8种排序之间的关系:
1, 直接插入排序
(1)基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排
好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数
也是排好顺序的。如此反复循环,直到全部排好顺序。
(2)实例
(3)用java实现
- package com.njue;
- public class insertSort {
- public insertSort(){
- inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
- int temp=0;
- for(int i=1;i<a.length;i++){
- int j=i-1;
- temp=a[i];
- for(;j>=0&&temp<a[j];j--){
- a[j+1]=a[j]; //将大于temp的值整体后移一个单位
- }
- a[j+1]=temp;
- }
- for(int i=0;i<a.length;i++)
- System.out.println(a[i]);
- }
- }
package com.njue; public class insertSort { public insertSort(){ inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; int temp=0; for(int i=1;i<a.length;i++){ int j=i-1; temp=a[i]; for(;j>=0&&temp<a[j];j--){ a[j+1]=a[j]; //将大于temp的值整体后移一个单位 } a[j+1]=temp; } for(int i=0;i<a.length;i++) System.out.println(a[i]); } }
2, 希尔排序(最小增量排序)
(1)基本思想:算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。当增量减到1时,进行直接插入排序后,排序完成。
(2)实例:
(3)用java实现
- public class shellSort {
- public shellSort(){
- int a[]={1,54,6,3,78,34,12,45,56,100};
- double d1=a.length;
- int temp=0;
- while(true){
- d1= Math.ceil(d1/2);
- int d=(int) d1;
- for(int x=0;x<d;x++){
- for(int i=x+d;i<a.length;i+=d){
- int j=i-d;
- temp=a[i];
- for(;j>=0&&temp<a[j];j-=d){
- a[j+d]=a[j];
- }
- a[j+d]=temp;
- }
- }
- if(d==1)
- break;
- }
- for(int i=0;i<a.length;i++)
- System.out.println(a[i]);
- }
- }
public class shellSort { public shellSort(){ int a[]={1,54,6,3,78,34,12,45,56,100}; double d1=a.length; int temp=0; while(true){ d1= Math.ceil(d1/2); int d=(int) d1; for(int x=0;x<d;x++){ for(int i=x+d;i<a.length;i+=d){ int j=i-d; temp=a[i]; for(;j>=0&&temp<a[j];j-=d){ a[j+d]=a[j]; } a[j+d]=temp; } } if(d==1) break; } for(int i=0;i<a.length;i++) System.out.println(a[i]); } }
3.简单选择排序
(1)基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;
然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。
(2)实例:
(3)用java实现
- public class selectSort {
- public selectSort(){
- int a[]={1,54,6,3,78,34,12,45};
- int position=0;
- for(int i=0;i<a.length;i++){
- int j=i+1;
- position=i;
- int temp=a[i];
- for(;j<a.length;j++){
- if(a[j]<temp){
- temp=a[j];
- position=j;
- }
- }
- a[position]=a[i];
- a[i]=temp;
- }
- for(int i=0;i<a.length;i++)
- System.out.println(a[i]);
- }
- }
public class selectSort { public selectSort(){ int a[]={1,54,6,3,78,34,12,45}; int position=0; for(int i=0;i<a.length;i++){ int j=i+1; position=i; int temp=a[i]; for(;j<a.length;j++){ if(a[j]<temp){ temp=a[j]; position=j; } } a[position]=a[i]; a[i]=temp; } for(int i=0;i<a.length;i++) System.out.println(a[i]); } }
4, 堆排序
(1)基本思想:堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。
(2)实例:
初始序列:46,79,56,38,40,84
建堆:
交换,从堆中踢出最大数
依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。
(3)用java实现
- import java.util.Arrays;
- public class HeapSort {
- int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
- public HeapSort(){
- heapSort(a);
- }
- public void heapSort(int[] a){
- System.out.println("开始排序");
- int arrayLength=a.length;
- //循环建堆
- for(int i=0;i<arrayLength-1;i++){
- //建堆
- buildMaxHeap(a,arrayLength-1-i);
- //交换堆顶和最后一个元素
- swap(a,0,arrayLength-1-i);
- System.out.println(Arrays.toString(a));
- }
- }
- private void swap(int[] data, int i, int j) {
- // TODO Auto-generated method stub
- int tmp=data[i];
- data[i]=data[j];
- data[j]=tmp;
- }
- //对data数组从0到lastIndex建大顶堆
- private void buildMaxHeap(int[] data, int lastIndex) {
- // TODO Auto-generated method stub
- //从lastIndex处节点(最后一个节点)的父节点开始
- for(int i=(lastIndex-1)/2;i>=0;i--){
- //k保存正在判断的节点
- int k=i;
- //如果当前k节点的子节点存在
- while(k*2+1<=lastIndex){
- //k节点的左子节点的索引
- int biggerIndex=2*k+1;
- //如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在
- if(biggerIndex<lastIndex){
- //若果右子节点的值较大
- if(data[biggerIndex]<data[biggerIndex+1]){
