8种排序之间的关系:
1, 直接插入排序
(1)基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排
好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数
也是排好顺序的。如此反复循环,直到全部排好顺序。
(2)实例
(3)用java实现
- package com.njue;
- public class insertSort {
- public insertSort(){
- inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
- int temp=0;
- for(int i=1;i<a.length;i++){
- int j=i-1;
- temp=a[i];
- for(;j>=0&&temp<a[j];j--){
- a[j+1]=a[j]; //将大于temp的值整体后移一个单位
- }
- a[j+1]=temp;
- }
- for(int i=0;i<a.length;i++)
- System.out.println(a[i]);
- }
- }
package com.njue; public class insertSort { public insertSort(){ inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; int temp=0; for(int i=1;i<a.length;i++){ int j=i-1; temp=a[i]; for(;j>=0&&temp<a[j];j--){ a[j+1]=a[j]; //将大于temp的值整体后移一个单位 } a[j+1]=temp; } for(int i=0;i<a.length;i++) System.out.println(a[i]); } }
2, 希尔排序(最小增量排序)
(1)基本思想:算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。当增量减到1时,进行直接插入排序后,排序完成。
(2)实例:
(3)用java实现
- public class shellSort {
- public shellSort(){
- int a[]={1,54,6,3,78,34,12,45,56,100};
- double d1=a.length;
- int temp=0;
- while(true){
- d1= Math.ceil(d1/2);
- int d=(int) d1;
- for(int x=0;x<d;x++){
- for(int i=x+d;i<a.length;i+=d){
- int j=i-d;
- temp=a[i];
- for(;j>=0&&temp<a[j];j-=d){
- a[j+d]=a[j];
- }
- a[j+d]=temp;
- }
- }
- if(d==1)
- break;
- }
- for(int i=0;i<a.length;i++)
- System.out.println(a[i]);
- }
- }
public class shellSort { public shellSort(){ int a[]={1,54,6,3,78,34,12,45,56,100}; double d1=a.length; int temp=0; while(true){ d1= Math.ceil(d1/2); int d=(int) d1; for(int x=0;x<d;x++){ for(int i=x+d;i<a.length;i+=d){ int j=i-d; temp=a[i]; for(;j>=0&&temp<a[j];j-=d){ a[j+d]=a[j]; } a[j+d]=temp; } } if(d==1) break; } for(int i=0;i<a.length;i++) System.out.println(a[i]); } }
3.简单选择排序
(1)基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;
然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。
(2)实例:
(3)用java实现
- public class selectSort {
- public selectSort(){
- int a[]={1,54,6,3,78,34,12,45};
- int position=0;
- for(int i=0;i<a.length;i++){
- int j=i+1;
- position=i;
- int temp=a[i];
- for(;j<a.length;j++){
- if(a[j]<temp){
- temp=a[j];
- position=j;
- }
- }
- a[position]=a[i];
- a[i]=temp;
- }
- for(int i=0;i<a.length;i++)
- System.out.println(a[i]);
- }
- }
public class selectSort { public selectSort(){ int a[]={1,54,6,3,78,34,12,45}; int position=0; for(int i=0;i<a.length;i++){ int j=i+1; position=i; int temp=a[i]; for(;j<a.length;j++){ if(a[j]<temp){ temp=a[j]; position=j; } } a[position]=a[i]; a[i]=temp; } for(int i=0;i<a.length;i++) System.out.println(a[i]); } }
4, 堆排序
(1)基本思想:堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。
(2)实例:
初始序列:46,79,56,38,40,84
建堆:
交换,从堆中踢出最大数
依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。
(3)用java实现
- import java.util.Arrays;
- public class HeapSort {
- int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
- public HeapSort(){
- heapSort(a);
- }
- public void heapSort(int[] a){
- System.out.println("开始排序");
