鉴于rsa加密的重要性和相关源代码的匮乏,经过整理特此贴出。需要下载bcprov-jdk14-123.jar。
import javax.crypto.Cipher;
import java.security.*;
import java.security.spec.RSAPublicKeySpec;
import java.security.spec.RSAPrivateKeySpec;
import java.security.spec.InvalidKeySpecException;
import java.security.interfaces.RSAPrivateKey;
import java.security.interfaces.RSAPublicKey;
import java.io.*;
import java.math.BigInteger;
/**
* RSA 工具类。提供加密,解密,生成密钥对等方法。
* 需要到http://www.bouncycastle.org下载bcprov-jdk14-123.jar。
*
*/
public class RSAUtil {
/**
* 生成密钥对
* @return KeyPair
* @throws EncryptException
*/
public static KeyPair generateKeyPair() throws EncryptException {
try {
KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance("RSA",
new org.bouncycastle.jce.provider.BouncyCastleProvider());
final int KEY_SIZE = 1024;//没什么好说的了,这个值关系到块加密的大小,可以更改,但是不要太大,否则效率会低
keyPairGen.initialize(KEY_SIZE, new SecureRandom());
KeyPair keyPair = keyPairGen.genKeyPair();
return keyPair;
} catch (Exception e) {
throw new EncryptException(e.getMessage());
}
}
/**
* 生成公钥
* @param modulus
* @param publicExponent
* @return RSAPublicKey
* @throws EncryptException
*/
public static RSAPublicKey generateRSAPublicKey(byte[] modulus, byte[] publicExponent) throws EncryptException {
KeyFactory keyFac = null;
try {
keyFac = KeyFactory.getInstance("RSA", new org.bouncycastle.jce.provider.BouncyCastleProvider());
} catch (NoSuchAlgorithmException ex) {
throw new EncryptException(ex.getMessage());
}
RSAPublicKeySpec pubKeySpec = new RSAPublicKeySpec(new BigInteger(modulus), new BigInteger(publicExponent));
try {
return (RSAPublicKey) keyFac.generatePublic(pubKeySpec);
} catch (InvalidKeySpecException ex) {
throw new EncryptException(ex.getMessage());
}
}
/**
* 生成私钥
* @param modulus
* @param privateExponent
* @return RSAPrivateKey
* @throws EncryptException
*/
public static RSAPrivateKey generateRSAPrivateKey(byte[] modulus, byte[] privateExponent) throws EncryptException {
KeyFactory keyFac = null;
try {
keyFac = KeyFactory.getInstance("RSA", new org.bouncycastle.jce.provider.BouncyCastleProvider());
} catch (NoSuchAlgorithmException ex) {
throw new EncryptException(ex.getMessage());
}
RSAPrivateKeySpec priKeySpec = new RSAPrivateKeySpec(new BigInteger(modulus), new BigInteger(privateExponent));
try {
return (RSAPrivateKey) keyFac.generatePrivate(priKeySpec);
} catch (InvalidKeySpecException ex) {
throw new EncryptException(ex.getMessage());
}
}
/**
* 加密
* @param key 加密的密钥
* @param data 待加密的明文数据
* @return 加密后的数据
* @throws EncryptException
*/
public static byte[] encrypt(Key key, byte[] data) throws EncryptException {
try {
Cipher cipher = Cipher.getInstance("RSA", new org.bouncycastle.jce.provider.BouncyCastleProvider());
cipher.init(Cipher.ENCRYPT_MODE, key);
int blockSize = cipher.getBlockSize();//获得加密块大小,如:加密前数据为128个byte,而key_size=1024 加密块大小为127 byte,加密后为128个byte;因此共有2个加密块,第一个127 byte第二个为1个byte
int outputSize = cipher.getOutputSize(data.length);//获得加密块加密后块大小
int leavedSize = data.length % blockSize;
int blocksSize = leavedSize != 0 ? data.length / blockSize + 1 : data.length / blockSize;
byte[] raw = new byte[outputSize * blocksSize];
