在计算机程序中,数据的位是可以操作的最小数据单位,理论上可以用“位运算”来完成所有的运算和操作。一般的位操作是用来控制硬件的,或者做数据变换使用,但是,灵活的位操作可以有效地提高程序运行的效率。C语言提供了位运算的功能, 这使得C语言也能像汇编语言一样用来编写系统程序。
位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&5可写算式如下: 00001001 (9的二进制补码)&00000101 (5的二进制补码)
00000001 (1的二进制补码)可见9&5=1。
按位与运算通常用来对某些位清0或保留某些位。例如把a 的高八位清 0 , 保留低八位, 可作 a&255 运算 ( 255 的二进制数为0000000011111111)。
应用:
a. 清零特定位 (mask中特定位置0,其它位为1,s=s&mask)
b. 取某数中指定位 (mask中特定位置1,其它位为0,s=s&mask)
2. 按位或运算 按位或运算符“|”是双目运算符。其功能是参与运算的两数各对应的二进位相或。只要对应的二个二进位有一个为1时,结果位就为1。参与运算的两个数均以补码出现。
例如:9|5可写算式如下:
00001001|00000101
00001101 (十进制为13)可见9|5=13
应用:
常用来将源操作数某些位置1,其它位不变。 (mask中特定位置1,其它位为0 s=s|mask)
3. 按位异或运算 按位异或运算符“^”是双目运算符。其功能是参与运算的两数各对应的二进位相异或,当两对应的二进位相异时,结果为1。参与运算数仍以补码出现,例如9^5可写成算式如下:
00001001^00000101 00001100 (十进制为12)
应用:
a. 使特定位的值取反 (mask中特定位置1,其它位为0 s=s^mask)
b. 不引入第三变量,交换两个变量的值 (设 a=a1,b=b1)
目 标 操 作 操作后状态
a=a1^b1 a=a^b a=a1^b1,b=b1
b=a1^b1^b1 b=a^b a=a1^b1,b=a1
a=b1^a1^a1 a=a^b a=b1,b=a1
4. 求反运算 求反运算符~为单目运算符,具有右结合性。 其功能是对参与运算的数的各二进位按位求反。例如~9的运算为: ~(0000000000001001)结果为:1111111111110110
5. 左移运算 左移运算符“<<”是双目运算符。其功能把“<< ”左边的运算数的各二进位全部左移若干位,由“<<”右边的数指定移动的位数, 高位丢弃,低位补0。 其值相当于乘2。例如: a<<4 指把a的各二进位向左移动4位。如a=00000011(十进制3),左移4位后为00110000(十进制48)。
6. 右移运算 右移运算符“>>”是双目运算符。其功能是把“>> ”左边的运算数的各二进位全部右移若干位,“>>”右边的数指定移动的位数。其值相当于除2。
例如:设 a=15,a>>2
表示把000001111右移为00000011(十进制3)。对于左边移出的空位,如果是正数则空位补0,若为负数,可能补0或补1,这取决于所用的计算机系统。移入0的叫逻辑右移,移入1的叫算术右移,Turbo C采用逻辑右移。
main(){
unsigned a,b;
printf("input a number: ");
scanf("%d",&a);
b=a>>5;
b=b&15;
printf("a=%d b=%d ",a,b);
}
再看一例:
main(){
char a='a',b='b';
int p,c,d;
p=a;
p=(p<<8)|b;
d=p&0xff;
c=(p&0xff00)>>8;
printf("a=%d b=%d c=%d d=%d ",a,b,c,d);
}
浮点数的存储格式:
浮点数的存储格式是符号+阶码(定点整数)+尾数(定点小数)
SEEEEEEEEMMMMMMMMMMMMMMMMMMMMMMM
即1位符号位(0为正,1为负),8位指数位,23位尾数位
浮点数存储前先转化成2的k次方形式,即:
f = A1*2^k + A2*2^(k-1) + ... + Ak +... +An*2^(-m) (Ai = {0, 1}, A1 = 1)
如5.5=2^2 + 2^0 + 2^(-1)
其中的k就是指数,加127后组成8位指数位
5.5的指数位就是2+127 = 129 = 10000001
A2A3.....An就是尾数位,不足23位后补0
所以5.5 = 01000000101000000000000000000000 = 40A00000
所以,对浮点数*2、/2只要对8位符号位+、- 即可,但不是左移、右移
关于unsigned int 和 int 的在位运算上的不同,下面有个CU上的例子描述的很清楚:
[问题]:这个函数有什么问题吗?
