一开始线程a第一次执行account.add方法时,jvm会检查锁对象account的就绪队列是否已经有线程在等待,如果有则表明account的锁已经被占用了,由于是第一次运行,account的就绪队列为空,所以线程a获得了锁,执行account.add方法。如果恰好在这个时候,线程b要执行account.withdraw方法,因为线程a已经获得了锁还没有释放,所以线程b要进入account的就绪队列,等到得到锁后才可以执行。
一个线程执行临界区代码过程如下:
1 获得同步锁
2 清空工作内存
3 从主存拷贝变量副本到工作内存
4 对这些变量计算
5 将变量从工作内存写回到主存
6 释放锁
可见,synchronized既保证了多线程的并发有序性,又保证了多线程的内存可见性。
生产者/消费者模式
生产者/消费者模式其实是一种很经典的线程同步模型,很多时候,并不是光保证多个线程对某共享资源操作的互斥性就够了,往往多个线程之间都是有协作的。
假设有这样一种情况,有一个桌子,桌子上面有一个盘子,盘子里只能放一颗鸡蛋,A专门往盘子里放鸡蛋,如果盘子里有鸡蛋,则一直等到盘子里没鸡蛋,B专门从盘子里拿鸡蛋,如果盘子里没鸡蛋,则等待直到盘子里有鸡蛋。其实盘子就是一个互斥区,每次往盘子放鸡蛋应该都是互斥的,A的等待其实就是主动放弃锁,B等待时还要提醒A放鸡蛋。
如何让线程主动释放锁
很简单,调用锁的wait()方法就好。wait方法是从Object来的,所以任意对象都有这个方法。看这个代码片段:
如果一个线程获得了锁lock,进入了同步块,执行lock.wait(),那么这个线程会进入到lock的阻塞队列。如果调用lock.notify()则会通知阻塞队列的某个线程进入就绪队列。
声明一个盘子,只能放一个鸡蛋
执行结果:
声明一个Plate对象为plate,被线程A和线程B共享,A专门放鸡蛋,B专门拿鸡蛋。假设
1 开始,A调用plate.putEgg方法,此时eggs.size()为0,因此顺利将鸡蛋放到盘子,还执行了notify()方法,唤醒锁的阻塞队列的线程,此时阻塞队列还没有线程。
2 又有一个A线程对象调用plate.putEgg方法,此时eggs.size()不为0,调用wait()方法,自己进入了锁对象的阻塞队列。
3 此时,来了一个B线程对象,调用plate.getEgg方法,eggs.size()不为0,顺利的拿到了一个鸡蛋,还执行了notify()方法,唤醒锁的阻塞队列的线程,此时阻塞队列有一个A线程对象,唤醒后,它进入到就绪队列,就绪队列也就它一个,因此马上得到锁,开始往盘子里放鸡蛋,此时盘子是空的,因此放鸡蛋成功。
4 假设接着来了线程A,就重复2;假设来料线程B,就重复3。
整个过程都保证了放鸡蛋,拿鸡蛋,放鸡蛋,拿鸡蛋。
volatile关键字
volatile是java提供的一种同步手段,只不过它是轻量级的同步,为什么这么说,因为volatile只能保证多线程的内存可见性,不能保证多线程的执行有序性。而最彻底的同步要保证有序性和可见性,例如synchronized。任何被volatile修饰的变量,都不拷贝副本到工作内存,任何修改都及时写在主存。因此对于Valatile修饰的变量的修改,所有线程马上就能看到,但是volatile不能保证对变量的修改是有序的。什么意思呢?假如有这样的代码:
当一个VolatileTest对象被多个线程共享,a的值不一定是正确的,因为a=a+count包含了好几步操作,而此时多个线程的执行是无序的,因为没有任何机制来保证多个线程的执行有序性和原子性。volatile存在的意义是,任何线程对a的修改,都会马上被其他线程读取到,因为直接操作主存,没有线程对工作内存和主存的同步。所以,volatile的使用场景是有限的,在有限的一些情形下可以使用 volatile 变量替代锁。要使 volatile 变量提供理想的线程安全,必须同时满足下面两个条件:
1)对变量的写操作不依赖于当前值。
2)该变量没有包含在具有其他变量的不变式中
volatile只保证了可见性,所以Volatile适合直接赋值的场景,如
在没有volatile声明时,多线程环境下,a的最终值不一定是正确的,因为this.a=a;涉及到给a赋值和将a同步回主存的步骤,这个顺序可能被打乱。如果用volatile声明了,读取主存副本到工作内存和同步a到主存的步骤,相当于是一个原子操作。所以简单来说,volatile适合这种场景:一个变量被多个线程共享,线程直接给这个变量赋值。这是一种很简单的同步场景,这时候使用volatile的开销将会非常小。
浅谈java内存模型
不同的平台,内存模型是不一样的,但是jvm的内存模型规范是统一的。其实java的多线程并发问题最终都会反映在java的内存模型上,所谓线程安全无非是要控制多个线程对某个资源的有序访问或修改。总结java的内存模型,要解决两个主要的问题:可见性和有序性。我们都知道计算机有高速缓存的存在,处理器并不是每次处理数据都是取内存的。JVM定义了自己的内存模型,屏蔽了底层平台内存管理细节,对于java开发人员,要清楚在jvm内存模型的基础上,如果解决多线程的可见性和有序性。
