h1. Elasticsearch
h2. A Distributed(分布式) RESTful Search Engine
h3. "https://www.elastic.co/products/elasticsearch":https://www.elastic.co/products/elasticsearch
Elasticsearch is a distributed RESTful search engine built for the cloud. Features include:
* Distributed and Highly Available Search Engine.
** Each index is fully sharded(分片) with a configurable number of shards.
** Each shard can have one or more replicas(复制品).
** Read / Search operations performed on(运行在) any of the replica shards.
* Multi Tenant with Multi Types.
** Support for more than one index.
** Support for more than one type per index.
** Index level configuration (number of shards, index storage, ...).
* Various(多种多样) set of APIs
** HTTP RESTful API
** Native Java API.
** All APIs perform automatic node operation rerouting.
* Document oriented
** No need for upfront schema definition.
** Schema can be defined per type for customization(定制化) of the indexing process.
* Reliable(可靠的), Asynchronous Write Behind for long term persistency(持续).
* (Near) Real Time Search.
* Built on top of Lucene
** Each shard is a fully functional Lucene index
** All the power of Lucene easily exposed(暴露) through simple configuration / plugins.
* Per operation consistency(一致)
** Single document level operations are atomic(原子的), consistent(一致性的), isolated(孤立的) and durable(耐用的).
* Open Source under the Apache License, version 2 ("ALv2")
h2. Getting Started
First of all, DON'T PANIC(恐慌). It will take 5 minutes to get the gist(要旨) of what Elasticsearch is all about.
h3. Requirements
You need to have a recent version of Java installed. See the "Setup":http://www.elastic.co/guide/en/elasticsearch/reference/current/setup.html#jvm-version page for more information.
h3. Installation
* "Download":https://www.elastic.co/downloads/elasticsearch and unzip the Elasticsearch official distribution.
* Run @bin/elasticsearch@ on unix, or @bin\elasticsearch.bat@ on windows.
* Run @curl -X GET http://localhost:9200/@.
* Start more servers ...
h3. Indexing
Let's try and index some twitter like information. First, let's create a twitter user, and add some tweets (the @twitter@ index will be created automatically):
<pre>
curl -XPUT 'http://localhost:9200/twitter/user/kimchy?pretty' -d '{ "name" : "Shay Banon" }'
curl -XPUT 'http://localhost:9200/twitter/tweet/1?pretty' -d '
{
"user": "kimchy",
"post_date": "2009-11-15T13:12:00",
"message": "Trying out Elasticsearch, so far so good?"
}'
curl -XPUT 'http://localhost:9200/twitter/tweet/2?pretty' -d '
{
"user": "kimchy",
"post_date": "2009-11-15T14:12:12",
"message": "Another tweet, will it be indexed?"
}'
</pre>
Now, let's see if the information was added by GETting it:
<pre>
curl -XGET 'http://localhost:9200/twitter/user/kimchy?pretty=true'
curl -XGET 'http://localhost:9200/twitter/tweet/1?pretty=true'
curl -XGET 'http://localhost:9200/twitter/tweet/2?pretty=true'
</pre>
h3. Searching
Mmm search..., shouldn't it be elastic(有弹性的)?
Let's find all the tweets that @kimchy@ posted:
<pre>
curl -XGET 'http://localhost:9200/twitter/tweet/_search?q=user:kimchy&pretty=true'
</pre>
We can also use the JSON query language Elasticsearch provides instead of a query string:
<pre>
curl -XGET 'http://localhost:9200/twitter/tweet/_search?pretty=true' -d '
{
"query" : {
"match" : { "user": "kimchy" }
}
}'
</pre>
Just for kicks(好玩), let's get all the documents stored (we should see the user as well):
<pre>
curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -d '
{
"query" : {
"match_all" : {}
}
}'
</pre>
We can also do range search (the @postDate@ was automatically identified as date)
<pre>
curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -d '
{
"query" : {
"range" : {
"post_date" : { "from" : "2009-11-15T13:00:00", "to" : "2009-11-15T14:00:00" }
}
}
}'
</pre>
There are many more options to perform search, after all, it's a search product no? All the familiar Lucene queries are available through the JSON query language, or through the query parser.
h3. Multi Tenant - Indices and Types
Maan, that twitter index might get big (in this case, index size == valuation). Let's see if we can structure our twitter system a bit differently in order to support such large amounts of data.
Elasticsearch supports multiple indices, as well as multiple types per index. In the previous example we used an index called @twitter@, with two types, @user@ and @tweet@.
