`

LIRe 源代码分析 6:检索(ImageSearcher)[以颜色布局为例]

 
阅读更多

 

注:此前写了一系列的文章,分析LIRe的源代码,在此列一个列表:

LIRe 源代码分析 1:整体结构
LIRe 源代码分析 2:基本接口(DocumentBuilder)
LIRe 源代码分析 3:基本接口(ImageSearcher)
LIRe 源代码分析 4:建立索引(DocumentBuilder)[以颜色布局为例]
LIRe 源代码分析 5:提取特征向量[以颜色布局为例]
LIRe 源代码分析 6:检索(ImageSearcher)[以颜色布局为例]
LIRe 源代码分析 7:算法类[以颜色布局为例]

 

前几篇文章介绍了LIRe 的基本接口:

LIRe 源代码分析 1:整体结构
LIRe 源代码分析 2:基本接口(DocumentBuilder)
LIRe 源代码分析 3:基本接口(ImageSearcher)

以及其建立索引(DocumentBuilder)[以颜色直方图为例]
LIRe 源代码分析 4:建立索引(DocumentBuilder)[以颜色布局为例]
LIRe 源代码分析 5:提取特征向量[以颜色布局为例]

现在来看一看它的检索部分(ImageSearcher)。不同的方法的检索功能的类各不相同,它们都位于“net.semanticmetadata.lire.impl”中,如下图所示:

 

 

在这里仅分析一个比较有代表性的:颜色布局。前文已经分析过ColorLayoutDocumentBuilder,在这里我们分析一下ColorLayoutImageSearcher。源代码如下:

 

/*
 * This file is part of the LIRe project: http://www.semanticmetadata.net/lire
 * LIRe is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * LIRe is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with LIRe; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 * We kindly ask you to refer the following paper in any publication mentioning Lire:
 *
 * Lux Mathias, Savvas A. Chatzichristofis. Lire: Lucene Image Retrieval 鈥�
 * An Extensible Java CBIR Library. In proceedings of the 16th ACM International
 * Conference on Multimedia, pp. 1085-1088, Vancouver, Canada, 2008
 *
 * http://doi.acm.org/10.1145/1459359.1459577
 *
 * Copyright statement:
 * --------------------
 * (c) 2002-2011 by Mathias Lux (mathias@juggle.at)
 *     http://www.semanticmetadata.net/lire
 */
package net.semanticmetadata.lire.impl;

import net.semanticmetadata.lire.DocumentBuilder;
import net.semanticmetadata.lire.ImageDuplicates;
import net.semanticmetadata.lire.ImageSearchHits;
import net.semanticmetadata.lire.imageanalysis.ColorLayout;
import net.semanticmetadata.lire.imageanalysis.LireFeature;
import org.apache.lucene.document.Document;
import org.apache.lucene.index.IndexReader;

import java.io.FileNotFoundException;
import java.io.IOException;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.logging.Level;

/**
 * Provides a faster way of searching based on byte arrays instead of Strings. The method
 * {@link net.semanticmetadata.lire.imageanalysis.ColorLayout#getByteArrayRepresentation()} is used
 * to generate the signature of the descriptor much faster. First tests have shown that this
 * implementation is up to 4 times faster than the implementation based on strings
 * (for 120,000 images)
 * <p/>
 * User: Mathias Lux, mathias@juggle.at
 * Date: 30.06 2011
 */
public class ColorLayoutImageSearcher extends GenericImageSearcher {
    public ColorLayoutImageSearcher(int maxHits) {
        super(maxHits, ColorLayout.class, DocumentBuilder.FIELD_NAME_COLORLAYOUT_FAST);
    }

    protected float getDistance(Document d, LireFeature lireFeature) {
        float distance = 0f;
        ColorLayout lf;
        try {
            lf = (ColorLayout) descriptorClass.newInstance();
            byte[] cls = d.getBinaryValue(fieldName);
            if (cls != null && cls.length > 0) {
                lf.setByteArrayRepresentation(cls);
                distance = lireFeature.getDistance(lf);
            } else {
                logger.warning("No feature stored in this document ...");
            }
        } catch (InstantiationException e) {
            logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage());
        } catch (IllegalAccessException e) {
            logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage());
        }

