java concurrent 多线程
上面是一个简单的例子,使用了2个大小的线程池来处理100个线程。但有一个问题:在for 循环的过程中,会等待线程池有空闲的线程,所以主线程会阻塞的。为了解决这个问题,一般启动一个线程来做for循环,就是为了避免由于线程池满了造成主线 程阻塞。不过在这里我没有这样处理。[重要修正:经过测试,即使线程池大小小于实际线程数大小,线程池也不会阻塞的,这与Tomcat的线程池不同,它将 Runnable实例放到一个“无限”的BlockingQueue中,所以就不用一个线程启动for循环,Doug Lea果然厉害]
另外它使用了Executors的静态函数生成一个固定的线程池,顾名思义,线程池的线程是 不会释放的,即使它是Idle。这就会产生性能问题,比如如果线程池的大小为200,当全部使用完毕后,所有的线程会继续留在池中,相应的内存和线程切换 (while(true)+sleep循环)都会增加。如果要避免这个问题,就必须直接使用ThreadPoolExecutor()来构造。可以像 Tomcat的线程池一样设置“最大线程数”、“最小线程数”和“空闲线程keepAlive的时间”。通过这些可以基本上替换Tomcat的线程池实现 方案。
需要注意的是线程池必须使用shutdown来显式关闭,否则主线程就无法退出。shutdown也不会阻塞主线程。
许多长时间运行的应用有时候需要定时运行 任务完成一些诸如统计、优化等工作,比如在电信行业中处理用户话单时,需要每隔1分钟处理话单;网站每天凌晨统计用户访问量、用户数;大型超时凌晨3点统 计当天销售额、以及最热卖的商品;每周日进行数据库备份;公司每个月的10号计算工资并进行转帐等,这些都是定时任务。通过 java的并发库concurrent可以轻松的完成这些任务,而且非常的简单。
// 1秒钟后运行,并每隔2秒运行一次
// 2秒钟后运行,并每次在上次任务运行完后等待5秒后重新运行
// 30秒后结束关闭任务,并且关闭Scheduler
为了退出进程,上面的代码中加入了关闭Scheduler的操作。而对于24小时运行的应用而言,是没有必要关闭Scheduler的。
在实际应用中,有时候需要多个线程同时工作以完成同一件事情,而且在完成过程中,往往会等待其他线程都完成某一阶段后再执行,等所有线程都到达某一个阶段后再统一执行。
比如有几个旅行团需要途经深圳、广州、韶关、长沙最后到达武汉。旅行团中有自驾游的,有徒步的,有乘坐旅游大巴的;这些旅行团同时出发,并且每到一个目的地,都要等待其他旅行团到达此地后再同时出发,直到都到达终点站武汉。
这时候CyclicBarrier就可以派上用场。CyclicBarrier最重要的属性就是参与者个数,另外最要方法是await()。当所有线程都调用了await()后,就表示这些线程都可以继续执行,否则就会等待。
并发库中的BlockingQueue是一个比较好玩的类,顾名思义,就是阻塞队列。该类主要提供了两个方法put()和take(),前者将一个对象放到队列中,如果队列已经满了,就等待直到有空闲节点;后者从head取一个对象,如果没有对象,就等待直到有可取的对象。
下面的例子比较简单,一个读线程,用于将要处理的文件对象添加到阻塞队列中,另外四个写线程 用于取出文件对象,为了模拟写操作耗时长的特点,特让线程睡眠一段随机长度的时间。另外,该Demo也使用到了线程池和原子整型 (AtomicInteger),AtomicInteger可以在并发情况下达到原子化更新,避免使用了synchronized,而且性能非常高。由 于阻塞队列的put和take操作会阻塞,为了使线程退出,特在队列中添加了一个“标识”,算法中也叫“哨兵”,当发现这个哨兵后,写线程就退出。
转自:http://www.ismayday.com/?p=170
package concurrent; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; public class TestThreadPool { public static void main(String args[]) throws InterruptedException { // only two threads ExecutorService exec = Executors.newFixedThreadPool(2); for(int index = 0; index < 100; index++) { Runnable run = new Runnable() { public void run() { long time = (long) (Math.random() * 1000); System.out.println(“Sleeping ” + time + “ms”); try { Thread.sleep(time); } catch (InterruptedException e) { } } }; exec.execute(run); } // must shutdown exec.shutdown(); } }
上面是一个简单的例子,使用了2个大小的线程池来处理100个线程。但有一个问题:在for 循环的过程中,会等待线程池有空闲的线程,所以主线程会阻塞的。为了解决这个问题,一般启动一个线程来做for循环,就是为了避免由于线程池满了造成主线 程阻塞。不过在这里我没有这样处理。[重要修正:经过测试,即使线程池大小小于实际线程数大小,线程池也不会阻塞的,这与Tomcat的线程池不同,它将 Runnable实例放到一个“无限”的BlockingQueue中,所以就不用一个线程启动for循环,Doug Lea果然厉害]