Another way to define our simple twitter system is to have a different index per user (note, though that each index has an overhead). Here is the indexing curl's in this case:
<pre>
curl -XPUT 'http://localhost:9200/kimchy/info/1?pretty' -d '{ "name" : "Shay Banon" }'
curl -XPUT 'http://localhost:9200/kimchy/tweet/1?pretty' -d '
{
"user": "kimchy",
"post_date": "2009-11-15T13:12:00",
"message": "Trying out Elasticsearch, so far so good?"
}'
curl -XPUT 'http://localhost:9200/kimchy/tweet/2?pretty' -d '
{
"user": "kimchy",
"post_date": "2009-11-15T14:12:12",
"message": "Another tweet, will it be indexed?"
}'
</pre>
The above will index information into the @kimchy@ index, with two types, @info@ and @tweet@. Each user will get their own special index.
Complete control on the index level is allowed. As an example, in the above case, we would want to change from the default 5 shards with 1 replica per index, to only 1 shard with 1 replica per index (== per twitter user). Here is how this can be done (the configuration can be in yaml as well):
<pre>
curl -XPUT http://localhost:9200/another_user?pretty -d '
{
"index" : {
"number_of_shards" : 1,
"number_of_replicas" : 1
}
}'
</pre>
Search (and similar operations) are multi index aware. This means that we can easily search on more than one
index (twitter user), for example:
<pre>
curl -XGET 'http://localhost:9200/kimchy,another_user/_search?pretty=true' -d '
{
"query" : {
"match_all" : {}
}
}'
</pre>
Or on all the indices:
<pre>
curl -XGET 'http://localhost:9200/_search?pretty=true' -d '
{
"query" : {
"match_all" : {}
}
}'
</pre>
{One liner teaser}: And the cool part about that? You can easily search on multiple twitter users (indices), with different boost levels per user (index), making social search so much simpler (results from my friends rank higher than results from friends of my friends).
h3. Distributed, Highly Available
Let's face it, things will fail....
Elasticsearch is a highly available and distributed search engine. Each index is broken down into shards, and each shard can have one or more replica. By default, an index is created with 5 shards and 1 replica per shard (5/1). There are many topologies(拓扑结构) that can be used, including 1/10 (improve search performance), or 20/1 (improve indexing performance, with search executed in a map reduce fashion across shards).
In order to play with the distributed nature of Elasticsearch, simply bring more nodes up and shut down nodes. The system will continue to serve requests (make sure you use the correct http port) with the latest data indexed.
h3. Where to go from here?
We have just covered(覆盖) a very small portion(部分) of what Elasticsearch is all about. For more information, please refer to the "elastic.co":http://www.elastic.co/products/elasticsearch website. General questions can be asked on the "Elastic Discourse forum":https://discuss.elastic.co or on IRC on Freenode at "#elasticsearch":https://webchat.freenode.net/#elasticsearch. The Elasticsearch GitHub repository is reserved(留作) for bug reports and feature requests only.
h3. Building from Source
Elasticsearch uses "Gradle":https://gradle.org for its build system. You'll need to have version 2.13 of Gradle installed.
In order to create a distribution, simply run the @gradle assemble@ command in the cloned directory.
The distribution for each project will be created under the @build/distributions@ directory in that project.
See the "TESTING":TESTING.asciidoc file for more information about
running the Elasticsearch test suite.
h3. Upgrading from Elasticsearch 1.x?
In order to ensure a smooth(平滑) upgrade process from earlier versions of
Elasticsearch (1.x), it is required to perform a full cluster restart. Please
see the "setup reference":
https://www.elastic.co/guide/en/elasticsearch/reference/current/setup-upgrade.html
for more details on the upgrade process.
h1. License
<pre>
This software is licensed under the Apache License, version 2 ("ALv2"), quoted below.
Copyright 2009-2016 Elasticsearch <https://www.elastic.co>
Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy of
the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under
the License.
</pre>
相关推荐
标题中的"elasticsearch-head-5.0.0.tar.gz"表明这是一个针对Elasticsearch 5.0.0版本的Head工具的归档文件,文件格式为tar.gz,这是一种常见的Linux/Unix系统下的文件打包和压缩格式。 在Elasticsearch中,Head...
"elasticsearch-head-5.0.0.zip"是这个工具的一个特定版本,适用于Elasticsearch的5.0.0版本。在本文中,我们将深入探讨Elasticsearch、Elasticsearch-Head以及它们在5.0.0版本中的特性和功能。 首先,Elastic...