        return distance;
    }

    public ImageSearchHits search(Document doc, IndexReader reader) throws IOException {
        SimpleImageSearchHits searchHits = null;
        try {
            ColorLayout lireFeature = (ColorLayout) descriptorClass.newInstance();

            byte[] cls = doc.getBinaryValue(fieldName);
            if (cls != null && cls.length > 0)
                lireFeature.setByteArrayRepresentation(cls);
            float maxDistance = findSimilar(reader, lireFeature);

            searchHits = new SimpleImageSearchHits(this.docs, maxDistance);
        } catch (InstantiationException e) {
            logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage());
        } catch (IllegalAccessException e) {
            logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage());
        }
        return searchHits;
    }

    public ImageDuplicates findDuplicates(IndexReader reader) throws IOException {
        // get the first document:
        SimpleImageDuplicates simpleImageDuplicates = null;
        try {
            if (!IndexReader.indexExists(reader.directory()))
                throw new FileNotFoundException("No index found at this specific location.");
            Document doc = reader.document(0);

            ColorLayout lireFeature = (ColorLayout) descriptorClass.newInstance();
            byte[] cls = doc.getBinaryValue(fieldName);
            if (cls != null && cls.length > 0)
                lireFeature.setByteArrayRepresentation(cls);

            HashMap<Float, List<String>> duplicates = new HashMap<Float, List<String>>();

            // find duplicates ...
            boolean hasDeletions = reader.hasDeletions();

            int docs = reader.numDocs();
            int numDuplicates = 0;
            for (int i = 0; i < docs; i++) {
                if (hasDeletions && reader.isDeleted(i)) {
                    continue;
                }
                Document d = reader.document(i);
                float distance = getDistance(d, lireFeature);

                if (!duplicates.containsKey(distance)) {
                    duplicates.put(distance, new LinkedList<String>());
                } else {
                    numDuplicates++;
                }
                duplicates.get(distance).add(d.getFieldable(DocumentBuilder.FIELD_NAME_IDENTIFIER).stringValue());
            }

            if (numDuplicates == 0) return null;

            LinkedList<List<String>> results = new LinkedList<List<String>>();
            for (float f : duplicates.keySet()) {
                if (duplicates.get(f).size() > 1) {
                    results.add(duplicates.get(f));
                }
            }
            simpleImageDuplicates = new SimpleImageDuplicates(results);
        } catch (InstantiationException e) {
            logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage());
        } catch (IllegalAccessException e) {
            logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage());
        }
        return simpleImageDuplicates;

    }
}


源代码里面重要的函数有3个:

 

float getDistance(Document d, LireFeature lireFeature):

ImageSearchHits search(Document doc, IndexReader reader):检索。最核心函数。

ImageDuplicates findDuplicates(IndexReader reader):目前还没研究。

在这里忽然发现了一个问题:这里竟然只有一个Search()?!应该是有参数不同的3个Search()才对啊......

经过研究后发现,ColorLayoutImageSearcher继承了一个类——GenericImageSearcher,而不是继承AbstractImageSearcher。Search()方法的实现是在GenericImageSearcher中实现的。看来这个ColorLayoutImageSearcher还挺特殊的啊......

看一下GenericImageSearcher的源代码:

 

package net.semanticmetadata.lire.impl;

import net.semanticmetadata.lire.AbstractImageSearcher;
import net.semanticmetadata.lire.DocumentBuilder;
import net.semanticmetadata.lire.ImageDuplicates;
import net.semanticmetadata.lire.ImageSearchHits;
import net.semanticmetadata.lire.imageanalysis.LireFeature;
import net.semanticmetadata.lire.utils.ImageUtils;
import org.apache.lucene.document.Document;
import org.apache.lucene.index.IndexReader;

import java.awt.image.BufferedImage;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.TreeSet;
import java.util.logging.Level;
import java.util.logging.Logger;