- //biggerIndex总是记录较大子节点的索引
- biggerIndex++;
- }
- }
- //如果k节点的值小于其较大的子节点的值
- if(data[k]<data[biggerIndex]){
- //交换他们
- swap(data,k,biggerIndex);
- //将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值
- k=biggerIndex;
- }else{
- break;
- }
- }
- }
- }
- }
import java.util.Arrays; public class HeapSort { int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; public HeapSort(){ heapSort(a); } public void heapSort(int[] a){ System.out.println("开始排序"); int arrayLength=a.length; //循环建堆 for(int i=0;i<arrayLength-1;i++){ //建堆 buildMaxHeap(a,arrayLength-1-i); //交换堆顶和最后一个元素 swap(a,0,arrayLength-1-i); System.out.println(Arrays.toString(a)); } } private void swap(int[] data, int i, int j) { // TODO Auto-generated method stub int tmp=data[i]; data[i]=data[j]; data[j]=tmp; } //对data数组从0到lastIndex建大顶堆 private void buildMaxHeap(int[] data, int lastIndex) { // TODO Auto-generated method stub //从lastIndex处节点(最后一个节点)的父节点开始 for(int i=(lastIndex-1)/2;i>=0;i--){ //k保存正在判断的节点 int k=i; //如果当前k节点的子节点存在 while(k*2+1<=lastIndex){ //k节点的左子节点的索引 int biggerIndex=2*k+1; //如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在 if(biggerIndex<lastIndex){ //若果右子节点的值较大 if(data[biggerIndex]<data[biggerIndex+1]){ //biggerIndex总是记录较大子节点的索引 biggerIndex++; } } //如果k节点的值小于其较大的子节点的值 if(data[k]<data[biggerIndex]){ //交换他们 swap(data,k,biggerIndex); //将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值 k=biggerIndex; }else{ break; } } } } }
5.冒泡排序
(1)基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。
(2)实例:
(3)用java实现
- public class bubbleSort {
- public bubbleSort(){
- int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
- int temp=0;
- for(int i=0;i<a.length-1;i++){
- for(int j=0;j<a.length-1-i;j++){
- if(a[j]>a[j+1]){
- temp=a[j];
- a[j]=a[j+1];
- a[j+1]=temp;
- }
- }
- }
- for(int i=0;i<a.length;i++)
- System.out.println(a[i]);
- }
- }
public class bubbleSort { public bubbleSort(){ int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; int temp=0; for(int i=0;i<a.length-1;i++){ for(int j=0;j<a.length-1-i;j++){ if(a[j]>a[j+1]){ temp=a[j]; a[j]=a[j+1]; a[j+1]=temp; } } } for(int i=0;i<a.length;i++) System.out.println(a[i]); } }
6.快速排序
(1)基本思想:选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。
(2)实例:
(3)用java实现
- public class quickSort {
- int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
- public quickSort(){
- quick(a);
- for(int i=0;i<a.length;i++)
- System.out.println(a[i]);
- }
- public int getMiddle(int[] list, int low, int high) {
- int tmp = list[low]; //数组的第一个作为中轴
- while (low < high) {
- while (low < high && list[high] >= tmp) {
- high--;
- }
- list[low] = list[high]; //比中轴小的记录移到低端
- while (low < high && list[low] <= tmp) {
- low++;
- }
- list[high] = list[low]; //比中轴大的记录移到高端
- }
- list[low] = tmp; //中轴记录到尾
- return low; //返回中轴的位置
- }
- public void _quickSort(int[] list, int low, int high) {
- if (low < high) {
- int middle = getMiddle(list, low, high); //将list数组进行一分为二
- _quickSort(list, low, middle - 1); //对低字表进行递归排序
- _quickSort(list, middle + 1, high); //对高字表进行递归排序
- }
- }
- public void quick(int[] a2) {
- if (a2.length > 0) { //查看数组是否为空
- _quickSort(a2, 0, a2.length - 1);
- }
- }
- }
public class quickSort { int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; public quickSort(){ quick(a); for(int i=0;i<a.length;i++) System.out.println(a[i]); } public int getMiddle(int[] list, int low, int high) { int tmp = list[low]; //数组的第一个作为中轴 while (low < high) { while (low < high && list[high] >= tmp) { high--; } list[low] = list[high]; //比中轴小的记录移到低端 while (low < high && list[low] <= tmp) { low++; } list[high] = list[low]; //比中轴大的记录移到高端 } list[low] = tmp; //中轴记录到尾 return low; //返回中轴的位置 } public void _quickSort(int[] list, int low, int high) { if (low < high) { int middle = getMiddle(list, low, high); //将list数组进行一分为二 _quickSort(list, low, middle - 1); //对低字表进行递归排序 _quickSort(list, middle + 1, high); //对高字表进行递归排序 } } public void quick(int[] a2) { if (a2.length > 0) { //查看数组是否为空 _quickSort(a2, 0, a2.length - 1); } } }