- int arrayLength=a.length;
- //循环建堆
- for(int i=0;i<arrayLength-1;i++){
- //建堆
- buildMaxHeap(a,arrayLength-1-i);
- //交换堆顶和最后一个元素
- swap(a,0,arrayLength-1-i);
- System.out.println(Arrays.toString(a));
- }
- }
- private void swap(int[] data, int i, int j) {
- // TODO Auto-generated method stub
- int tmp=data[i];
- data[i]=data[j];
- data[j]=tmp;
- }
- //对data数组从0到lastIndex建大顶堆
- private void buildMaxHeap(int[] data, int lastIndex) {
- // TODO Auto-generated method stub
- //从lastIndex处节点(最后一个节点)的父节点开始
- for(int i=(lastIndex-1)/2;i>=0;i--){
- //k保存正在判断的节点
- int k=i;
- //如果当前k节点的子节点存在
- while(k*2+1<=lastIndex){
- //k节点的左子节点的索引
- int biggerIndex=2*k+1;
- //如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在
- if(biggerIndex<lastIndex){
- //若果右子节点的值较大
- if(data[biggerIndex]<data[biggerIndex+1]){
- //biggerIndex总是记录较大子节点的索引
- biggerIndex++;
- }
- }
- //如果k节点的值小于其较大的子节点的值
- if(data[k]<data[biggerIndex]){
- //交换他们
- swap(data,k,biggerIndex);
- //将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值
- k=biggerIndex;
- }else{
- break;
- }
- }
- }
- }
- }
import java.util.Arrays; public class HeapSort { int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; public HeapSort(){ heapSort(a); } public void heapSort(int[] a){ System.out.println("开始排序"); int arrayLength=a.length; //循环建堆 for(int i=0;i<arrayLength-1;i++){ //建堆 buildMaxHeap(a,arrayLength-1-i); //交换堆顶和最后一个元素 swap(a,0,arrayLength-1-i); System.out.println(Arrays.toString(a)); } } private void swap(int[] data, int i, int j) { // TODO Auto-generated method stub int tmp=data[i]; data[i]=data[j]; data[j]=tmp; } //对data数组从0到lastIndex建大顶堆 private void buildMaxHeap(int[] data, int lastIndex) { // TODO Auto-generated method stub //从lastIndex处节点(最后一个节点)的父节点开始 for(int i=(lastIndex-1)/2;i>=0;i--){ //k保存正在判断的节点 int k=i; //如果当前k节点的子节点存在 while(k*2+1<=lastIndex){ //k节点的左子节点的索引 int biggerIndex=2*k+1; //如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在 if(biggerIndex<lastIndex){ //若果右子节点的值较大 if(data[biggerIndex]<data[biggerIndex+1]){ //biggerIndex总是记录较大子节点的索引 biggerIndex++; } } //如果k节点的值小于其较大的子节点的值 if(data[k]<data[biggerIndex]){ //交换他们 swap(data,k,biggerIndex); //将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值 k=biggerIndex; }else{ break; } } } } }
5.冒泡排序
(1)基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。
(2)实例:
(3)用java实现
- public class bubbleSort {
- public bubbleSort(){
- int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
- int temp=0;
- for(int i=0;i<a.length-1;i++){
- for(int j=0;j<a.length-1-i;j++){
- if(a[j]>a[j+1]){
- temp=a[j];
- a[j]=a[j+1];
- a[j+1]=temp;
- }
- }
- }
- for(int i=0;i<a.length;i++)
- System.out.println(a[i]);
- }
- }
public class bubbleSort { public bubbleSort(){ int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; int temp=0; for(int i=0;i<a.length-1;i++){ for(int j=0;j<a.length-1-i;j++){ if(a[j]>a[j+1]){ temp=a[j]; a[j]=a[j+1]; a[j+1]=temp; } } } for(int i=0;i<a.length;i++) System.out.println(a[i]); } }
6.快速排序
(1)基本思想:选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。