/////////////////////////////////////////////////
/**
* 本函数将两个16比特位的值连结成为一个32比特位的值。
* 参数:sHighBits 高16位
* sLowBits 低16位
* 返回:32位值
**/
long CatenateBits16(short sHighBits, short sLowBits)
{
long lResult = 0; /* 32位值的临时变量*/
/* 将第一个16位值放入32位值的高16位 */
lResult = sHighBits;
lResult <<= 16;
/* 清除32位值的低16位 */
lResult &= 0xFFFF0000;
/* 将第二个16位值放入32位值的低16位 */
lResult |= (long)sLowBits;
return lResult;
}
/////////////////////////////////////////////////
[问题的发现]:
我们先看如下测试代码:
/////////////////////////////////////////////////
int main()
{
short sHighBits1 = 0x7fff;
short sHighBits2 = 0x8f12;
unsigned short usHighBits3 = 0xff12;
short sLowBits1 = 0x7bcd;
long lResult = 0;
printf("[sHighBits1 + sLowBits1] ";
lResult = CatenateBits16(sHighBits1, sLowBits1);
printf("lResult = %08x ", lResult, lResult);
lResult = CatenateBits16(sHighBits2, sLowBits1);
printf("lResult = %08x ", lResult, lResult);
lResult = CatenateBits16(usHighBits3, sLowBits1);
printf("lResult = %08x ", lResult, lResult);
}
/////////////////////////////////////////////////
运行结果为:
[sHighBits1 + sLowBits1]
lResult = 7fff7bcd
lResult = 8f127bcd
lResult = ff127bcd
嗯,运行很正确嘛……于是我们就放心的在自己的程序中使用起这个函数来了。
可是忽然有一天,我们的一个程序无论如何结果都不对!经过n个小时的检查和调试,最后终于追踪到……CatenateBits16() !?它的返回值居然是错的!!
“郁闷!”你说,“这个函数怎么会有问题呢!?”
可是,更郁闷的还在后头呢,因为你把程序中的输入量作为参数,在一个简单的main()里面单步调试:
/////////////////////////////////////////////////
int main()
{
short sHighBits1 = 0x7FFF;
short sHighBits2 = 0x8F12;
unsigned short usHighBits3 = 0x8F12;
short sLowBits1 = 0x7BCD; //你实际使用的参数
short sLowBits2 = 0x8BCD; //你实际使用的参数
long lResult = 0;
printf("[sHighBits1 + sLowBits1] ";
lResult = CatenateBits16(sHighBits1, sLowBits1);
printf("lResult = %08x ", lResult, lResult);
lResult = CatenateBits16(sHighBits2, sLowBits1);
printf("lResult = %08x ", lResult, lResult);
lResult = CatenateBits16(usHighBits3, sLowBits1);
printf("lResult = %08x ", lResult, lResult);
printf(" [sHighBits1 + sLowBits2] ";
lResult = CatenateBits16(sHighBits1, sLowBits2);
printf("lResult = %08x ", lResult, lResult);
lResult = CatenateBits16(sHighBits2, sLowBits2);
printf("lResult = %08x ", lResult, lResult);
lResult = CatenateBits16(usHighBits3, sLowBits2);
printf("lResult = %08x ", lResult, lResult);
return 0;
}
/////////////////////////////////////////////////
发现结果竟然是:
[sHighBits1 + sLowBits1]
lResult = 7fff7bcd
lResult = 8f127bcd
lResult = 8f127bcd
[sHighBits1 + sLowBits2]
lResult = ffff8bcd //oops!
lResult = ffff8bcd //oops!
lResult = ffff8bcd //oops!