/**
 * This file is part of the Caliph and Emir project: http://www.SemanticMetadata.net
 * <br>Date: 01.02.2006
 * <br>Time: 00:17:02
 *
 * @author Mathias Lux, mathias@juggle.at
 */
public class GenericImageSearcher extends AbstractImageSearcher {
    protected Logger logger = Logger.getLogger(getClass().getName());
    Class<?> descriptorClass;
    String fieldName;

    private int maxHits = 10;
    protected TreeSet<SimpleResult> docs;

    public GenericImageSearcher(int maxHits, Class<?> descriptorClass, String fieldName) {
        this.maxHits = maxHits;
        docs = new TreeSet<SimpleResult>();
        this.descriptorClass = descriptorClass;
        this.fieldName = fieldName;
    }

    public ImageSearchHits search(BufferedImage image, IndexReader reader) throws IOException {
        logger.finer("Starting extraction.");
        LireFeature lireFeature = null;
        SimpleImageSearchHits searchHits = null;
        try {
            lireFeature = (LireFeature) descriptorClass.newInstance();
            // Scaling image is especially with the correlogram features very important!
            BufferedImage bimg = image;
            if (Math.max(image.getHeight(), image.getWidth()) > GenericDocumentBuilder.MAX_IMAGE_DIMENSION) {
                bimg = ImageUtils.scaleImage(image, GenericDocumentBuilder.MAX_IMAGE_DIMENSION);
            }
            lireFeature.extract(bimg);
            logger.fine("Extraction from image finished");

            float maxDistance = findSimilar(reader, lireFeature);
            searchHits = new SimpleImageSearchHits(this.docs, maxDistance);
        } catch (InstantiationException e) {
            logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage());
        } catch (IllegalAccessException e) {
            logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage());
        }
        return searchHits;
    }

    /**
     * @param reader
     * @param lireFeature
     * @return the maximum distance found for normalizing.
     * @throws java.io.IOException
     */
    protected float findSimilar(IndexReader reader, LireFeature lireFeature) throws IOException {
        float maxDistance = -1f, overallMaxDistance = -1f;
        boolean hasDeletions = reader.hasDeletions();

        // clear result set ...
        docs.clear();

        int docs = reader.numDocs();
        for (int i = 0; i < docs; i++) {
            // bugfix by Roman Kern
            if (hasDeletions && reader.isDeleted(i)) {
                continue;
            }

            Document d = reader.document(i);
            float distance = getDistance(d, lireFeature);
            assert (distance >= 0);
            // calculate the overall max distance to normalize score afterwards
            if (overallMaxDistance < distance) {
                overallMaxDistance = distance;
            }
            // if it is the first document:
            if (maxDistance < 0) {
                maxDistance = distance;
            }
            // if the array is not full yet:
            if (this.docs.size() < maxHits) {
                this.docs.add(new SimpleResult(distance, d));
                if (distance > maxDistance) maxDistance = distance;
            } else if (distance < maxDistance) {
                // if it is nearer to the sample than at least on of the current set:
                // remove the last one ...
                this.docs.remove(this.docs.last());
                // add the new one ...
                this.docs.add(new SimpleResult(distance, d));
                // and set our new distance border ...
                maxDistance = this.docs.last().getDistance();
            }
        }
        return maxDistance;
    }

    protected float getDistance(Document d, LireFeature lireFeature) {
        float distance = 0f;
        LireFeature lf;
        try {
            lf = (LireFeature) descriptorClass.newInstance();
            String[] cls = d.getValues(fieldName);
            if (cls != null && cls.length > 0) {
                lf.setStringRepresentation(cls[0]);
                distance = lireFeature.getDistance(lf);
            } else {
                logger.warning("No feature stored in this document!");
            }
        } catch (InstantiationException e) {
            logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage());
        } catch (IllegalAccessException e) {
            logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage());
        }

        return distance;
    }

    public ImageSearchHits search(Document doc, IndexReader reader) throws IOException {
        SimpleImageSearchHits searchHits = null;
        try {
            LireFeature lireFeature = (LireFeature) descriptorClass.newInstance();