另外它使用了Executors的静态函数生成一个固定的线程池,顾名思义,线程池的线程是 不会释放的,即使它是Idle。这就会产生性能问题,比如如果线程池的大小为200,当全部使用完毕后,所有的线程会继续留在池中,相应的内存和线程切换 (while(true)+sleep循环)都会增加。如果要避免这个问题,就必须直接使用ThreadPoolExecutor()来构造。可以像 Tomcat的线程池一样设置“最大线程数”、“最小线程数”和“空闲线程keepAlive的时间”。通过这些可以基本上替换Tomcat的线程池实现 方案。
需要注意的是线程池必须使用shutdown来显式关闭,否则主线程就无法退出。shutdown也不会阻塞主线程。
许多长时间运行的应用有时候需要定时运行 任务完成一些诸如统计、优化等工作,比如在电信行业中处理用户话单时,需要每隔1分钟处理话单;网站每天凌晨统计用户访问量、用户数;大型超时凌晨3点统 计当天销售额、以及最热卖的商品;每周日进行数据库备份;公司每个月的10号计算工资并进行转帐等,这些都是定时任务。通过 java的并发库concurrent可以轻松的完成这些任务,而且非常的简单。
package concurrent; import static java.util.concurrent.TimeUnit.SECONDS; import java.util.Date; import java.util.concurrent.Executors; import java.util.concurrent.ScheduledExecutorService; import java.util.concurrent.ScheduledFuture; public class TestScheduledThread { public static void main(String[] args) { final ScheduledExecutorService scheduler = Executors .newScheduledThreadPool(2); final Runnable beeper = new Runnable() { int count = 0; public void run() { System.out.println(new Date() + ” beep ” + (++count)); } };
// 1秒钟后运行,并每隔2秒运行一次
final ScheduledFuture beeperHandle = scheduler.scheduleAtFixedRate( beeper, 1, 2, SECONDS);
// 2秒钟后运行,并每次在上次任务运行完后等待5秒后重新运行
final ScheduledFuture beeperHandle2 = scheduler .scheduleWithFixedDelay(beeper, 2, 5, SECONDS);
// 30秒后结束关闭任务,并且关闭Scheduler
scheduler.schedule(new Runnable() { public void run() { beeperHandle.cancel(true); beeperHandle2.cancel(true); scheduler.shutdown(); } }, 30, SECONDS); } }
为了退出进程,上面的代码中加入了关闭Scheduler的操作。而对于24小时运行的应用而言,是没有必要关闭Scheduler的。
在实际应用中,有时候需要多个线程同时工作以完成同一件事情,而且在完成过程中,往往会等待其他线程都完成某一阶段后再执行,等所有线程都到达某一个阶段后再统一执行。
比如有几个旅行团需要途经深圳、广州、韶关、长沙最后到达武汉。旅行团中有自驾游的,有徒步的,有乘坐旅游大巴的;这些旅行团同时出发,并且每到一个目的地,都要等待其他旅行团到达此地后再同时出发,直到都到达终点站武汉。
这时候CyclicBarrier就可以派上用场。CyclicBarrier最重要的属性就是参与者个数,另外最要方法是await()。当所有线程都调用了await()后,就表示这些线程都可以继续执行,否则就会等待。
package concurrent; import java.text.SimpleDateFormat; import java.util.Date; import java.util.concurrent.BrokenBarrierException; import java.util.concurrent.CyclicBarrier; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; public class TestCyclicBarrier { // 徒步需要的时间: Shenzhen, Guangzhou, Shaoguan, Changsha, Wuhan private static int[] timeWalk = { 5, 8, 15, 15, 10 }; // 自驾游 private static int[] timeSelf = { 1, 3, 4, 4, 5 }; // 旅游大巴 private static int[] timeBus = { 2, 4, 6, 6, 7 }; static String now() { SimpleDateFormat sdf = new SimpleDateFormat(“HH:mm:ss”); return sdf.format(new Date()) + “: “; } static class Tour implements Runnable { private