前一次还好好的,后一次就ffff了?X档案?
[X档案的真相]:
注意那两个我们用来当作低16位值的sLowBits1和sLowBits2。
已知:
使用 sLowBits1 = 0x7bcd 时,函数返回正确的值;
使用 sLowBits2 = 0x8bcd 时,函数中发生X档案。
那么,sLowBits1与sLowBits2有什么区别?
注意了,sLowBits1和sLowBits2都是short型(而不是unsigned short),所以在这里,sLowBits1代表一个正数值,而sLowBits2却代表了一个负数值(因为8即是二进制1000,sLowBits2最高位是1)。
再看CatenateBits16()函数:
/////////////////////////////////////////////////
long CatenateBits16(short sHighBits, short sLowBits)
{
long lResult = 0; /* 32位值的临时变量*/
/* 将第一个16位值放入32位值的高16位 */
lResult = sHighBits;
lResult <<= 16;
/* 清除32位值的低16位 */
lResult &= 0xFFFF0000;
/* 将第二个16位值放入32位值的低16位 */
lResult |= (long)sLowBits; //注意这一句!!!!
return lResult;
}
/////////////////////////////////////////////////
如果我们在函数中用
printf("sLowBits = %04x ", sLowBits);
打印传入的sLowBits值,会发现
sLowBits = 0x7bcd 时,打印结果为
sLowBits = 7bcd
而sLowBits = 0x8bcd时,打印结果为
sLowBits = ffff8bcd
是的,即使用%04x也打印出8位十六进制。
因此,我们看出来了:
当sLowBits = 0x8bcd时,函数中 "lResult |= (long)sLowBits;" 这一句执行,会先将sLowBits转换为
0xffff8bcd
再与lResult做或运算。由于现在lResult的值为 0xXXXX0000 (其中XXXX是任何值),所以显然,无论sHighBits是什么值,最后结果都会是
0xffff8bcd
而当sLowBits = 0x7bcd时,函数中 "lResult |= (long)sLowBits;" 这一句执行,会先将sLowBits转换为
0x00007bcd
再与lResult做或运算。这样做或运算出来的结果当然就是对的。
也就是说,CatenateBits16()在sLowBits的最高位为0的时候表现正常,而在最高位为1的时候出现偏差。
[教训:在某些情况下作位运算和位处理的时候,考虑使用无符号数值——因为这个时候往往不需要处理符号。即使你需要的有符号的数值,那么也应该考虑自行在调用CatenateBits16()前后做转换——毕竟在位处理中,有符号数值相当诡异!]
下面这个CatenateBits16()版本应该会好一些:
/////////////////////////////////////////////////
unsigned long CatenateBits16(unsigned short sHighBits, unsigned short sLowBits)
{
long lResult = 0;
/* 将第一个16位值放入32位值的高16位 */
lResult = sHighBits;
lResult <<= 16;
/* 清除32位值的低16位 */
lResult &= 0xFFFF0000;
/* 将第二个16位值放入32位值的低16位 */
lResult |= (long)sLowBits & 0x0000FFFF;
return lResult;
}
/////////////////////////////////////////////////
注意其中的 "lResult |= (long)sLowBits & 0x0000FFFF;"。事实上,现在即使我们把CatenateBits16()函数的参数(特别是sLowBits)声明为short,结果也会是对的。
如果有一天你把一只兔子扔给一只老虎,老虎把兔子吃了,第二天把一只老鼠扔给它,它又吃了,那么说明第一天你看错了:它本来就是一只猫。
转自:javascript:mctmp(0);
分享到:
相关推荐
C语言中位运算置0操作 在C语言中,位运算是一种非常重要的操作,经常用于对二进制数据进行操作。在本文中,我们将详细介绍C语言中位运算置0操作的实现方法。 位运算的定义 位运算是指对二进制数据进行操作的...