int i = 0;
while (data.length - i * blockSize > 0) {
if (data.length - i * blockSize > blockSize)
cipher.doFinal(data, i * blockSize, blockSize, raw, i * outputSize);
else
cipher.doFinal(data, i * blockSize, data.length - i * blockSize, raw, i * outputSize);
//这里面doUpdate方法不可用,查看源代码后发现每次doUpdate后并没有什么实际动作除了把byte[]放到ByteArrayOutputStream中,而最后doFinal的时候才将所有的byte[]进行加密,可是到了此时加密块大小很可能已经超出了OutputSize所以只好用dofinal方法。
i++;
}
return raw;
} catch (Exception e) {
throw new EncryptException(e.getMessage());
}
}
/**
* 解密
* @param key 解密的密钥
* @param raw 已经加密的数据
* @return 解密后的明文
* @throws EncryptException
*/
public static byte[] decrypt(Key key, byte[] raw) throws EncryptException {
try {
Cipher cipher = Cipher.getInstance("RSA", new org.bouncycastle.jce.provider.BouncyCastleProvider());
cipher.init(cipher.DECRYPT_MODE, key);
int blockSize = cipher.getBlockSize();
ByteArrayOutputStream bout = new ByteArrayOutputStream(64);
int j = 0;
while (raw.length - j * blockSize > 0) {
bout.write(cipher.doFinal(raw, j * blockSize, blockSize));
j++;
}
return bout.toByteArray();
} catch (Exception e) {
throw new EncryptException(e.getMessage());
}
}
/**
*
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
File file = new File("test.html");
FileInputStream in = new FileInputStream(file);
ByteArrayOutputStream bout = new ByteArrayOutputStream();
byte[] tmpbuf = new byte[1024];
int count = 0;
while ((count = in.read(tmpbuf)) != -1) {
bout.write(tmpbuf, 0, count);
tmpbuf = new byte[1024];
}
in.close();
byte[] orgData = bout.toByteArray();
KeyPair keyPair = RSAUtil.generateKeyPair();
RSAPublicKey pubKey = (RSAPublicKey) keyPair.getPublic();
RSAPrivateKey priKey = (RSAPrivateKey) keyPair.getPrivate();
byte[] pubModBytes = pubKey.getModulus().toByteArray();
byte[] pubPubExpBytes = pubKey.getPublicExponent().toByteArray();
byte[] priModBytes = priKey.getModulus().toByteArray();
byte[] priPriExpBytes = priKey.getPrivateExponent().toByteArray();
RSAPublicKey recoveryPubKey = RSAUtil.generateRSAPublicKey(pubModBytes,pubPubExpBytes);
RSAPrivateKey recoveryPriKey = RSAUtil.generateRSAPrivateKey(priModBytes,priPriExpBytes);
byte[] raw = RSAUtil.encrypt(priKey, orgData);
file = new File("encrypt_result.dat");
OutputStream out = new FileOutputStream(file);
out.write(raw);
out.close();
byte[] data = RSAUtil.decrypt(recoveryPubKey, raw);
file = new File("decrypt_result.html");
out = new FileOutputStream(file);
out.write(data);
out.flush();
out.close();
}
}
加密可以用公钥,解密用私钥;或者加密用私钥。通常非对称加密是非常消耗资源的,因此可以对大数据用对称加密如:des,而对其对称密钥进行非对称加密,这样既保证了数据的安全,还能保证效率。
分享到:
相关推荐
RSA算法是一种非对称加密算法,由Ron Rivest、Adi Shamir和Leonard Adleman在1977年提出,因其发明者的名字首字母而得名。在VC++中实现RSA算法需要理解其核心原理,包括大整数运算、素数检测、欧拉函数以及模逆运算...
RSA算法是一种非对称加密算法,由Ron Rivest、Adi Shamir和Leonard Adleman在1977年提出,是目前最广泛使用的公钥加密算法。它结合了大整数因子分解的数学难题,为数据传输提供了强大的安全保护。在此RAR压缩包中,...
RSA算法是一种非对称加密算法,由Ron Rivest、Adi Shamir和Leonard Adleman在1977年提出,因此得名RSA。这种算法在信息安全领域扮演着重要角色,广泛应用于数据加密、数字签名和密钥交换等领域。 在RSA算法中,主要...
### RSA算法实现报告 #### 实验环境 - **硬件配置**:处理器:Intel(R) Core(TM) i5-2430M CPU @ 2.40GHz (4CPUs), ~2.4GHz;内存:2048MB RAM - **软件工具**: - 操作系统:Windows 7 旗舰版 - 开发工具:...