int[] times; private CyclicBarrier barrier; private String tourName; public Tour(CyclicBarrier barrier, String tourName, int[] times) { this.times = times; this.tourName = tourName; this.barrier = barrier; } public void run() { try { Thread.sleep(times[0] * 1000); System.out.println(now() + tourName + ” Reached Shenzhen”); barrier.await(); Thread.sleep(times[1] * 1000); System.out.println(now() + tourName + ” Reached Guangzhou”); barrier.await(); Thread.sleep(times[2] * 1000); System.out.println(now() + tourName + ” Reached Shaoguan”); barrier.await(); Thread.sleep(times[3] * 1000); System.out.println(now() + tourName + ” Reached Changsha”); barrier.await(); Thread.sleep(times[4] * 1000); System.out.println(now() + tourName + ” Reached Wuhan”); barrier.await(); } catch (InterruptedException e) { } catch (BrokenBarrierException e) { } } } public static void main(String[] args) { // 三个旅行团 CyclicBarrier barrier = new CyclicBarrier(3); ExecutorService exec = Executors.newFixedThreadPool(3); exec.submit(new Tour(barrier, “WalkTour”, timeWalk)); exec.submit(new Tour(barrier, “SelfTour”, timeSelf)); exec.submit(new Tour(barrier, “BusTour”, timeBus)); exec.shutdown();}}
并发库中的BlockingQueue是一个比较好玩的类,顾名思义,就是阻塞队列。该类主要提供了两个方法put()和take(),前者将一个对象放到队列中,如果队列已经满了,就等待直到有空闲节点;后者从head取一个对象,如果没有对象,就等待直到有可取的对象。
下面的例子比较简单,一个读线程,用于将要处理的文件对象添加到阻塞队列中,另外四个写线程 用于取出文件对象,为了模拟写操作耗时长的特点,特让线程睡眠一段随机长度的时间。另外,该Demo也使用到了线程池和原子整型 (AtomicInteger),AtomicInteger可以在并发情况下达到原子化更新,避免使用了synchronized,而且性能非常高。由 于阻塞队列的put和take操作会阻塞,为了使线程退出,特在队列中添加了一个“标识”,算法中也叫“哨兵”,当发现这个哨兵后,写线程就退出。
转自:http://www.ismayday.com/?p=170
发表评论
-
什么样的架构才是清晰的架构?这个有什么需要注意的?(zz from 水木)
2011-10-13 13:00 859发信人: zms (小美), ... -
java面试
2011-10-12 23:52 01、try{}里有一个return语句,那么紧跟在这个try后 ... -
JAVA与C++::关于JNI中文字符串操作问题总结
2011-10-12 23:26 934JAVA与C++::关于JNI中文字符串操作问题总结 Linu ... -
[翻译]Java 范型与集合类 :演化 ,而不是革命 (第一部分)
2011-10-12 23:21 843[翻译]Java 范型与集合类 :演化 ,而不是革命 (第一部 ... -
版本控制与CVS
2011-10-12 23:09 8722007-12-29 来源:chinaunix.net ... -
java反射机制
2011-10-12 22:39 753java反射机制 2007年02月2 ... -
转载: 五种常见开源协议的比较
2011-09-28 11:29 886BSD开源协议 BSD开源协议是一个给于使用者很 ...
相关推荐
Java.util.concurrent(JUC)是Java平台中的一个核心包,专门用于处理多线程并发问题。这个包包含了大量的工具类和接口,极大地简化了并发编程的复杂性,提高了程序的性能和可伸缩性。本测试源文件主要是针对JUC并发...
本篇学习笔记将深入解析Java线程池的框架、结构、原理以及相关源码,帮助读者全面理解线程池的工作机制。 1. 线程池模块结构 线程池框架分为多层结构,其中包括核心实现类、辅助类和接口等组件。例如,`sun.nio.ch....
总的来说,通过研究" Screens-of-Java-.rar "项目,我们可以学习到Java GUI编程、多线程、文件操作以及软件开发的最佳实践等多个方面的知识。这对于提升Java编程技能,特别是开发跨平台桌面应用的能力,是非常有帮助...