那么,何谓可见性? 多个线程之间是不能互相传递数据通信的,它们之间的沟通只能通过共享变量来进行。Java内存模型(JMM)规定了jvm有主内存,主内存是多个线程共享的。当new一个对象的时候,也是被分配在主内存中,每个线程都有自己的工作内存,工作内存存储了主存的某些对象的副本,当然线程的工作内存大小是有限制的。当线程操作某个对象时,执行顺序如下:
(1) 从主存复制变量到当前工作内存 (read and load)
(2) 执行代码,改变共享变量值 (use and assign)
(3) 用工作内存数据刷新主存相关内容 (store and write)
JVM规范定义了线程对主存的操作指令:read,load,use,assign,store,write。当一个共享变量在多个线程的工作内存中都有副本时,如果一个线程修改了这个共享变量,那么其他线程应该能够看到这个被修改后的值,这就是多线程的可见性问题。
那么,什么是有序性呢 ?线程在引用变量时不能直接从主内存中引用,如果线程工作内存中没有该变量,则会从主内存中拷贝一个副本到工作内存中,这个过程为read-load,完成后线程会引用该副本。当同一线程再度引用该字段时,有可能重新从主存中获取变量副本(read-load-use),也有可能直接引用原来的副本(use),也就是说 read,load,use顺序可以由JVM实现系统决定。
线程不能直接为主存中中字段赋值,它会将值指定给工作内存中的变量副本(assign),完成后这个变量副本会同步到主存储区(store-write),至于何时同步过去,根据JVM实现系统决定.有该字段,则会从主内存中将该字段赋值到工作内存中,这个过程为read-load,完成后线程会引用该变量副本,当同一线程多次重复对字段赋值时,比如:
for(int i=0;i<10;i++) a++;
线程有可能只对工作内存中的副本进行赋值,只到最后一次赋值后才同步到主存储区,所以assign,store,weite顺序可以由JVM实现系统决定。假设有一个共享变量x,线程a执行x=x+1。从上面的描述中可以知道x=x+1并不是一个原子操作,它的执行过程如下:
1 从主存中读取变量x副本到工作内存
2 给x加1
3 将x加1后的值写回主 存
如果另外一个线程b执行x=x-1,执行过程如下:
1 从主存中读取变量x副本到工作内存
2 给x减1
3 将x减1后的值写回主存
那么显然,最终的x的值是不可靠的。假设x现在为10,线程a加1,线程b减1,从表面上看,似乎最终x还是为10,但是多线程情况下会有这种情况发生:
1:线程a从主存读取x副本到工作内存,工作内存中x值为10
2:线程b从主存读取x副本到工作内存,工作内存中x值为10
3:线程a将工作内存中x加1,工作内存中x值为11
4:线程a将x提交主存中,主存中x为11
5:线程b将工作内存中x值减1,工作内存中x值为9
6:线程b将x提交到中主存中,主存中x为9
同样,x有可能为11,如果x是一个银行账户,线程a存款,线程b扣款,显然这样是有严重问题的,要解决这个问题,必须保证线程a和线程b是有序执行的,并且每个线程执行的加1或减1是一个原子操作。看看下面代码:
public class Account { private int balance; public Account(int balance) { this.balance = balance; } public int getBalance() { return balance; } public void add(int num) { balance = balance + num; } public void withdraw(int num) { balance = balance - num; } public static void main(String[] args) throws InterruptedException { Account account = new Account(1000); Thread a = new Thread(new AddThread(account, 20), "add"); Thread b = new Thread(new WithdrawThread(account, 20), "withdraw"); a.start(); b.start(); a.join(); b.join(); System.out.println(account.getBalance()); } static class AddThread implements Runnable { Account account; int amount; public AddThread(Account account, int amount) { this.account = account; this.amount = amount; } public void run() { for (int i = 0; i < 200000; i++) { account.add(amount); } } } static class WithdrawThread implements Runnable { Account account; int amount; public WithdrawThread(Account account, int amount) { this.account = account; this.amount = amount; } public void run() { for (int i = 0; i < 100000; i++) { account.withdraw(amount); } } } }
第一次执行结果为10200,第二次执行结果为1060,每次执行的结果都是不确定的,因为线程的执行顺序是不可预见的。这是java同步产生的根源,synchronized关键字保证了多个线程对于同步块是互斥的,synchronized作为一种同步手段,解决java多线程的执行有序性和内存可见性,而volatile关键字之解决多线程的内存可见性问题。后面将会详细介绍。
synchronized关键字
上面说了,java用synchronized关键字做为多线程并发环境的执行有序性的保证手段之一。当一段代码会修改共享变量,这一段代码成为互斥区或临界区,为了保证共享变量的正确性,synchronized标示了临界区。典型的用法如下:
synchronized(锁){ 临界区代码 }
为了保证银行账户的安全,可以操作账户的方法如下:
public synchronized void add(int num) { balance = balance + num; } public synchronized void withdraw(int num) { balance = balance - num; }
刚才不是说了synchronized的用法是这样的吗:
synchronized(锁){ 临界区代码 }
那么对于public synchronized void add(int num)这种情况,意味着什么呢?其实这种情况,锁就是这个方法所在的对象。同理,如果方法是public static synchronized void add(int num),那么锁就是这个方法所在的class。
理论上,每个对象都可以做为锁,但一个对象做为锁时,应该被多个线程共享,这样才显得有意义,在并发环境下,一个没有共享的对象作为锁是没有意义的。假如有这样的代码:
public class ThreadTest{ public void test(){ Object lock=new Object(); synchronized (lock){ //do something } } }
lock变量作为一个锁存在根本没有意义,因为它根本不是共享对象,每个线程进来都会执行Object lock=new Object();每个线程都有自己的lock,根本不存在锁竞争。
每个锁对象都有两个队列,一个是就绪队列,一个是阻塞队列,就绪队列存储了将要获得锁的线程,阻塞队列存储了被阻塞的线程,当一个被线程被唤醒(notify)后,才会进入到就绪队列,等待cpu的调度。当一开始线程a第一次执行account.add方法时,jvm会检查锁对象account的就绪队列是否已经有线程在等待,如果有则表明account的锁已经被占用了,由于是第一次运行,account的就绪队列为空,所以线程a获得了锁,执行account.add方法。如果恰好在这个时候,线程b要执行account.withdraw方法,因为线程a已经获得了锁还没有释放,所以线程b要进入account的就绪队列,等到得到锁后才可以执行。
一个线程执行临界区代码过程如下:
1 获得同步锁
2 清空工作内存
3 从主存拷贝变量副本到工作内存
4 对这些变量计算
5 将变量从工作内存写回到主存
6 释放锁
可见,synchronized既保证了多线程的并发有序性,又保证了多线程的内存可见性。
生产者/消费者模式
生产者/消费者模式其实是一种很经典的线程同步模型,很多时候,并不是光保证多个线程对某共享资源操作的互斥性就够了,往往多个线程之间都是有协作的。
假设有这样一种情况,有一个桌子,桌子上面有一个盘子,盘子里只能放一颗鸡蛋,A专门往盘子里放鸡蛋,如果盘子里有鸡蛋,则一直等到盘子里没鸡蛋,B专门从盘子里拿鸡蛋,如果盘子里没鸡蛋,则等待直到盘子里有鸡蛋。其实盘子就是一个互斥区,每次往盘子放鸡蛋应该都是互斥的,A的等待其实就是主动放弃锁,B等待时还要提醒A放鸡蛋。
如何让线程主动释放锁
很简单,调用锁的wait()方法就好。wait方法是从Object来的,所以任意对象都有这个方法。看这个代码片段:
Object lock=new Object();//声明了一个对象作为锁 synchronized (lock) { balance = balance - num; //这里放弃了同步锁,好不容易得到,又放弃了 lock.wait(); }
如果一个线程获得了锁lock,进入了同步块,执行lock.wait(),那么这个线程会进入到lock的阻塞队列。如果调用lock.notify()则会通知阻塞队列的某个线程进入就绪队列。
声明一个盘子,只能放一个鸡蛋
import java.util.ArrayList; import java.util.List; public class Plate { List<Object> eggs = new ArrayList<Object>(); public synchronized Object getEgg() { if (eggs.size() == 0) { try { wait(); } catch (InterruptedException e) { } } Object egg = eggs.get(0); eggs.clear();// 清空盘子 notify();// 唤醒阻塞队列的某线程到就绪队列 System.out.println("拿到鸡蛋"); return egg; } public synchronized void putEgg(Object egg) { if (eggs.size() > 0) { try { wait(); } catch (InterruptedException e) { } } eggs.add(egg);// 往盘子里放鸡蛋 notify();// 唤醒阻塞队列的某线程到就绪队列 System.out.println("放入鸡蛋"); } static class AddThread extends Thread{ private Plate plate; private Object egg=new Object(); public AddThread(Plate plate){ this.plate=plate; } public void run(){ for(int i=0;i<5;i++){ plate.putEgg(egg); } } } static class GetThread extends Thread{ private Plate plate; public GetThread(Plate plate){ this.plate=plate; } public void run(){ for(int i=0;i<5;i++){ plate.getEgg(); } } } public static void main(String args[]){ try { Plate plate=new Plate(); Thread add=new Thread(new AddThread(plate)); Thread get=new Thread(new GetThread(plate)); add.start(); get.start(); add.join(); get.join(); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("测试结束"); } }
执行结果:
放入鸡蛋 拿到鸡蛋 放入鸡蛋 拿到鸡蛋 放入鸡蛋 拿到鸡蛋 放入鸡蛋 拿到鸡蛋 放入鸡蛋 拿到鸡蛋 测试结束
声明一个Plate对象为plate,被线程A和线程B共享,A专门放鸡蛋,B专门拿鸡蛋。假设
1 开始,A调用plate.putEgg方法,此时eggs.size()为0,因此顺利将鸡蛋放到盘子,还执行了notify()方法,唤醒锁的阻塞队列的线程,此时阻塞队列还没有线程。
2 又有一个A线程对象调用plate.putEgg方法,此时eggs.size()不为0,调用wait()方法,自己进入了锁对象的阻塞队列。
3 此时,来了一个B线程对象,调用plate.getEgg方法,eggs.size()不为0,顺利的拿到了一个鸡蛋,还执行了notify()方法,唤醒锁的阻塞队列的线程,此时阻塞队列有一个A线程对象,唤醒后,它进入到就绪队列,就绪队列也就它一个,因此马上得到锁,开始往盘子里放鸡蛋,此时盘子是空的,因此放鸡蛋成功。
4 假设接着来了线程A,就重复2;假设来料线程B,就重复3。
整个过程都保证了放鸡蛋,拿鸡蛋,放鸡蛋,拿鸡蛋。
volatile关键字
volatile是java提供的一种同步手段,只不过它是轻量级的同步,为什么这么说,因为volatile只能保证多线程的内存可见性,不能保证多线程的执行有序性。而最彻底的同步要保证有序性和可见性,例如synchronized。任何被volatile修饰的变量,都不拷贝副本到工作内存,任何修改都及时写在主存。因此对于Valatile修饰的变量的修改,所有线程马上就能看到,但是volatile不能保证对变量的修改是有序的。什么意思呢?假如有这样的代码:
public class VolatileTest{ public volatile int a; public void add(int count){ a=a+count; } }
当一个VolatileTest对象被多个线程共享,a的值不一定是正确的,因为a=a+count包含了好几步操作,而此时多个线程的执行是无序的,因为没有任何机制来保证多个线程的执行有序性和原子性。volatile存在的意义是,任何线程对a的修改,都会马上被其他线程读取到,因为直接操作主存,没有线程对工作内存和主存的同步。所以,volatile的使用场景是有限的,在有限的一些情形下可以使用 volatile 变量替代锁。要使 volatile 变量提供理想的线程安全,必须同时满足下面两个条件:
1)对变量的写操作不依赖于当前值。
2)该变量没有包含在具有其他变量的不变式中
volatile只保证了可见性,所以Volatile适合直接赋值的场景,如
public class VolatileTest{ public volatile int a; public void setA(int a){ this.a=a; } }
在没有volatile声明时,多线程环境下,a的最终值不一定是正确的,因为this.a=a;涉及到给a赋值和将a同步回主存的步骤,这个顺序可能被打乱。如果用volatile声明了,读取主存副本到工作内存和同步a到主存的步骤,相当于是一个原子操作。所以简单来说,volatile适合这种场景:一个变量被多个线程共享,线程直接给这个变量赋值。这是一种很简单的同步场景,这时候使用volatile的开销将会非常小。
发表评论
-
ConcurrentHashMap在jdk1.7和jdk1.8中的不同
2021-12-02 17:30 0https://blog.csdn.net/qq_418849 ... -
CallableAndFuture
2012-07-24 11:31 1200import java.util.concurrent.Cal ... -
CountDownLatch
2012-07-24 11:00 1196concurrent包里面的CountDownLatch其实可 ... -
认识理解Java中native方法
2011-11-02 16:35 2383Java不是完美的,Java的不足除了体现在运行速度 ... -
java 数组复制:System.arrayCopy 深入解析
2011-11-02 10:02 4213转载:http://happyjin2010.it ... -
equals hashcode 深度分析
2011-07-14 13:17 11691.hashcode是用来查找的,如果你学过数据结构就应该知道 ... -
java proxy
2011-07-12 16:31 955代理?就是别人帮你管理叫代理. 举个例子 你是家里的主人, ... -
关于 JVM 命令行标志您不知道的 5 件事(来自IBM)
2010-11-29 17:10 982JVM 是多数开发人员视为理所当然的 Java 功能和性能背后 ... -
关于 Java Collections API 您不知道的 5 件事,第 1 部分(转自IBM)
2010-11-29 16:58 1002对于很多 Java 开发人员 ... -
说说new Integer和Integer.valueOf(转载jameswxx)
2010-11-29 12:23 1666看看这两个语句 Integer a=new Integer ... -
优化JVM参数提高eclipse运行速度
2010-11-26 16:13 899性能优化从身边做起。 首先建立评估体系,将workspac ... -
主题:一次Java垃圾收集调优实战
2010-11-26 15:29 11481 资料 •JDK5.0垃圾收集优化之--Don't Paus ... -
通过GC输出分析内存泄露问题
2010-11-26 15:13 1045SIP5.0以后服务的请求量爆发性增长,因此也暴露了原来没有暴 ... -
15种提高系统伸缩性和性能的最佳实践
2010-11-25 16:00 10121, 提高系统性能, 需要尽早做性能剖析, 而且要经常做.当项 ... -
JVM调优总结(一)-- 一些概念
2010-11-25 15:00 910数据类型 Java虚拟机中,数据类型可以分为两类:基本 ... -
DCL,双重检查(来自annegu)
2010-09-05 16:25 946对于多线程编程来说, ... -
JVM原理学习笔记一
2010-06-11 16:22 920最近在阅读 《Inside the J ... -
ImportDataFromMySQLToOracle
2009-12-10 10:42 1360import java.sql.Connection; im ... -
Merge two Hashtable<String, Integer>
