转自:http://shenhaolaoshi.blog.sohu.com/
下面是一位朋友的问题,其实每天都有不少同学和朋友向我提问各种学习数据分析、数据挖掘、统计分析等方面的问题,有时候真的很难仔细回答。其实,每个人都有自己的学习路径,还有自己的知识结构和期望的职业生涯,要得到一个统一的答案是困难的!
什么是解决问题:就是在明确实际情况和期望情况之间的差异后,为消除这种差异所采取的行动!在解决具体问题时,要先明确分类问题、差异问题,最后我们才能谈论共性!
我期望解答这个朋友问题可能具有共性,放在博客中,一些见解仅供大家参考:
沈浩老师:
您好!不知道您还记得我不,我是电信的一名新入职员工,在过年前给您写过一封E-mail.我期望自己能够在企业内从事跟数据挖掘的工作,期望通过数据挖掘这个工具来挖掘用户深层次的需求和研究用户的使用习惯及消费特点。
我在网上查阅过一些从事数据挖掘的专家的博客,有人提到如果在企业内从事数据挖掘方面的应用工作,需要掌握相关的数理统计知识,懂得使用相关软件就可以了,请问是这样的吗?还需要掌握数据仓库和程序算法方面的知识吗?因为我从本科到研究生都是学习管理方向的,数学方面的基础相对薄弱,因此想请您指教一下。
另外,如果我要入门,从哪个方面入手比较好呢?有什么合适的参考书吗?请你不吝赐教。
想必您平时的工作很忙,因此对这么唐突的给您写邮件请教而占用您的时间和精力表示歉意。期待您的回复!祝您工作顺利,身体健康!
沈浩的回答:
抱歉,事情太多,如果不追着就忘了!我认为你作为企业员工对数据挖掘感兴趣,最主要的就是从应用和解决问题开始,所以我想把数据挖掘这个狭义定义的内容改成你应该对数据分析感兴趣,数据挖掘只是数据分析的一个重要工具和解决方法之一!
数量统计知识方面:我认为统计思想是数学在实践中最重要的体现,但对于实际工作者最重要的是掌握统计思想,其实统计理论非常复杂,但实际应用往往是比较简单的!比如,很多人都在大学学了假设检验,但实际应用中假设就是看P值是否小于0.05,但是H0是什么?拒绝还是接受的是什么现实问题;要理解!
掌握软件问题:从软件角度学,是非常好的思路,我基本上就是这样学的。我常说编软件的人最懂理论,否则编不出来,编软件的人最知道应用,否则软件买不出去;现在软件越来越友好,把软件自带案例做一遍,你会自觉不自觉的掌握软件解决问题的思路和能解决的问题类型;
数据仓库问题:OLAP和数据挖掘是数据仓库建立基础上的两个增值应用,从企业整体角度,数据挖掘应该建立在企业数据仓库完备的基础上。所以说数据仓库是针对企业级数据挖掘应用提出的,但我们应该记住,企业从来不是为了数据挖掘建立数据仓库,而是因为有了数据仓库后必然会提出数据挖掘的需求!现在随着数据挖掘软件的工具智能化,以及数据仓库和ETL工具的接口友好,对数据库层面的要求越来越少;
数学不好可能反应了一个人思考问题的方式或深入理解问题的能力,但数学不是工具是脑具,不断解决问题的过程可以让我们思考问题更数学化!
沈浩老师建议:
不急,一步一步来!先把本职工作中的数据分析问题理解了,干好了!
熟练玩好Excel软件工具,这个可以看《Excel高级应用与数据分析》我写的书,当然有很多Excel论坛和网站,从我的博客就可以连接到。
学习好统计分析方法,我不是单指统计原理,而是统计分析方法,比如回归分析,因子分析等,不断进入统计分析解决问题的思考方式;这个可以看看SPSS软件方面的书和数据案例,通过软件学习解决数据分析的统计问题,这方面的书很多,当然你也可以关注我的博客,不断增加统计分析方法解决数据分析问题的思路,自己对照着完成!
在上述问题有了比较好的理解后,也就是你应该算是一个数据分析能手的时候,开始进入数据挖掘领域,你会发现用数据挖掘思想解决问题具有智能化、自动化的优势,接下来,你需要考虑数据建模的过程,通过学习Clementine软件或SAS的挖掘工具,不断理解数据挖掘与原来的数据分析工具有什么不同或优势!
当前面都是了解并且能够得心应手后,你就要有针对性的掌握你工作所在行业的问题,例如:电信行业的解决方案问题:客户流失、客户价值、客户离网、客户保持、客户响应、客户交叉销售等商业模型,同时与数据分析和数据挖掘统一在一起的解决方案!