总的来说,这个压缩包中的源码和学习笔记是深入理解并熟练运用Java多线程、反射、泛型和正则表达式的宝贵资源。通过研究这些实例,开发者不仅可以巩固理论知识,还能提升实际编程技巧,从而在日常工作中编写出更加...
这份笔记涵盖了Java的基础概念、语法特性、面向对象编程、异常处理、多线程、集合框架、IO流、网络编程、反射机制以及Java常用库的使用等多个方面。下面我们将逐一探讨这些知识点。 1. **Java基础**:Java是一种跨...
Java 多线程是编程中的重要概念,尤其对于并发处理和高效系统设计至关重要。在Java中,多线程是通过两种主要方式实现的:继承`Thread`类或...学习多线程不仅是深入理解Java的关键,也是提升软件开发技能的重要步骤。
这本"Java并发编程学习笔记"可能是作者在深入研究Java并发特性、工具和最佳实践过程中积累的心得体会。下面,我们将根据这个主题,探讨一些关键的Java并发编程知识点。 1. **线程与进程**:在多任务环境中,线程是...
读者写者问题是一个经典的多线程同步问题,它在计算机科学和并发编程中占有重要的地位。这个问题涉及到多个读者和一个写者对共享资源的访问,其中读操作是互不干扰的,而写操作会互斥地修改资源。为了解决这个问题,...
### Java分布式应用学习笔记05多线程下的并发同步器 #### 1. 前言 在现代软件开发中,特别是在分布式系统和高性能计算领域,有效地管理多线程之间的协同工作至关重要。Java语言提供了丰富的工具和API来帮助开发者...
10. **原子类**:`java.util.concurrent.atomic`包下的原子类如`AtomicInteger`、`AtomicLong`等,提供了基于CAS(Compare and Swap)的无锁操作,用于在多线程环境下实现高效且线程安全的操作。 11. **Future和...
并发编程是Java开发中的核心技能之一,它涉及到多线程、同步机制、线程池、并发容器等关键概念。在ConcurrentProgrammingStudyNotes中,你可能找到关于Java并发API的详细讲解,包括`java.util.concurrent`包下的...
无锁编程,也称为Lock-Free Programming,是指在多线程环境下,通过避免使用传统的锁机制(如synchronized或java.util.concurrent.locks.Lock)来同步对共享数据的访问。这种技术依赖于原子操作(如CAS - Compare ...
以下是对马士兵多线程笔记的详细解析。 1. **多线程基础**:多线程是指一个应用程序中同时执行多个线程(即任务)的能力。这种并发执行可以提高系统资源的利用率,提升程序的响应速度和执行效率,特别是在多核...
Java提供了丰富的API来支持并发,如`java.util.concurrent`包下的Executor框架、Semaphore、CountDownLatch等。学习这个主题时,理解Java内存模型(JMM)以及volatile、synchronized关键字的作用至关重要。此外,...
Java架构面试专题汇总包含了丰富的...这份学习笔记全面地覆盖了Java开发中的重要知识点,对于提升个人技能和应对面试具有极高的价值。通过深入学习和实践,可以更好地理解和应用这些知识,成为一名出色的Java架构师。
Java并发编程是Java开发中的重要领域,特别是在多核处理器和分布式系统中,高效地利用多线程进行并发处理是提升程序性能的关键。本资源包包含了两大部分,旨在帮助学习者深入理解和掌握Java并发编程的核心概念和技术...
这篇文档和源代码将深入探讨Java多线程的各个方面,旨在帮助学习者掌握这一关键技术。 首先,我们要了解Java中创建线程的两种主要方式:继承Thread类和实现Runnable接口。继承Thread类时,我们需要重写run()方法,...
Java线程学习笔记涉及了Java多线程编程的多个关键知识点,本篇知识点整理将详细解释每个概念及其在Java中的实现方式。 基本知识部分包含了Java线程编程的基础内容,它们是并发编程的基石。 任务Runnable是一个接口...
Java多线程是Java编程中的重要概念,它允许程序同时执行多个任务,从而提高系统效率。在Java中,实现多线程主要有两种方式:通过继承Thread类和实现Runnable接口。Thread类提供了创建新线程的基本功能,而Runnable...