2009-12-03 14:50 1407private static Hashtable< ... -
TreeMap 排序重写
2009-12-03 14:40 4461import java.util.Comparator; i ...
相关推荐
内容概要:本文详细介绍了如何利用威纶通触摸屏及其配套软件EasyBuilder Pro构建一个水箱液位控制的PID仿真程序。主要内容涵盖触摸屏界面设计、PID算法实现、通信配置以及仿真模型搭建等方面。文中不仅提供了具体的代码示例,还分享了许多调试经验和优化技巧,如抗积分饱和处理、通信同步设置等。此外,作者还强调了实际应用中的注意事项,例如参数范围限制、突发情况模拟等。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是对PID控制器有一定了解并希望深入掌握其实际应用的人群。 使用场景及目标:适用于需要进行水箱液位控制系统设计、调试和优化的工作环境。主要目标是帮助读者理解和掌握PID控制的基本原理及其在实际工程项目中的具体实现方法。 其他说明:附带完整的工程文件可供下载,便于读者快速上手实践。文中提到的所有代码片段均经过实际验证,确保可靠性和实用性。
内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
内容概要:本文详细介绍了多智能体协同编队控制的技术原理及其Python实现。首先通过生动形象的例子解释了编队控制的核心概念,如一致性算法、虚拟结构法、预测补偿等。接着深入探讨了编队形状的设计方法,包括如何利用虚拟结构法生成特定编队形状,并讨论了通信质量和参数调试的重要性。此外,还涉及了避障策略、动态权重分配以及故障检测等实际应用中的挑战和解决方案。最后,通过具体实例展示了如何将理论应用于实际项目中,如无人机编队表演、自动驾驶车队等。 适用人群:对多智能体系统、编队控制感兴趣的科研人员、工程师及高校师生。 使用场景及目标:适用于研究和开发多智能体协同编队控制系统的场景,旨在帮助读者理解并掌握相关技术和实现方法,提高系统的稳定性和可靠性。 其他说明:文中不仅提供了详细的代码示例,还分享了许多实践经验和技术细节,有助于读者更好地理解和应用这些技术。同时强调了参数调试、通信质量、预测补偿等方面的关键因素对于系统性能的影响。
内容概要:本文详细介绍了名为'MPC_ACC_2020-master'的四旋翼飞行器模型预测跟踪控制器(Matlab实现)。四旋翼飞行器由于其高度非线性和强耦合特性,在复杂环境中难以实现精准控制。模型预测控制(MPC)通过预测未来状态并在每一步进行在线优化,解决了这一难题。文中展示了关键代码片段,解释了系统参数定义、初始化、预测模型构建、成本函数构建、优化求解及控制输入的应用。此外,还探讨了MPC_ACC_2020-master如何通过精心设计的成本函数和优化算法确保四旋翼飞行器状态收敛到设定点。 适合人群:从事飞行器控制领域的研究人员和技术爱好者,尤其是对模型预测控制感兴趣的开发者。 使用场景及目标:适用于四旋翼飞行器的轨迹跟踪任务,旨在提高飞行器在复杂环境下的稳定性与准确性。具体应用场景包括但不限于无人机竞速、自动巡航、物流配送等。 其他说明:尽管该项目主要用于科研目的,但其简洁高效的代码结构也为实际工程应用提供了良好借鉴。同时,项目中存在一些待改进之处,如状态估计部分未考虑真实情况下的噪声干扰,后续版本计划移植到C++并集成进ROS系统。
内容概要:本文探讨了基于MATLAB2020b平台,采用CNN-LSTM模型结合人工大猩猩部队(GTO)算法进行电力负荷预测的方法。首先介绍了CNN-LSTM模型的基本结构及其在处理多变量输入(如历史负荷和气象数据)方面的优势。随后详细解释了如何通过GTO算法优化超参数选择,提高模型预测精度。文中展示了具体的MATLAB代码示例,包括数据预处理、网络层搭建、训练选项设定等方面的内容,并分享了一些实践经验和技术细节。此外,还讨论了模型的实际应用效果,特别是在某省级电网数据上的测试结果。 适合人群:从事电力系统数据分析的研究人员、工程师,以及对深度学习应用于时间序列预测感兴趣的开发者。 使用场景及目标:适用于需要精确预测未来电力负荷的情况,旨在帮助电力公司更好地规划发电计划,优化资源配置,保障电网安全稳定运行。通过本研究可以学习到如何构建高效的CNN-LSTM模型,并掌握利用GTO算法进行超参数优化的具体步骤。 其他说明:文中提到的一些技巧和注意事项有助于避免常见错误,提高模型性能。例如,合理的数据预处理方式、适当的超参数范围设定等都能显著改善最终的预测效果。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
