1,"堆"定义
n个关键字序列Kl,K2,…,Kn称为堆(heap).
当且仅当该序列满足如下性质(简称为堆性质):
ki≤K2i且ki≤K2i+1 或(2)Ki≥K2i且ki≥K2i+1(1≤i≤ n)
2,若将此序列所存储的向量R[1..n]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:
树中任一非叶结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字。
(即如果按照线性存储该树,可得到一个不下降序列或不上升序列)
3,最小堆和最大堆:
根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最小者的堆称为最小堆.
根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最大者的堆称为最大堆.
4,堆排序:利用了最大堆(或最小堆)堆顶记录的关键字最大(或最小)这一特征,使得在当前无序区中选取最大(或最小)关键字的记录变得简单。
5,用最大堆排序的基本思想
(1)先将初始文件R[1..n]建成一个最大堆,此堆为初始的无序区
(2)再将关键字最大的记录R[1](即堆顶)和无序区的最后一个记录R[n]交换,由此得到新的无序区R[1..n-1]和有序区R[n],且满足 R[1..n-1].keys≤R[n].key
(3)由于交换后新的根R[1]可能违反堆性质,故应将当前无序区R[1..n-1]调整为堆。然后再次将R[1..n-1]中关键字最大的记录R[1]和该区间的最后一个记录R[n-1]交换,由此得到新的无序区R[1..n-2]和有序区R[n- 1..n],且仍满足关系R[1..n-2].keys≤R[n-1..n].keys,同样要将R[1..n-2]调整为堆.直到无序区只有一个元素为止。
6,堆排序与直接选择排序的区别:
直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在 R[2..n]中选出关键字最小的记录,又需要做n-2次比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。
堆排序可通过树形结构保存部分比较结果,可减少比较次数。
7,算法分析:
(1)堆排序的时间,主要由建立初始堆和反复重建堆这两部分的时间开销构成.
(2)堆排序的最坏时间复杂度为O(nlog2n)。堆排序的平均性能较接近于最坏性能.
(3)由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件.
(4)堆排序是就地排序,辅助空间为O(1).
(5)它是不稳定的排序方法.
8,和其他排序比较:
(1)快速排序,希尔排序和堆排序的平均时间复杂度都是 O(nlog2n)
(2)堆排序只需要1个额外的存储空间来作为交换用,空间复杂度O(1).
快排需要递归实现,这样就要用到栈,空间复杂度很大。
9,给出一段实例代码:
#include <iostream>
using namespace std;
const int MAXN=100;
int heap[MAXN];//堆数组
int total;//记录堆的大小
void heap_up(int index)//从位置index向上调整更新堆(插入时用)
{
int f,temp;
while(index)//没有到根节点
{
f=(index-1)/2; //父节点编号
if( heap[f]>heap[index] )
{
temp=heap[f];
heap[f]=heap[index];
heap[index]=temp;
index=f;
}
else
return;
}
}
void heap_down(int index)//从位置index向下调整更新堆(弹出时用)
{
int c1,c2,temp;
while(true)//没有到根节点
{
c1=2*index+1;
if(c1>=total) return;
c2=2*index+2;
//这里两个元素的时候必须加上c2与total的判断
if(c2<total&&heap[c1]>heap[c2]) c1=c2;//取最小的孩子结点
if( heap[c1]<heap[index] )
{
temp=heap[c1];
heap[c1]=heap[index];
heap[index]=temp;
index=c1;
}
else
return;
}
}
int heap_pop() //弹出堆顶元素
{
int ret=heap[0];
heap[0]=heap[total-1]; //将堆尾元素升至堆顶
heap[total-1]=ret;
total--;
heap_down(0); //每次都要向下调整
return ret;
}
void heap_insert(int value) //插入堆元素
{
heap[total]=value;
heap_up(total);
total++;
}
int main()
{
total=0;
srand(time(0));
int a[MAXN];
cout<<"a:"<<endl;
for(int i=0;i<MAXN;i++)
{
a[i]=rand()%1000;
cout<<a[i]<<" ";
if( (i+1)%10==0 ) cout<<endl;
heap_insert(a[i]);
}
cout<<endl;
cout<<"弹出栈顶:"<<endl;
for(int i=0;i<MAXN;i++)
{
cout<<heap_pop()<<" ";
if( (i+1)%10==0 ) cout<<endl;
}
cout<<endl;
return 0;
}
分享到:
相关推荐
堆排序是一种基于比较的排序算法,它通过构造一个大顶堆或小顶堆来实现排序。在本场景中,我们关注的是堆排序的源代码,它适用于openSUSE 11.4操作系统,并且是使用GCC version 4.5.1编译器编译的。在这个名为"sort...
本主题将深入探讨四种常见的排序算法:堆排序、快速排序以及两种未在标题中明确提到但同样重要的排序方法——基数排序和计数排序。 首先,让我们详细了解一下堆排序。堆排序是一种基于比较的排序算法,利用了数据...