7、归并排序
(1)基本排序:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
(2)实例:
(3)用java实现
- import java.util.Arrays;
- public class mergingSort {
- int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
- public mergingSort(){
- sort(a,0,a.length-1);
- for(int i=0;i<a.length;i++)
- System.out.println(a[i]);
- }
- public void sort(int[] data, int left, int right) {
- // TODO Auto-generated method stub
- if(left<right){
- //找出中间索引
- int center=(left+right)/2;
- //对左边数组进行递归
- sort(data,left,center);
- //对右边数组进行递归
- sort(data,center+1,right);
- //合并
- merge(data,left,center,right);
- }
- }
- public void merge(int[] data, int left, int center, int right) {
- // TODO Auto-generated method stub
- int [] tmpArr=new int[data.length];
- int mid=center+1;
- //third记录中间数组的索引
- int third=left;
- int tmp=left;
- while(left<=center&&mid<=right){
- //从两个数组中取出最小的放入中间数组
- if(data[left]<=data[mid]){
- tmpArr[third++]=data[left++];
- }else{
- tmpArr[third++]=data[mid++];
- }
- }
- //剩余部分依次放入中间数组
- while(mid<=right){
- tmpArr[third++]=data[mid++];
- }
- while(left<=center){
- tmpArr[third++]=data[left++];
- }
- //将中间数组中的内容复制回原数组
- while(tmp<=right){
- data[tmp]=tmpArr[tmp++];
- }
- System.out.println(Arrays.toString(data));
- }
- }
import java.util.Arrays; public class mergingSort { int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; public mergingSort(){ sort(a,0,a.length-1); for(int i=0;i<a.length;i++) System.out.println(a[i]); } public void sort(int[] data, int left, int right) { // TODO Auto-generated method stub if(left<right){ //找出中间索引 int center=(left+right)/2; //对左边数组进行递归 sort(data,left,center); //对右边数组进行递归 sort(data,center+1,right); //合并 merge(data,left,center,right); } } public void merge(int[] data, int left, int center, int right) { // TODO Auto-generated method stub int [] tmpArr=new int[data.length]; int mid=center+1; //third记录中间数组的索引 int third=left; int tmp=left; while(left<=center&&mid<=right){ //从两个数组中取出最小的放入中间数组 if(data[left]<=data[mid]){ tmpArr[third++]=data[left++]; }else{ tmpArr[third++]=data[mid++]; } } //剩余部分依次放入中间数组 while(mid<=right){ tmpArr[third++]=data[mid++]; } while(left<=center){ tmpArr[third++]=data[left++]; } //将中间数组中的内容复制回原数组 while(tmp<=right){ data[tmp]=tmpArr[tmp++]; } System.out.println(Arrays.toString(data)); } }
8、基数排序
(1)基本思想:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。
(2)实例:
(3)用java实现
- import java.util.ArrayList;
- import java.util.List;
- public class radixSort {
- int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,101,56,17,18,23,34,15,35,25,53,51};
- public radixSort(){
- sort(a);
- for(int i=0;i<a.length;i++)
- System.out.println(a[i]);
- }
- public void sort(int[] array){
- //首先确定排序的趟数;
- int max=array[0];
- for(int i=1;i<array.length;i++){
- if(array[i]>max){
- max=array[i];
- }
- }
- int time=0;
- //判断位数;
- while(max>0){
- max/=10;
- time++;
- }
- //建立10个队列;
- List<ArrayList> queue=new ArrayList<ArrayList>();
- for(int i=0;i<10;i++){
- ArrayList<Integer> queue1=new ArrayList<Integer>();
- queue.add(queue1);
- }
- //进行time次分配和收集;
- for(int i=0;i<time;i++){
- //分配数组元素;
- for(int j=0;j<array.length;j++){
- //得到数字的第time+1位数;
- int x=array[j]%(int)Math.pow(10, i+1)/(int)Math.pow(10, i);
- ArrayList<Integer> queue2=queue.get(x);
- queue2.add(array[j]);
- queue.set(x, queue2);
- }
- int count=0;//元素计数器;
- //收集队列元素;
- for(int k=0;k<10;k++){
- while(queue.get(k).size()>0){
- ArrayList<Integer> queue3=queue.get(k);
- array[count]=queue3.get(0);
- queue3.remove(0);
- count++;
- }
- }
- }
- }
- }
相关推荐
本文将介绍两种常见的排序算法:直接插入排序和希尔排序,并通过Java代码实现来帮助理解。 1. 直接插入排序(直接插入排序) 直接插入排序是一种简单的排序方法,它的工作原理类似于我们平时手动整理扑克牌。在排序...