内容概要:本文详细介绍了STM32F103的CAN通讯和IAP升级Bootloader的源码实现及其硬件设计。首先,针对CAN通讯部分,文章深入探讨了CAN外设的初始化配置,包括波特率、位时间、过滤器等重要参数的设置方法,并提供了一段完整的初始化代码示例。接着,对于IAP升级Bootloader,文中讲解了通过CAN总线接收HEX文件并写入Flash的具体实现步骤,以及如何安全地从Bootloader跳转到应用程序。此外,文章还附上了原理图和PCB文件,有助于理解和优化硬件设计。最后,作者分享了一些实用的调试技巧和注意事项,如终端电阻的正确使用、CRC校验的应用等。 适合人群:嵌入式系统开发者、硬件工程师、从事STM32开发的技术人员。 使用场景及目标:适用于正在开发STM32相关项目的工程师,尤其是那些需要实现CAN通讯和固件在线升级功能的人群。通过学习本文提供的源码和技术要点,可以帮助他们快速掌握相关技能,提高开发效率。 其他说明:本文不仅提供了详细的代码示例,还包含了丰富的实践经验分享,能够帮助读者更好地理解和解决实际开发中遇到的问题。
工具集语音、监控、摄像头、画笔等功能于一体!清晰语音录入,确保声画同步;监控级画面录制,操作细节无遗漏;摄像头多视角呈现,让内容更生动。录制时,画笔可标注重点,快速传递关键信息。自带视频播放,无需第三方;快捷键操作便捷,录制高效。强大解码器兼容多格式,不同设备随心播放。无论是教学、办公还是创作
内容概要:本文详细介绍了西门子S7-1500 PLC在制药厂洁净空调建筑管理系统(BMS)中的应用案例。重点讨论了硬件配置(1500 CPU + ET200SP分布式IO)、温湿度控制策略(串级PID、分程调节)、以及具体的编程实现(SCL语言)。文中分享了多个技术细节,如PT100温度采集、PID控制算法优化、报警管理和HMI界面设计等。此外,作者还提到了一些调试过程中遇到的问题及其解决方案,如PID_Compact块的手动模式设定值跳变问题、博图V15.1的兼容性问题等。 适合人群:从事工业自动化领域的工程师和技术人员,特别是那些对PLC编程、温湿度控制和洁净空调系统感兴趣的读者。 使用场景及目标:适用于制药厂或其他对温湿度控制要求严格的行业。主要目标是确保洁净空调系统的高效运行,将温湿度波动控制在极小范围内,保障生产环境的安全性和稳定性。 其他说明:本文不仅提供了详细的编程代码和硬件配置指南,还分享了许多实践经验,帮助读者更好地理解和应用相关技术。同时,强调了在实际项目中需要注意的关键点和潜在问题。
2025年6G近场技术白皮书2.0.pdf
少儿编程scratch项目源代码文件案例素材-Frogeon.zip
2025年感知技术十大趋势深度分析报告.pdf
内容概要:本文详细介绍了一种用于解决车间调度问题的遗传算法(Matlab实现),即JSPGA。文章首先介绍了遗传算法的基本概念及其在车间调度问题中的应用场景。接着,作者展示了完整的Matlab源码,包括参数设置、种群初始化、选择、交叉、变异、适应度计算以及结果输出等模块。文中还特别强调了适应度计算方法的选择,采用了最大完工时间的倒数作为适应度值,并通过三维甘特图和迭代曲线直观展示算法性能。此外,文章提供了多个调参技巧和改进方向,帮助读者更好地理解和应用该算法。 适合人群:对遗传算法感兴趣的研究人员、工程师以及希望深入理解车间调度问题求解方法的技术爱好者。 使用场景及目标:适用于需要优化多台机器、多个工件加工顺序与分配的实际工业生产环境。主要目标是通过遗传算法找到最优或近似最优的调度方案,从而减少最大完工时间,提高生产效率。 其他说明:文章不仅提供了详细的理论解释和技术细节,还包括了大量实用的代码片段和图表,使读者能够轻松复现实验结果。同时,作者还分享了一些个人经验和建议,为后续研究提供了有价值的参考。
内容概要:本文深入探讨了永磁同步电机(PMSM)的最大转矩电流比(MTPA)控制算法,并详细介绍了基于Simulink的仿真模型设计。首先,文章阐述了PMSM的数学模型,包括电压方程和磁链方程,这是理解控制算法的基础。接着,解释了矢量控制原理,通过将定子电流分解为励磁电流和转矩电流分量,实现对电机的有效控制。随后,重点讨论了MTPA控制的目标和方法,即在限定电流条件下最大化转矩输出。此外,文章还涉及了前馈补偿、弱磁控制和SVPWM调制等关键技术,提供了具体的实现代码和仿真思路。最后,通过一系列实验验证了各控制策略的效果。 适合人群:从事电机控制系统设计的研究人员和技术人员,尤其是对永磁同步电机和Simulink仿真感兴趣的工程师。 使用场景及目标:适用于希望深入了解PMSM控制算法并在Simulink环境中进行仿真的技术人员。主要目标是掌握MTPA控制的核心原理,学会构建高效的仿真模型,优化电机性能。 其他说明:文中不仅提供了详细的理论推导,还有丰富的代码示例和实践经验,有助于读者快速理解和应用相关技术。同时,强调了实际工程中常见的问题及解决方案,如负载扰动、弱磁控制和SVPWM调制等。