RSA算法加解密 RSA算法是第一个既能用于数据加密也能用于数字签名的算法。它易于理解和操作,也很流行。算法的名字以发明者的名字命名:Ron Rivest, Adi Shamir 和 Leonard Adleman。但RSA 的安全性一直未能得到...
RSA算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但是想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥。RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。...
RSA算法的纯Python实现,压缩包内共4个文件,分别是 1、大整数的运算库(当然不是算加减乘除的,这个python本身就有)。这个库是计算乘模运算,幂模运算(蒙哥马利算法),最大公约数算法及扩展最大公约数算法(扩展...
RSA算法是一种非对称加密算法,由Ron Rivest、Adi Shamir和Leonard Adleman在1977年提出,是现代密码学的基石之一。它的主要特点是使用一对密钥,即公钥和私钥,来进行加密和解密。在C语言中实现RSA算法需要理解其...
RSA算法是一种非对称加密算法,它在信息安全领域扮演着重要的角色,特别是在数据加密和数字签名方面。由Ron Rivest、Adi Shamir和Leonard Adleman在1977年提出,因此得名RSA。这个算法基于两个数学难题:大整数因子...
RSA算法是一种非对称加密算法,它在信息安全领域扮演着重要的角色,特别是在数据加密和数字签名方面。由Ron Rivest、Adi Shamir和Leonard Adleman在1977年提出,RSA的名字就是他们三人姓氏的首字母组合。 实验目的...
RSA算法是一种非对称加密算法,由Ron Rivest、Adi Shamir和Leonard Adleman在1977年提出,因此得名RSA。这种算法基于大整数因子分解的困难性,是现代密码学的基石之一。在C语言中实现RSA算法,可以帮助我们理解其...
在提供的压缩文件"20073132040295"中,可能包含了一个实现读取硬盘序列号的程序或脚本,以及一个使用RSA算法加密或解密的示例代码。通过学习这些内容,开发者可以更好地理解和掌握这两个重要的IT概念,并在实际项目...
**Delphi中的经典RSA算法源码示例** RSA(Rivest-Shamir-Adleman)是一种非对称加密算法,广泛应用于信息安全领域,包括数据加密、数字签名等。在Delphi编程环境中,理解并实现RSA算法对于开发安全相关的应用至关...
RSA算法是一种著名的非对称加密技术,由Ron Rivest、Adi Shamir和Leonard Adleman在1977年提出,因此得名RSA。它基于大整数因子分解的困难性,使得只有拥有正确密钥的人才能解密信息。在本文中,我们将深入探讨如何...
这里我们聚焦于一个基于RSA算法的数字签名系统,该系统已用C#编程语言实现。RSA算法是公钥密码学中的基石,而数字签名则是其在确保网络安全中的应用之一。 RSA算法是由Ron Rivest、Adi Shamir和Leonard Adleman三位...
### RSA算法试验报告知识点概述 #### 一、引言与背景 随着信息技术的快速发展和互联网应用的日益广泛,数据安全和个人隐私保护变得尤为重要。在这一背景下,加密技术成为了确保信息在网络上传输过程中不被非法窃取...
第四章的实验主要聚焦在基于RSA算法的加密聊天程序上,这是非对称加密技术的一种典型应用。RSA算法,以其三位发明者Ron Rivest、Adi Shamir和Leonard Adleman的名字首字母命名,是一种公钥加密算法,它利用大整数...
PKCS(Public-Key Cryptography Standards)是由RSA安全公司制定的一系列标准,其中PKCS#1是关于RSA算法的标准,详细定义了RSA算法的使用方式和数据格式。 在PKCS#1 v2.1版本中,主要涵盖了RSA算法的实现细节,包括...
在SSL标准、智能IC卡、网络安全产品等方面,RSA算法的应用为数据传输提供了保护,例如SSL协议就依赖于RSA算法来确保浏览器和服务器之间的通信安全。 总的来说,RSA算法的重要性不仅体现在其算法本身的创新和安全性...
RSA算法是一种非对称加密算法,由Ron Rivest、Adi Shamir和Leonard Adleman在1977年提出,因此得名RSA。这种算法在信息安全领域有着广泛的应用,如数字签名、数据加密和密钥交换等。在本演示中,我们将深入探讨RSA...