(2)实例:
(3)用java实现
- public class quickSort {
- int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
- public quickSort(){
- quick(a);
- for(int i=0;i<a.length;i++)
- System.out.println(a[i]);
- }
- public int getMiddle(int[] list, int low, int high) {
- int tmp = list[low]; //数组的第一个作为中轴
- while (low < high) {
- while (low < high && list[high] >= tmp) {
- high--;
- }
- list[low] = list[high]; //比中轴小的记录移到低端
- while (low < high && list[low] <= tmp) {
- low++;
- }
- list[high] = list[low]; //比中轴大的记录移到高端
- }
- list[low] = tmp; //中轴记录到尾
- return low; //返回中轴的位置
- }
- public void _quickSort(int[] list, int low, int high) {
- if (low < high) {
- int middle = getMiddle(list, low, high); //将list数组进行一分为二
- _quickSort(list, low, middle - 1); //对低字表进行递归排序
- _quickSort(list, middle + 1, high); //对高字表进行递归排序
- }
- }
- public void quick(int[] a2) {
- if (a2.length > 0) { //查看数组是否为空
- _quickSort(a2, 0, a2.length - 1);
- }
- }
- }
public class quickSort { int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; public quickSort(){ quick(a); for(int i=0;i<a.length;i++) System.out.println(a[i]); } public int getMiddle(int[] list, int low, int high) { int tmp = list[low]; //数组的第一个作为中轴 while (low < high) { while (low < high && list[high] >= tmp) { high--; } list[low] = list[high]; //比中轴小的记录移到低端 while (low < high && list[low] <= tmp) { low++; } list[high] = list[low]; //比中轴大的记录移到高端 } list[low] = tmp; //中轴记录到尾 return low; //返回中轴的位置 } public void _quickSort(int[] list, int low, int high) { if (low < high) { int middle = getMiddle(list, low, high); //将list数组进行一分为二 _quickSort(list, low, middle - 1); //对低字表进行递归排序 _quickSort(list, middle + 1, high); //对高字表进行递归排序 } } public void quick(int[] a2) { if (a2.length > 0) { //查看数组是否为空 _quickSort(a2, 0, a2.length - 1); } } }
7、归并排序
(1)基本排序:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
(2)实例:
(3)用java实现
- import java.util.Arrays;
- public class mergingSort {
- int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
- public mergingSort(){
- sort(a,0,a.length-1);
- for(int i=0;i<a.length;i++)
- System.out.println(a[i]);
- }
- public void sort(int[] data, int left, int right) {
- // TODO Auto-generated method stub
- if(left<right){
- //找出中间索引
- int center=(left+right)/2;
- //对左边数组进行递归
- sort(data,left,center);
- //对右边数组进行递归
- sort(data,center+1,right);
- //合并
- merge(data,left,center,right);
- }
- }
- public void merge(int[] data, int left, int center, int right) {
- // TODO Auto-generated method stub
- int [] tmpArr=new int[data.length];
- int mid=center+1;
- //third记录中间数组的索引
- int third=left;
- int tmp=left;
- while(left<=center&&mid<=right){
- //从两个数组中取出最小的放入中间数组
- if(data[left]<=data[mid]){
- tmpArr[third++]=data[left++];
- }else{
- tmpArr[third++]=data[mid++];
- }
- }
- //剩余部分依次放入中间数组
- while(mid<=right){
- tmpArr[third++]=data[mid++];
- }
- while(left<=center){
- tmpArr[third++]=data[left++];
- }
- //将中间数组中的内容复制回原数组
- while(tmp<=right){
- data[tmp]=tmpArr[tmp++];
- }
- System.out.println(Arrays.toString(data));