内容概要:本文详细介绍了三机并联的风光储混合系统在Matlab中的仿真方法及其关键技术。首先,针对光伏阵列模型,讨论了其核心二极管方程以及MPPT(最大功率点跟踪)算法的应用,强调了环境参数对输出特性的影响。接着,探讨了永磁同步风机的矢量控制,尤其是转速追踪和MPPT控制策略。对于混合储能系统,则深入讲解了超级电容和蓄电池的充放电策略,以及它们之间的协调机制。此外,还涉及了PQ控制的具体实现,包括双闭环结构的设计和锁相环的优化。最后,提供了仿真过程中常见的问题及解决方案,如求解器选择、参数敏感性和系统稳定性等。 适合人群:从事电力电子、新能源系统设计与仿真的工程师和技术人员,以及相关专业的研究生。 使用场景及目标:适用于希望深入了解风光储混合系统工作原理的研究人员,旨在帮助他们掌握Matlab仿真技巧,提高系统设计和优化的能力。 其他说明:文中不仅提供了详细的理论推导和代码示例,还分享了许多实践经验,有助于读者更好地理解和应用所学知识。
本书由国际发展研究中心(IDRC)和东南亚研究院(ISEAS)联合出版,旨在探讨亚洲背景下电子商务的发展与实践。IDRC自1970年起,致力于通过科学技术解决发展中国家的社会、经济和环境问题。书中详细介绍了IDRC的ICT4D项目,以及如何通过项目如Acacia、泛亚网络和泛美项目,在非洲、亚洲和拉丁美洲推动信息通信技术(ICTs)的影响力。特别强调了IDRC在弥合数字鸿沟方面所作出的贡献,如美洲连通性研究所和非洲连通性项目。ISEAS作为东南亚区域研究中心,专注于研究该地区的发展趋势,其出版物广泛传播东南亚的研究成果。本书还收录了电子商务在亚洲不同国家的具体案例研究,包括小型工匠和开发组织的电子商务行动研究、通过互联网直接营销手工艺品、电子营销人员的创新方法以及越南电子商务发展的政策影响。
2025工业5G终端设备发展报告.pdf
内容概要:本文档《Java经典面试笔试题及答案.docx》涵盖了广泛的Java基础知识和技术要点,通过一系列面试题的形式,深入浅出地讲解了Java的核心概念。文档内容包括但不限于:变量的声明与定义、对象序列化、值传递与引用传递、接口与抽象类的区别、继承的意义、方法重载的优势、集合框架的结构、异常处理机制、线程同步、泛型的应用、多态的概念、输入输出流的使用、JVM的工作原理等。此外,还涉及了诸如线程、GUI事件处理、类与接口的设计原则等高级主题。文档不仅解释了各个知识点的基本概念,还提供了实际应用场景中的注意事项和最佳实践。 适合人群:具备一定Java编程基础的学习者或开发者,特别是准备参加Java相关岗位面试的求职者。 使用场景及目标:①帮助读者巩固Java基础知识,提升对Java核心技术的理解;②为面试做准备,提供常见面试题及其详细解答;③指导开发者在实际项目中应用Java的最佳实践,优化代码质量和性能。 其他说明:文档内容详实,涵盖了Java开发中的多个方面,从基础语法到高级特性均有涉及。建议读者在学习过程中结合实际编程练习,加深对各个知识点的理解和掌握。同时,对于复杂的概念和技术,可以通过查阅官方文档或参考书籍进一步学习。
内容概要:本文详细介绍了如何利用MATLAB将预训练的深度学习模型(如ResNet50、YOLOv2和LaneNet)转化为高效的C++代码,并部署到嵌入式系统中。首先,通过ResNet50展示了图像分类任务的代码生成流程,强调了输入图像的预处理和归一化步骤。接着,YOLOv2用于车辆检测,讨论了anchor box的可视化及其优化方法,特别是在Jetson Nano平台上实现了显著的速度提升。最后,LaneNet应用于车道线识别,探讨了实例分割和聚类算法的实现细节,以及如何通过OpenMP和CUDA进行性能优化。文中还提供了多个实用技巧,如选择合适的编译器版本、处理自定义层和支持动态输入等。 适合人群:具有一定MATLAB和深度学习基础的研发人员,尤其是关注嵌入式系统和高性能计算的应用开发者。 使用场景及目标:适用于希望将深度学习模型高效部署到嵌入式设备的研究人员和工程师。主要目标是提高模型推理速度、降低内存占用,并确保代码的可移植性和易维护性。 其他说明:文中不仅提供了详细的代码示例和技术细节,还分享了许多实践经验,帮助读者避免常见的陷阱。此外,还提到了一些高级优化技巧,如SIMD指令集应用和内存管理策略,进一步提升了生成代码的性能。
内容概要:本文详细介绍了如何利用MATLAB进行综合能源系统的优化建模,特别是将需求响应和碳交易机制融入其中。首先,文章展示了购能成本计算、燃气锅炉成本以及需求响应(包括价格型和替代型)的具体实现方法。接着,深入探讨了碳交易机制的实现,如碳配额分配、实际碳排放计算及其成本核算。此外,文章还提供了四个典型场景的实现方法,通过调整不同的边界条件来模拟各种实际情况。最后,讨论了一些常见的编程技巧和注意事项,如使用YALMIP工具箱、CPLEX求解器的配置等。 适用人群:适用于从事综合能源系统研究和技术开发的专业人士,尤其是那些对MATLAB编程有一定基础的研究人员和工程师。 使用场景及目标:①帮助研究人员理解和实现综合能源系统的优化模型;②探索需求响应和碳交易机制对能源系统调度的影响;③提供实用的编程技巧和优化建议,提高模型的准确性和求解效率。 其他说明:文中提供的代码片段和编程技巧对于实际工程项目具有很高的参考价值,能够显著提升模型的灵活性和实用性。同时,文章还提到了一些潜在的改进方向,如引入更多类型的能源转换设备和优化算法。