            String[] cls = doc.getValues(fieldName);
            if (cls != null && cls.length > 0)
                lireFeature.setStringRepresentation(cls[0]);
            float maxDistance = findSimilar(reader, lireFeature);

            searchHits = new SimpleImageSearchHits(this.docs, maxDistance);
        } catch (InstantiationException e) {
            logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage());
        } catch (IllegalAccessException e) {
            logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage());
        }
        return searchHits;
    }

    public ImageDuplicates findDuplicates(IndexReader reader) throws IOException {
        // get the first document:
        SimpleImageDuplicates simpleImageDuplicates = null;
        try {
            if (!IndexReader.indexExists(reader.directory()))
                throw new FileNotFoundException("No index found at this specific location.");
            Document doc = reader.document(0);

            LireFeature lireFeature = (LireFeature) descriptorClass.newInstance();
            String[] cls = doc.getValues(fieldName);
            if (cls != null && cls.length > 0)
                lireFeature.setStringRepresentation(cls[0]);

            HashMap<Float, List<String>> duplicates = new HashMap<Float, List<String>>();

            // find duplicates ...
            boolean hasDeletions = reader.hasDeletions();

            int docs = reader.numDocs();
            int numDuplicates = 0;
            for (int i = 0; i < docs; i++) {
                if (hasDeletions && reader.isDeleted(i)) {
                    continue;
                }
                Document d = reader.document(i);
                float distance = getDistance(d, lireFeature);

                if (!duplicates.containsKey(distance)) {
                    duplicates.put(distance, new LinkedList<String>());
                } else {
                    numDuplicates++;
                }
                duplicates.get(distance).add(d.getFieldable(DocumentBuilder.FIELD_NAME_IDENTIFIER).stringValue());
            }

            if (numDuplicates == 0) return null;

            LinkedList<List<String>> results = new LinkedList<List<String>>();
            for (float f : duplicates.keySet()) {
                if (duplicates.get(f).size() > 1) {
                    results.add(duplicates.get(f));
                }
            }
            simpleImageDuplicates = new SimpleImageDuplicates(results);
        } catch (InstantiationException e) {
            logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage());
        } catch (IllegalAccessException e) {
            logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage());
        }
        return simpleImageDuplicates;

    }

    public String toString() {
        return "GenericSearcher using " + descriptorClass.getName();
    }

}



 

下面来看看GenericImageSearcher中的search(BufferedImage image, IndexReader reader)函数的步骤(注:这个函数应该是用的最多的,输入一张图片,返回相似图片的结果集):

1.输入图片如果尺寸过大(大于1024),则调整尺寸。

2.使用extract()提取输入图片的特征值。

3.根据提取的特征值,使用findSimilar()查找相似的图片。

4.新建一个ImageSearchHits用于存储查找的结果。

5.返回ImageSearchHits

在这里要注意一点:

GenericImageSearcher中创建特定方法的类的时候,使用了如下形式:

 

LireFeature lireFeature = (LireFeature) descriptorClass.newInstance();

 

即接口的方式,而不是直接新建一个对象的方式,形如:

 

AutoColorCorrelogram acc = new AutoColorCorrelogram(CorrelogramDocumentBuilder.MAXIMUM_DISTANCE)

 

相比而言,更具有通用型。

 

在search()函数中,调用了一个函数findSimilar()。这个函数的作用是查找相似图片的,分析了一下它的步骤:

1.使用IndexReader获取所有的记录

2.遍历所有的记录,和当前输入的图片进行比较,使用getDistance()函数

3.获取maxDistance并返回

 

在findSimilar()中,又调用了一个getDistance(),该函数调用了具体检索方法的getDistance()函数。

 

下面我们来看一下ColorLayout类中的getDistance()函数:

 

public float getDistance(LireFeature descriptor) {
        if (!(descriptor instanceof ColorLayoutImpl)) return -1f;
        ColorLayoutImpl cl = (ColorLayoutImpl) descriptor;
        return (float) ColorLayoutImpl.getSimilarity(YCoeff, CbCoeff, CrCoeff, cl.YCoeff, cl.CbCoeff, cl.CrCoeff);
    }


发现其调用了ColorLayoutImpl类中的getSimilarity()函数:

 