Elasticsearch-Head-Master-5.0.0版本是一个专为Elasticsearch设计的开源可视化管理工具,它基于Node.js开发,提供了直观且友好的界面,帮助用户更轻松地管理和监控Elasticsearch集群。这款工具是开发者和管理员的...
elasticsearch-head 是用于监控 Elasticsearch 状态的客户端插件,包括数据可视化、执行增删改查操作等。 elasticsearch-head插件是使用JavaScript开发的,依赖Node.js库,使用Grunt工具构建,所以要安装elastic...
Elasticsearch 5.0.0 是一个基于Java开发的开源全文搜索...通过解压"elasticsearch-5.0.0.zip"文件,你可以获得完整的Elasticsearch 5.0.0安装包,包括所有必要的文件和配置,从而开始搭建和探索这个强大的搜索平台。
压缩包中的 `elasticsearch-5.0.0.tar.gz` 文件是 Elasticsearch 5.0.0 的源代码或二进制分发包,用户可以通过解压并运行来安装和启动服务。而 `elasticsearch-head-master.zip` 是一个基于网页的 Elasticsearch ...
**Elasticsearch 5.0.0-alpha4:搜索引擎与数据分析的强大工具** Elasticsearch,一个基于Lucene的开源搜索引擎,以其高效、可扩展性和实时分析能力在IT领域备受推崇。5.0.0-alpha4是Elasticsearch的一个早期版本,...
Elasticsearch 5.0.0 是一个重要的版本更新,它是 Elasticsearch 开源搜索引擎的一个里程碑。Elasticsearch 是基于 Lucene 库开发的...通过下载并安装 `elasticsearch-5.0.0` 文件,你可以开始探索和利用这些新特性。
连带依赖打入jar包,直接放进kafka/lib文件下下面,就安装成功了ElasticsearchSinkConnector插件
最新版windows elasticsearch-8.8.2-windows-x86_64.zip最新版windows elasticsearch-8.8.2-windows-x86_64.zip最新版windows elasticsearch-8.8.2-windows-x86_64.zip最新版windows elasticsearch-8.8.2-windows-...
适用于7.17.1系列,例如Elasticsearch的7.17.12版本。 elasticsearch-analysis-ik 是一个常用的中文分词器,在 Elasticsearch 中广泛应用于中文文本的分析和搜索。下面是 elasticsearch-analysis-ik 分词器的几个...
赠送jar包:elasticsearch-x-content-6.3.0.jar; 赠送原API文档:elasticsearch-x-content-6.3.0-javadoc.jar; 赠送源代码:elasticsearch-x-content-6.3.0-sources.jar; 赠送Maven依赖信息文件:elasticsearch-x...
赠送jar包:elasticsearch-rest-high-level-client-6.8.3.jar; 赠送原API文档:elasticsearch-rest-high-level-client-6.8.3-javadoc.jar; 赠送源代码:elasticsearch-rest-high-level-client-6.8.3-sources.jar;...
赠送jar包:elasticsearch-rest-client-6.8.3.jar; 赠送原API文档:elasticsearch-rest-client-6.8.3-javadoc.jar; 赠送源代码:elasticsearch-rest-client-6.8.3-sources.jar; 赠送Maven依赖信息文件:elastic...
elasticsearch-head-5.0,修改es的config目录下elasticsearch.yml ,新增 #禁用X-Pack插件 xpack.ml.enabled: false #head http.cors.enabled: true http.cors.allow-origin: "*" node.master: true node.data: ...
最新版 elasticsearch-analysis-ik-8.7.0.zip最新版 elasticsearch-analysis-ik-8.7.0.zip最新版 elasticsearch-analysis-ik-8.7.0.zip最新版 elasticsearch-analysis-ik-8.7.0.zip
赠送jar包:elasticsearch-x-content-6.3.0.jar; 赠送原API文档:elasticsearch-x-content-6.3.0-javadoc.jar; 赠送源代码:elasticsearch-x-content-6.3.0-sources.jar; 赠送Maven依赖信息文件:elasticsearch-x...
"es-head"是Elasticsearch-head的简写,它允许用户无需编写复杂的curl命令就能与Elasticsearch进行交互。通过这个插件,你可以查看索引的状态,监控节点健康状况,查看集群统计信息,甚至进行索引的创建、删除和映射...
在现代大数据分析和搜索引擎领域,Elasticsearch(ES)因其高效、灵活的全文检索能力而备受青睐。然而,对于中文这样的多字节语言,如何准确地进行分词是关键。这时,我们就需要引入专门的中文分词器。本文将详细...