- }
- }
import java.util.Arrays; public class mergingSort { int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; public mergingSort(){ sort(a,0,a.length-1); for(int i=0;i<a.length;i++) System.out.println(a[i]); } public void sort(int[] data, int left, int right) { // TODO Auto-generated method stub if(left<right){ //找出中间索引 int center=(left+right)/2; //对左边数组进行递归 sort(data,left,center); //对右边数组进行递归 sort(data,center+1,right); //合并 merge(data,left,center,right); } } public void merge(int[] data, int left, int center, int right) { // TODO Auto-generated method stub int [] tmpArr=new int[data.length]; int mid=center+1; //third记录中间数组的索引 int third=left; int tmp=left; while(left<=center&&mid<=right){ //从两个数组中取出最小的放入中间数组 if(data[left]<=data[mid]){ tmpArr[third++]=data[left++]; }else{ tmpArr[third++]=data[mid++]; } } //剩余部分依次放入中间数组 while(mid<=right){ tmpArr[third++]=data[mid++]; } while(left<=center){ tmpArr[third++]=data[left++]; } //将中间数组中的内容复制回原数组 while(tmp<=right){ data[tmp]=tmpArr[tmp++]; } System.out.println(Arrays.toString(data)); } }
8、基数排序
(1)基本思想:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。
(2)实例:
(3)用java实现
- import java.util.ArrayList;
- import java.util.List;
- public class radixSort {
- int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,101,56,17,18,23,34,15,35,25,53,51};
- public radixSort(){
- sort(a);
- for(int i=0;i<a.length;i++)
- System.out.println(a[i]);
- }
- public void sort(int[] array){
- //首先确定排序的趟数;
- int max=array[0];
- for(int i=1;i<array.length;i++){
- if(array[i]>max){
- max=array[i];
- }
- }
- int time=0;
- //判断位数;
- while(max>0){
- max/=10;
- time++;
- }
- //建立10个队列;
- List<ArrayList> queue=new ArrayList<ArrayList>();
- for(int i=0;i<10;i++){
- ArrayList<Integer> queue1=new ArrayList<Integer>();
- queue.add(queue1);
- }
- //进行time次分配和收集;
- for(int i=0;i<time;i++){
- //分配数组元素;
- for(int j=0;j<array.length;j++){
- //得到数字的第time+1位数;
- int x=array[j]%(int)Math.pow(10, i+1)/(int)Math.pow(10, i);
- ArrayList<Integer> queue2=queue.get(x);
- queue2.add(array[j]);
- queue.set(x, queue2);
- }
- int count=0;//元素计数器;
- //收集队列元素;
- for(int k=0;k<10;k++){
- while(queue.get(k).size()>0){
- ArrayList<Integer> queue3=queue.get(k);
- array[count]=queue3.get(0);
- queue3.remove(0);
- count++;
- }
- }
- }
- }
- }
相关推荐
TinyYolo2实时视频流物体检测ONNX模型 运行 ONNX 模型,并结合 OpenCV 进行图像处理。具体流程包括: 1. 加载并初始化 ONNX 模型。 2. 从摄像头捕获实时视频流。 3. 对每一帧图像进行模型推理,生成物体检测结果。 4. 在界面上绘制检测结果的边界框和标签。
chromedriver-linux64-134.0.6998.23(Beta).zip
Web开发:ABP框架4-DDD四层架构的详解
chromedriver-linux64-135.0.7029.0(Canary).zip
实现人脸识别的考勤门禁系统可以分为以下步骤: 1. 采集人脸图像数据集:首先需要采集员工的人脸图像数据集,包括正面、侧面等多个角度的图像。可以使用MATLAB中的图像采集工具或者第三方库进行采集。 2. 预处理人脸图像数据:对采集到的人脸图像数据进行预处理,包括人脸检测、人脸对齐、人脸裁剪等操作。MATLAB提供了相关的图像处理工具箱,可以用于实现这些处理步骤。 3. 特征提取与特征匹配:使用人脸识别算法提取人脸图像的特征,比如使用人脸识别中常用的特征提取算法如Eigenfaces、Fisherfaces或者基于深度学习的算法。然后将员工的人脸数据与数据库中的人脸数据进行匹配,判断是否为注册员工。 4. 考勤记录与门禁控制:如果人脸匹配成功,系统可以记录员工的考勤时间,并且控制门禁系统进行开启。MATLAB可以与外部设备进行通信,实现门禁控制以及考勤记录功能。
yugy
企业IT治理体系规划.pptx