接下来,你应该掌握数据库的一些原理和操作,特别是SQL语言的方式
你到了这个阶段,就应该有全面解决问题的能力,比如挖掘出来的知识或商业规则如何推送到营销平台上等等
梳理自己的知识结构,不仅会操作,现在你应该成为专家了,要能够宣扬你的知识能力和领导力,当然也要表明你在数据挖掘领域的专业特长
要经常帮助同事和行业朋友,比如帮助解决数据分析问题,帮助咨询,甚至给大家讲课,这对你的知识梳理和能力的提高非常重要,你的自信心会更强!
有兴趣,可以建立一个博客或什么,不断写点东西,经常思考和总结
结交广泛的朋友!
关于入门的教材:
互联网,其实不用买什么书网络基本都有;要有好的搜索能力,当然包括搜各种软件!
SPSS和Clementine软件的说明和案例,都做一遍;
《数据挖掘——客户关系管理的艺术》不错,当当网上查一下
《调查研究中的统计分析法》——我和柯老师写的,当当网也有
《Excel高级应用与数据分析》——我写的
《数据展现的艺术》——我和博易智讯合作
分享到:
相关推荐
综上所述,学好数据挖掘不是一蹴而就的事情,它需要从实际问题出发,系统地学习统计学、软件工具、行业应用和数据库知识。随着技能和知识结构的不断完善,个人在数据挖掘领域的能力也会逐步提升。这不仅需要耐心和...
因此,学好C语言不仅有助于学生掌握专业知识,还能提高他们的就业竞争力。 文章指出传统C语言教学模式过于偏重理论知识的传授,强调语法和语句构成,导致教学内容相对乏味,学生学习效果不理想。为了解决这一问题,...
既然这是谈建模竞赛,那么我还是需要谈一谈应试技巧的话题,对于代做或 者直接抄袭他人作品的行为我是十分反对的(不能以身试法,否则不仅损害个人 名誉,损害学弟学妹参赛资格,更加损害学校的声誉)。 1.选题机灵...
资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。
《基于YOLOv8的智慧社区独居老人生命体征监测系统》(包含源码、可视化界面、完整数据集、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计
Android Studio Meerkat 2024.3.1 Patch 1(android-studio-2024.3.1.14-mac.dmg)适用于macOS Intel系统,文件使用360压缩软件分割成两个压缩包,必须一起下载使用: part1: https://download.csdn.net/download/weixin_43800734/90557060 part2: https://download.csdn.net/download/weixin_43800734/90557056
侧轴承杯加工工艺编制及夹具设计.zip
NASA数据集锂电池容量特征提取(Matlab完整源码和数据) 作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
板料折弯机液压系统设计.zip
C6150车床的设计.zip
机器学习之KNN实现手写数字
python爬虫;智能切换策略,反爬检测机制
mpls-vpn-optionA-all
56tgyhujikolp[
GB 6442-86企业职工伤亡事故调查分析规则.pdf
汽车液压式主动悬架系统的设计().zip
2000-2024年各省专利侵权案件结案数数据 1、时间:2000-2024年 2、来源:国家知识产权J 3、指标:专利侵权案件结案数 4、范围:31省 5、用途:可用于衡量知识产权保护水平
资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。
内容概要:本文档详细复现了金融数学课程作业,涵盖欧式看涨期权定价和投资组合优化两大部分。对于欧式看涨期权定价,分别采用Black-Scholes模型和蒙特卡洛方法进行了计算,并对彩虹期权进行了基于最大值的看涨期权定价。投资组合优化部分则探讨了最小方差组合、给定收益的最小方差组合、最大效用组合以及给定风险的最大收益组合四种情形,还对比了拉格朗日乘数法和二次规划求解器两种方法。文中不仅提供了详细的MATLAB代码,还有详尽的中文解释,确保每一步骤清晰明了。 适合人群:金融工程专业学生、量化分析师、金融数学爱好者。 使用场景及目标:①帮助学生理解和掌握金融衍生品定价的基本原理和方法;②为从事量化分析的专业人士提供实用工具和技术支持;③作为教学材料辅助高校教师讲授相关内容。 其他说明:文档还包括了完整的论文结构建议,从封面页到结论,再到附录,涵盖了所有必要元素,确保提交的作业符合学术规范。此外,还特别强调了数据预处理步骤,确保代码可以顺利运行。
脉冲电解射流加工喷射装置设计(1)