在编程领域,排序算法是数据结构与算法学习中的重要组成部分,尤其在Java中,...在`AllSort`这个压缩包中,可能包含了这八种排序算法的Java实现代码,通过阅读和理解这些代码,可以加深对排序算法的理解和应用能力。
在Java编程语言中,有多种排序算法可供使用。这里我们将探讨三种基本的排序算法:冒泡排序、选择排序和插入排序。这些算法都是基于数组的简单排序方法,适合理解排序的基本原理。 首先,我们来看冒泡排序。冒泡排序...
这里我们讨论的是Java中常见的三种排序算法:直接插入排序、希尔排序和简单选择排序。 1. 直接插入排序(Insertion Sort) 直接插入排序是一种简单的排序算法,它的基本思想是通过构建有序序列,对于未排序数据,在...
以下是标题和描述中提到的8种排序算法的详细介绍: 1. **插入排序(Insertion Sort)**: 插入排序是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到...
Java 八大排序是 Java 语言中八种常用的排序算法,分别是直接插入排序、希尔排序、简单选择排序、冒泡排序、快速排序、归并排序、堆排序和 Radix 排序。下面是对每种排序算法的详细介绍: 1. 直接插入排序 基本...
Java 实现归并排序是一种常用的排序算法,通过分治策略将原始数组分成小组,然后对每个小组进行排序,最后将排序好的小组合并成一个有序数组。下面是 Java 实现归并排序的知识点总结: 基本思想 归并排序的基本...
在Java编程语言中,对包含中文、数字和字母的数据进行排序是一项常见的任务。这个场景下,我们关注的是如何实现一个自定义的排序规则,按照数字、字母和汉字的顺序进行排列。以下是对这一主题的详细解释。 首先,...
Java作为一种广泛使用的面向对象的语言,提供了多种方法来实现排序。本篇文章将详细探讨Java中实现插入排序、冒泡排序和选择排序的原理、代码实现及它们的时间和空间复杂度。 首先,我们来看插入排序。插入排序是一...
本篇文章将详细探讨Java中常见的八种排序算法,每一种都有其独特的特性和适用场景。 1. **冒泡排序(Bubble Sort)** 冒泡排序是最基础的排序算法之一,通过不断交换相邻的逆序元素来逐步完成排序。它的时间复杂度为...
### Java 中文姓氏排序详解 #### 一、引言 在处理中文数据时,我们经常需要对含有中文姓名的数据进行排序。Java 提供了多种方式进行排序,包括使用 `Collections.sort()` 方法配合自定义比较器(`Comparator`)。...
Java ip 地址排序Java ip 地址排序Java ip 地址排序Java ip 地址排序
8种排序算法的可视化 采用java gui的形式展示8种排序算法的可视化 采用java gui的形式展示8种排序算法的可视化 采用java gui的形式展示8种排序算法的可视化 采用java gui的形式展示8种排序算法的可视化 采用java gui...
除了以上介绍的四种排序算法外,Java中还有以下几种常用的排序算法: 1. **冒泡排序**:每次比较两个相邻的元素,如果它们的顺序错误就把它们交换过来。遍历所有元素之后,最大的元素就会被放到最后的位置上。然后...
冒泡排序(Bubble Sort),是一种计算机科学领域的较简单的排序算法。 它重复地走访过要排序的元素列,依次比较两个相邻的元素,如果顺序(如从大到小、首字母从Z到A)错误就把他们交换过来。 走访元素的工作是重复...
Java集合框架提供两种主要的排序方式:`Collections.sort()`方法和流API的`sorted()`方法。 - `Collections.sort()`:适用于`List`接口的实现类,如`ArrayList`和`LinkedList`。它直接在原地对列表进行排序,无需...
根据给定文件的信息,我们可以总结出关于Java 8排序算法的相关知识点。这些知识点主要围绕着不同的排序算法展开,包括直接插入排序、希尔排序、选择排序、冒泡排序、快速排序、堆排序、归并排序以及基数排序等。下面...
在Java编程语言中,排序是数据处理中非常基础且重要的...在Java中,还可以使用内置的`Arrays.sort()`方法,它实现了TimSort算法,是一种混合排序,结合了插入排序和归并排序的优点,既保证了稳定性,又具有较高的效率。
Java汉字笔画排序是一种在处理汉字时按照汉字的笔画数量进行排序的技术。这个主题主要涉及到计算机科学中的数据结构和算法应用,特别是排序算法。在中文环境中,有时我们需要按照汉字的笔画数量来对汉字进行排序,这...