`

Leetcode - House Robber II

 
阅读更多

Note: This is an extension of House Robber.

After robbing those houses on that street, the thief has found himself a new place for his thievery so that he will not get too much attention. This time, all houses at this place are arranged in a circle. That means the first house is the neighbor of the last one. Meanwhile, the security system for these houses remain the same as for those in the previous street.

Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

[balabala]  数组表示环后,根据题意,最后一个元素不能和第一个元素同时参与计算,为此可使用两个dp数组将题目重新简化为非环的House Robber, dp[] 用于计算0 号 房子 到 n - 2 号房子能抢到的最大金额,dp2[]用于计算 1号房子 到 n - 1号房子能抢到的最大金额,最后取两个dp数组最后元素的最大值。

 

   // method 1
    public int rob(int[] nums) {
        if (nums == null || nums.length == 0)
            return 0;
        int n = nums.length;
        if (n == 1)
            return nums[0];
        if (n == 2)
            return Math.max(nums[0], nums[1]);
        int[] dp = new int[n - 1];
        int[] dp2 = new int[n - 1];
        dp[0] = nums[0];
        dp[1] = Math.max(dp[0], nums[1]);
        dp2[0] = nums[n - 1];
        dp2[1] = Math.max(dp2[0], nums[0]);
        for (int i = 2; i < n - 1; i++) {
            dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1]);
        }
        for (int i = 1; i < n - 2; i++) {
            dp2[i + 1] = Math.max(dp2[i - 1] + nums[i], dp2[i]);
        }
        return Math.max(dp[n - 2], dp2[n - 2]);
    }

    // method 2
    // 变成环形后,第一家和最后一家不能同时取,因此分两种情况讨论,
    // 调用原House Robber中的方法两次, 取较大值
    public int rob2(int[] nums) {
        if (nums == null || nums.length == 0)
            return 0;
        int n = nums.length;
        if (n == 1)
            return nums[0];
        return Math.max(robLinear(nums, 0, n - 2), robLinear(nums, 1, n - 1));
    }
    
    private int robLinear(int[] nums, int start, int end) {
        int[] dp = new int[end - start + 2];
        int n = dp.length;
        dp[0] = 0;
        dp[1] = nums[start];
        for (int i = start + 1; i <= end; i++) {
            int k = i - start + 1;
            dp[k] = Math.max(dp[k - 1], dp[k - 2] + nums[i]);
        }
        return dp[n - 1];
    }

 

 

分享到:
评论

相关推荐

Global site tag (gtag.js) - Google Analytics