 

public static double getSimilarity(int[] YCoeff1, int[] CbCoeff1, int[] CrCoeff1, int[] YCoeff2, int[] CbCoeff2, int[] CrCoeff2) {
        int numYCoeff1, numYCoeff2, CCoeff1, CCoeff2, YCoeff, CCoeff;

        //Numbers of the Coefficients of two descriptor values.
        numYCoeff1 = YCoeff1.length;
        numYCoeff2 = YCoeff2.length;
        CCoeff1 = CbCoeff1.length;
        CCoeff2 = CbCoeff2.length;

        //take the minimal Coeff-number
        YCoeff = Math.min(numYCoeff1, numYCoeff2);
        CCoeff = Math.min(CCoeff1, CCoeff2);

        setWeightingValues();

        int j;
        int[] sum = new int[3];
        int diff;
        sum[0] = 0;

        for (j = 0; j < YCoeff; j++) {
            diff = (YCoeff1[j] - YCoeff2[j]);
            sum[0] += (weightMatrix[0][j] * diff * diff);
        }

        sum[1] = 0;
        for (j = 0; j < CCoeff; j++) {
            diff = (CbCoeff1[j] - CbCoeff2[j]);
            sum[1] += (weightMatrix[1][j] * diff * diff);
        }

        sum[2] = 0;
        for (j = 0; j < CCoeff; j++) {
            diff = (CrCoeff1[j] - CrCoeff2[j]);
            sum[2] += (weightMatrix[2][j] * diff * diff);
        }

        //returns the distance between the two desciptor values

        return Math.sqrt(sum[0] * 1.0) + Math.sqrt(sum[1] * 1.0) + Math.sqrt(sum[2] * 1.0);
    }


由代码可见,getSimilarity()通过具体的算法,计算两张图片特征向量之间的相似度。

 

 

 

 

分享到:
评论

相关推荐

    LIRE 源代码

    LIRE(Lucene Image REtrieval)提供一种的简单方式来创建基于图像特性的Lucene索引。利用该索引就能够构建一个基于内容的图像检索(content- based image retrieval,CBIR)系统,来...这是LIRE的源代码以及相关文档。

    Java《基于LIRE搭建的图像检索,实现以图搜图》+源代码+设计资料

    基于LIRE搭建的图像检索,实现以图搜图 - 不懂运行,下载完可以私聊问,可远程教学 该资源内项目源码是个人的毕设,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! 1、该资源内...

    Lire图片检索

    **Lire图片检索** Lire(Lucene Image REtrieval)是一个开源的、基于Java的图片检索引擎,它充分利用了Apache Lucene的全文搜索引擎技术来处理图像数据。这个项目的主要目标是提供一种高效且可扩展的方法,使得在...

    lire图形检索

    LIRE(Lucene Image Retrieval)是一个开源的图像检索库,它扩展了Lucene的功能,使其能够处理图像数据,特别是支持基于内容的图像检索(CBIR)。CBIR是一种技术,它依赖于图像的视觉特性,如颜色、纹理、形状以及...

    Lire图片搜索示例

    此外,研究Lire的源代码和官方文档可以更好地理解其内部机制和优化方法。 通过以上介绍,你应该对Lire图片搜索有了基本的理解。`LireDemo`项目将提供一个实践平台,帮助你直观地感受和掌握Lire的使用。在实际操作中...

    lire 图片索引工具

    `Lire`(Latent Image REtrieval)是一个用于图像内容检索的Java库,它为开发者提供了强大的工具,能够帮助构建基于内容的图像搜索引擎。Lire利用了计算机视觉技术来提取图像特征,并将其转换为可搜索的元数据,从而...

    mpeg 7 demo(LIRE)

    MPEG 7,全称为“多媒体内容描述接口”(Multimedia Content Description Interface),是国际标准化组织ISO与IEC联合制定的一项标准,旨在为多媒体数据提供一种标准化的描述方式,以便于内容的检索、分析和管理。...

    最新LIRE以图找图 java实例

    LIRE(Local Image Retrieval Engine,局部图像检索引擎)是一个流行的开源Java库,专门用于实现内容为基础的图像检索。这个库提供了多种图像特征提取方法,包括SIFT(尺度不变特征变换)、SURF(加速稳健特征)等,...