堆排序是一种基于比较的排序算法,它通过构造一个大顶堆或小顶堆来实现排序。在大顶堆中,父节点的值总是大于或等于其子节点;而在小顶堆中,父节点的值总是小于或等于其子节点。在C++中,我们可以利用STL中的`...
【堆排序算法详解】 堆排序是一种高效的比较排序算法,其主要思想是利用堆这种数据结构进行数据的排序。堆是一个近似完全二叉树的结构,同时满足堆的性质:即父节点的键值总是大于或等于(在最大堆中)或小于或等于...
堆排序是一种基于比较的排序算法,它利用了数据结构中的“堆”这一概念。在计算机科学中,堆通常被理解为一个完全二叉树,其中每个父节点的值都大于或等于(大顶堆)或小于或等于(小顶堆)其子节点的值。堆排序算法...
在这个名为“学生成绩管理中实现堆排序”的项目中,我们看到一个C++编写的学生成绩管理系统,它使用了堆排序方法来管理并排序学生的成绩。 首先,让我们详细了解一下堆。堆通常是一个完全二叉树,可以分为最大堆和...
本文将深入探讨四种在C++中实现的常见排序算法:插入排序、冒泡排序、堆排序和快速排序。这些算法各有特点,适用于不同的场景,理解并掌握它们对于提升编程能力至关重要。 1. **插入排序**: 插入排序是一种简单的...
### 数据结构课程设计实验报告——堆排序 #### 一、堆排序概述 堆排序是一种基于树形选择的排序算法,其核心在于利用完全二叉树的性质进行元素的选择与排序。在排序过程中,将待排序的数据集合视为一颗完全二叉树...
数据结构排序 堆排序 堆排序是一种常用的排序算法,它使用大堆进行排序。下面是堆排序的详细知识点说明: 堆排序定义 堆排序是一种比较排序算法,它使用大堆(max heap)来对数组进行排序。堆排序的时间复杂度为O...
1、 实现堆排序算法。 2、 理论分析并实验验证堆排序算法的时间复杂度。
堆排序是一种基于比较的排序算法,它通过构造一个近似完全二叉树的堆结构来实现数据的排序。在此,我们将深入探讨堆排序的基本概念、原理以及如何通过编程实现。 一、堆排序的概念 堆是一个近似完全二叉树的结构,...
在ACM(国际大学生程序设计竞赛)中,堆排序是一种常用且高效的排序算法,对于解决时间限制严格的在线问题尤其有用。本篇文章将深入探讨堆排序的原理、实现以及如何将其应用到ACM竞赛中。 首先,堆是一个近似完全...
堆排序是一种基于比较的排序算法,它通过构建和调整二叉堆来实现数据的排序。在二叉堆中,每个父节点的值都大于或等于其子节点的值,这样的堆被称为最大堆。堆排序的基本步骤包括建堆、交换根节点与最后一个元素、...
堆排序是一种基于比较的排序算法,它的效率高且实现简单。在本文中,我们将深入探讨堆排序的原理,以及如何在实际编程中实现它。 首先,我们要理解什么是堆。堆是一种特殊的树形数据结构,每个节点都有一个值,并且...
堆排序是一种基于比较的排序算法,它利用了完全二叉树的数据结构特性,通过堆的性质进行元素的排序。在堆排序中,堆被定义为满足以下性质的完全二叉树:对于每个非叶子节点,其值大于或等于(在大根堆中)或小于或...
(1) 完成5种常用内部排序算法的演示,5种排序算法为:快速排序,直接插入排序,选择排序,堆排序,希尔排序; (2) 待排序元素为整数,排序序列存储在数据文件中,要求排序元素不少于30个; (3) 演示程序开始,...
全面的排序算法实现,包括插入排序、合并排序、堆排序、快速排序。 堆排序:HeapSort 讲解详见http://blog.csdn.net/fly_yr/article/details/8550701 插入排序:InSertion_Sort 讲解详见...
堆排序是一种基于比较的排序算法,它通过构造一个大顶堆或小顶堆来实现排序。在计算机科学中,堆通常被理解为一种特殊的完全二叉树,其中每个父节点的值都大于或等于(对于大顶堆)或小于或等于(对于小顶堆)其子...
直接插入排序、冒泡排序、快速排序、直接选择排序、堆排序和二路归并排序是计算机科学中经典的排序算法,它们在数据处理和算法学习中占有重要地位。这些排序算法各有特点,适用场景不同,下面将逐一详细介绍,并结合...
堆排序是一种基于比较的排序算法,它通过构造一个近似完全二叉树的堆数据结构来实现排序。在计算机科学中,堆是一个可以被看作是一棵树形结构的数据集合,其中每个父节点的值都大于或等于其子节点的值(大顶堆)或...