这是C语言相关的位运算技巧的总结文档资料,对巩固C语言位运算的知识大有裨益。
c语言位运算c语言位运算c语言位运算c语言位运算c语言位运算
本程序主要展示了如何在C语言中运用位运算来实现数据处理与转换的基本方法。位运算是指直接对二进制位进行操作的运算方式,在计算机科学中具有广泛的应用,尤其是在底层编程、算法优化等方面。 #### 描述:一个...
关于C语言的课件,关于位运算和预处理命令。
有很多初学C语言的人对于 位运算概念不容易弄清楚, 希望我的这个程序能有所帮助。
C语言-位运算,单片机开发常用技巧,不可不看
C语言位运算 有6种: &, | , ^(亦或), <<(左移), >>(右移)。 注意:参与位运算的元素必须是int型或者char型,以补码形式出现。 按位与& &运算常应用于: 迅速清零 保留指定位 判断奇偶性 a & 1 = 1...
本篇文章将深入探讨如何在C语言中实现矩阵运算以及创建一个基本的矩阵运算库。 首先,`matrix.c`文件很可能是实现矩阵运算功能的核心代码,它包含了矩阵的基本操作,如矩阵的加法、减法、乘法和转置等。这些操作...
本文将深入探讨如何使用C语言来实现矩阵运算,特别是矩阵的求逆运算,这是线性代数中的核心概念,对解决线性方程组等问题至关重要。 矩阵是二维数组,其元素可以是任何数值类型。在C语言中,我们可以通过二维数组来...
基于C语言的位运算实现.docx
C语言位运算是一种底层操作,它允许我们直接对二进制位进行操作,这对于理解计算机内部工作原理和优化代码性能非常有帮助。本文将详细解析C语言中的位运算符及其应用技巧。 一、位运算符 1. 按位与(&): 两个操作数...
项目中的"集合运算"文件很可能包含了实现上述功能的C语言代码,可能包括结构体定义、函数声明和实现等部分。通过阅读和调试这些代码,你可以深入理解C语言如何处理集合问题,并学习如何在实际项目中应用这些概念。...
数组运算在C语言编程中占据着核心地位,理解和熟练掌握这些运算对于编写高效的程序至关重要。下面将详细介绍C语言中数组的基本概念、声明、初始化、访问、操作以及相关的运算。 1. **数组的基本概念**: C语言中的...
C语言四则运算简单程序if(a==0||c==0) { printf("输入错误,分母不为0!"); } if(op=='+'){y=b*c+d*a;x=a*c;} //四则运算 if(op=='-'){y=b*c-d*a,x=a*c;} if(op=='*'){y=b*d;x=a*c;} if(op=='/'){y=b/c;x=a...
C语言大作业,实现基本字符串编辑,void listinput(char *s);//字符串输入 void listoutput(char *s);//字符串输出 int listlenth(char *s);//求串长 void linklist(char *s,char *t);//串连接 int listcompare(char...
在本文中,我们将深入探讨如何使用C语言设计一个基于数据结构的四则运算计算器。这个计算器利用了循环队列和顺序栈的概念,可以处理基本的加法、减法、乘法和除法运算,但不支持括号。下面将详细阐述相关知识点。 #...
本PPT课件主要讲解了C语言程序设计中的位运算,包括二进制表示、按位与、按位或、异或等操作。下面是该课件的详细知识点: 一、整数的二进制表示 * 整数在计算机中以补码表示 * 正数的补码、原码、反码相同 * 负数...
- 多线程:在大型矩阵运算中,可以利用多线程并行计算来加速。 - 动态调整精度:对于浮点数运算,可以提供不同精度的选项。 - 其他高级功能:如特征值计算、奇异值分解、矩阵分解等。 这个C语言的矩阵运算库...
C语言矩阵的运算C语言矩阵的运算