    LIRE-CIBR:测试使用 LIRE 库为基于内容的图像检索创建基于 Lucene 的检索索引

    《基于LIRE库构建的CIBR:利用Lucene进行内容为基础的图像检索》 在IT领域,特别是图像处理与检索方面,一种高效的技术是基于内容的图像检索(Content-Based Image Retrieval,简称CBIR)。在这个项目中,我们将...

    LIRE:开源库,用于基于内容的图像检索,视觉信息检索

    LIRE的生命已尽 该项目不再维护。 我要感谢所有提供帮助,找到了支持之言... LIRE是开放源代码且免费的,我们唯一需要的就是您在工作中使用它。 有关参考,请参见下文。 资料下载 当前在以下位置托管下载: : 。 每晚

    基于Lire库搜索相似图片源码

    Lire(Library for Image REtrieval)是一个Java库,专门用于实现内容为基础的图像检索(CBIR)。它利用了图像的低级特征,如颜色直方图、纹理和形状描述符,来计算图像之间的相似性,从而实现高效地搜索和分类。...

    lire图片搜索图片样例

    Lire工具在多个领域有广泛的应用,包括社交媒体中的图像搜索、数字图书馆的图像检索、内容为基础的图像复制检测,甚至在监控系统中寻找特定的视觉模式。 **6. 简单应用实例(simpleapp)** 在提供的文件列表中,...

    LIRE-0.9.5

    LIRE(Lucene Image REtrieval)提供一种的简单方式来创建基于图像特性的Lucene索引。利用该索引就能够构建一个基于内容的图像检索(content- based image retrieval,CBIR)系统,来...这是LIRE的源代码以及相关文档。

    LIRE示例应用:LireDemo

    该程序利用MPEG-7标准中的ScalableColor、ColorLayout和EdgeHistogram等特性,为图像内容的检索提供了高效而精确的方法。本资源提供了一个完整的示例程序,旨在帮助用户更好地理解和利用LIRE的功能。。内容来源于...

    GetMyIP:检索公共IP的Java框架

    里尔·塞奇(Lire ceci enFrançais)。 这个小型Java框架用于检索网络的公共IP地址。 它使用服务来获取IP。 特征 以下是功能列表: 检索IP地址作为字符串, 测试IP是v4还是v6。 Maven用法 要在您的Maven项目中...

    基于lire的图片搜索功能demo.zip

    这个开源项目对于学习和实践基于内容的图像检索系统非常有帮助,开发者可以通过阅读和修改代码来深入理解LIRE的工作原理,或者将其应用于自己的项目中,如图像分类、内容过滤和推荐系统等。 总之,LIRE提供了一种...

    image-similarity-with-lire:图像相似度

    在“image-similarity-with-lire-master”这个项目中,包含了使用LIRE库进行图像相似度比较的源代码。开发者可以通过阅读和运行这些代码来理解和学习如何在实际应用中实现图像相似度的计算。这将涵盖从安装库、理解...

    Jack LIRE (Linked Record):具有参考和遗传学的量子通用对象系统-开源

    Jack LIRE(链接记录)是量子数据库支持的终身文本记录日记,在记录之间具有引用(链接)功能,并且是用于终身保存文档,照片,音乐等文件的数据库。 日记记录是完全可搜索的。 可以在日记记录中提及文件,以保存...

    LireDemo (LIRE的例子)

    LIRE(Lucene Image REtrieval)提供一种的简单方式来创建基于图像特性的Lucene索引。LIRE使用的特性都取自MPEG-7标准: ScalableColor、ColorLayout、EdgeHistogram。 这是一个完整的例子程序。

    LIRE(Lucene Image REtrieval)最新开发包

    LIRE(Lucene Image REtrieval)提供一种的简单方式来创建基于图像特性的Lucene索引。利用该索引就能够构建一个基于内容的图像检索(content- based image retrieval,CBIR)系统,来搜索相似的图像,提取图像特征,...

Global site tag (gtag.js) - Google Analytics