项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用
基于多目标粒子群算法的冷热电联供综合能源系统优化调度与运行策略分析,基于多目标粒子群算法的冷热电联供综合能源系统优化调度与运行策略分析,MATLAB代码:基于多目标粒子群算法冷热电联供综合能源系统运行优化 关键词:综合能源 冷热电三联供 粒子群算法 多目标优化 参考文档:《基于多目标算法的冷热电联供型综合能源系统运行优化》 仿真平台:MATLAB 平台采用粒子群实现求解 优势:代码注释详实,适合参考学习,非目前烂大街的版本,程序非常精品,请仔细辨识 主要内容:代码构建了含冷、热、电负荷的冷热电联供型综合能源系统优化调度模型,考虑了燃气轮机、电制冷机、锅炉以及风光机组等资源,并且考虑与上级电网的购电交易,综合考虑了用户购电购热冷量的成本、CCHP收益以及成本等各种因素,从而实现CCHP系统的经济运行,求解采用的是MOPSO算法(多目标粒子群算法),求解效果极佳,具体可以看图 ,核心关键词: 综合能源系统; 冷热电三联供; 粒子群算法; 多目标优化; MOPSO算法; 优化调度模型; 燃气轮机; 电制冷机; 锅炉; 风光机组; 上级电网购售电交易。,基于多目标粒子群算法的CCHP综合
DSP28379D串口升级方案:单核双核升级与Boot优化,C#上位机开发串口通信方案,DSP28379D串口升级方案:单核双核升级与Boot优化,C#上位机开发实现串口通信,DSP28379D串口升级方案 单核双核升级,boot升级,串口方案。 上位机用c#开发。 ,DSP28379D; 串口升级方案; 单核双核升级; boot升级; 上位机C#开发,DSP28379D串口双核升级方案:Boot串口升级技术使用C#上位机开发
项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用
基于PLC的双层自动门控制:光电传感触发,有序开关与延时功能实现,附程序、画面及参考文档。,基于PLC的双层自动门控制系统:精准控制,保障无尘环境;门间联动,智能安防新体验。,基于plc的双层自动门控制系统,全部采用博途仿真完成,提供程序,画面,参考文档,详情见图。 实现功能(详见上方演示视频): ① 某房间要求尽可能地保持无尘,在通道上设置了两道电动门,门1和门2,可通过光电传感器自动完成门的打开和关闭。 门1和门2 不能同时打开。 ② 第 1 道门(根据出入方向不同,可能是门 1 或门 2),是由在通道外的开门者通过按开门按钮打开的,而第 2 道门(根据出入方向不同,可能是门 1 或门 2 )则是在打开的第 1 道门关闭后自动地打开的(也可以由通道内的人按开门按钮来打开第2 道门)。 这两道门都是在门开后,经过 3s 的延时而自动关闭的。 ③ 在门关闭期间,如果对应的光电传感器的信号被遮断,则门立即自动打开。 如果在门外或者在门内的开门者按对应的开门按钮时,立即打开。 ④ 出于安全方面的考虑,如果在通道内的某个人经过光电传感器时,对应的门已经打开,则通道外的开门者可以不按开门按钮。
项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用
DeepSeek+DeepResearch——让科研像聊天一样简单 (1)DeepSeek如何做数据分析? (2)DeepSeek如何分析文件内容? (3)DeepSeek如何进行数据挖掘? (4)DeepSeek如何进行科学研究? (5)DeepSeek如何写综述? (6)DeepSeek如何进行数据可视化? (7)DeepSeek如何写作润色? (8)DeepSeek如何中英文互译? (9)DeepSeek如何做降重? (10)DeepSeek论文参考文献指令 (11)DeepSeek基础知识。
项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用
1、文件内容:jdepend-demo-2.9.1-10.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/jdepend-demo-2.9.1-10.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊
项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行;功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用
内容概要:本文档详细介绍了如何利用 MATLAB 实现鲸鱼优化算法 (WOA) 和长短期记忆网络 (LSTM) 相结合的技术——WOA-LSTM,在数据分类和预测领域的应用。文章首先概述了LSTM在网络训练中超参数依赖的问题以及WOA作为一种新颖的全局优化算法的优势。接着阐述了该项目的研究背景、目的及其重要意义,并深入讨论了项目面临的六大主要挑战,从模型优化到超参数空间管理。文档特别强调WOA-LSTM融合所带来的性能提升、降低计算复杂度的能力及其实现自动化的超参数优化流程。除此之外,文中展示了模型的应用广泛性,覆盖了从金融市场的股票预测到智能制造业的各种实际场景,并提供了具体的模型架构细节和代码实例,以帮助理解模型的工作原理和技术要点。 适合人群:具有一定编程技能的研究人员、工程师和科学家们,尤其是对深度学习技术和机器学习感兴趣的专业人士。 使用场景及目标:该文档的目标是向用户传授使用MATLAB实现WOA-LSTM进行复杂数据分类和预测的方法论,旨在指导读者理解和掌握如何利用WOA进行超参数寻优,从而改善LSTM网络性能。 其他说明:通过阅读这份文档,使用者不仅能够获得有关WOA-LSTM技术的具体实现方式的知识,而且还可以获取关于项目规划和实际部署过程中的宝贵经验。
tomcat安装及配置教程.md
**MATLAB下微电网两阶段鲁棒优化经济调度策略:基于CCG算法与min-max-min结构求解**,MATLAB微电网两阶段鲁棒优化经济调度程序:构建min-max-min结构模型,实现恶劣场景下的低成本调度,灵活调整调度保守性,利用列约束生成算法求解,MATLAB代码:微电网两阶段鲁棒优化经济调度程序 关键词:微网优化调度 两阶段鲁棒 CCG算法 经济调度 参考文档:《微电网两阶段鲁棒优化经济调度方法》 仿真平台:MATLAB YALMIP+CPLEX 优势:代码注释详实,出图效果非常好(具体看图),非目前烂大街版本,请仔细辨识 主要内容:构建了微网两阶段鲁棒调度模型,建立了min-max-min 结构的两阶段鲁棒优化模型,可得到最恶劣场景下运行成本最低的调度方案。 模型中考虑了储能、需求侧负荷及可控分布式电源等的运行约束和协调控制,并引入了不确定性调节参数,可灵活调整调度方案的保守性。 基于列约束生成算法和强对偶理论,可将原问题分解为具有混合整数线性特征的主问题和子问题进行交替求解,从而得到原问题的最优解。 最终通过仿真分析验证了所建模型和求解算法的有效性,具体内容可自行查